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Gravitational dipole and quadrupole radiation from pulsars

by Paritosh VERMA

Abstract in English
This thesis presents dipole and quadrupole gravitational radiation from pulsars.

Einstein’s general theory of relativity (GR) predicts only two tensor polarization
states dominated by the time-varying quadrupole moment. But a generic metric
theory of gravity can also possess scalar and vector polarization states. This thesis
focuses on Brans-Dicke (BD) theory, which attempts to modify GR by varying grav-
itational constant G and has three polarization states. First, we acquire polarization
states in BD theory by linearizing the field equations and applying gauge conditions.
Then, we employ these formulae to derive the response of a laser interferometric de-
tector to the GW signal from a spinning neutron star in BD theory. Next, we obtain
a statistic (D-statistic) established on the maximum likelihood principle to deter-
mine the signal in BD theory in the detector’s noise. This statistic generalizes the
well-known F-statistic used in the case of GR. Eventually, we perform Monte Carlo
simulations in Gaussian noise to test the detectability of the signal and the preci-
sion of estimation of its parameters. Our theoretical framework is executed to probe
for the scalar and tensor continuous waves in the LIGO-Virgo O2 and O3 data. We
comb for continuous GWs from 23 pulsars at once and twice the spin frequencies
both in BD theory and GR. No signal is found in the data, but we could impose
better constraints on amplitudes.

Chapter 1 consists of some of the sections from the paper Królak, A and Verma,
P. Recent Observations of Gravitational Waves by LIGO and Virgo Detectors, Universe
2021, 7(5), 137. Chapters 2, 3 and 4 are based on the paper Verma, P. Probing Grav-
itational Waves from Pulsars in Brans-Dicke Theory, Universe 2021, 7(7), 235. Chapter
5 summarizes the result and theory behind the LIGO-Virgo-KAGRA paper Searches
for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third
LIGO-Virgo Observing Runs, ApJ 2022 , 935, 1. Appendix A of this thesis discusses the
decomposition of the moment of inertia in symmetric trace-free (STF) tensors and
spherical harmonics, which is the basis for subsection 3.1.1 of chapter 3. Appendix
B summarizes the formulae of the well-known χ2 distribution. Appendix C is about
estimating parameters if a signal is detected and shows the calculation of Fisher and
Covariance matrices for a monochromatic wave. It also contains the proof of the fact
hat 2 × F-statistic is a χ2 distribution. Finally, appendix D presents the computa-
tion of the total power emitted by the scalar wave in BD theory and tensor wave in
general relativity and it uses the paper Verma, P. A swinging rod in Brans-Dicke The-
ory, Annalen der Physik, andp.202100600. These formulae of power are then used to
calculate the spin-down limits, one of the essential quantities for data analysis.

HTTP://WWW.NCBJ.GOV.PL
https://doi.org/10.3390/universe7050137
https://doi.org/10.3390/universe7050137
https://doi.org/10.3390/universe7070235
https://iopscience.iop.org/article/10.3847/1538-4357/ac6acf
https://doi.org/10.1002/andp.202100600




vii

NATIONAL CENTRE FOR NUCLEAR RESEARCH

Abstract
Factulty of Physics

Department of Fundamental Research

Doctor of Philosophy

Gravitational dipole and quadrupole radiation from pulsars

by Paritosh VERMA

Abstract in polish
Praca ta przedstawia dipolowe i kwadrupolowe promieniowanie grawitacyjne z

pulsarów. Ogólna teoria względności Einsteina (OTW) przewiduje tylko dwa stany
polaryzacji, które są zdominowane przez zmienny w czasie moment kwadrupolowy.
Ale ogólna metryczna teoria grawitacji może również posiadać stany polaryzacji
skalarnej i wektorowej. Praca ta koncentruje się głównie na teorii Bransa-Dickego
(BD), która próbuje zmodyfikować OTW poprzez zmianę stałej grawitacyjnej G i
ma trzy stany polaryzacji. Otrzymujemy stany polaryzacji w teorii BD poprzez lin-
earyzację równań pola i zastosowanie warunków cechowania. Stosujemy te wzory,
aby uzyskać odpowiedź laserowego detektora interferometrycznego na sygnał fali
grawitacyjnej z rotujacej gwiazdy neutronowej w teorii Bransa-Dickego. Otrzymu-
jemy statystykę (D-statistic) opartą na zasadzie maksymalnego prawdopodobieństwa
identyfikacji sygnału w szumie detektora. Ta statystyka uogólnia dobrze znaną
statystykę F używaną w przypadku ogólnej teorii względności Einsteina. Przep-
rowadzamy symulacje Monte Carlo w szumie gaussowskim w celu przetestowania
wykrywalności sygnału i dokładności oszacowania jego parametrów. Zastosowal-
iśmy nasz teoretyczny model do poszukiwania skalarnego i tensorowego promieniowa-
nia grawitacyjnego w danych detektorów LIGO i Virgo z kampani obserwacyjnych
O2 i O3. Poszukiwaliśmy fal grawitacyjnych z 23 znanych pulsarów o częstościach
równych jednokrotnej i dwukrotnej częstości obrotu pulsara. Nie wykryliśmy żad-
nego sygnału fali grawitacyjnej. Mogliśmy jednak nałożyć nowe ograniczenia na
amplitudy tych fal.

Rozdział 1 składa się z części artykułu Universe 2021, 7(5), 137. Rozdziały 2, 3
i 4 są oparte na pracy Universe 2021, 7(7), 235. Rozdział 5 podsumowuje wyniki i
teorię zawartą artykule ApJ 2022 , 935, 1. Dodatek A do tej pracy omawia rozkład
momentu bezwładności na symetryczne tensory bezśladowe (STF) i harmoniki sfer-
yczne, który jest podstawą podrozdziału 3.1.1. Dodatek B przedstawia definicję i
parametry rozkładu χ2. Dodatek C dotyczy szacowania parametrów w przypadku
wykrycia sygnału i przedstawia obliczenia macierzy Fishera i macierzy kowariancji
dla fali monochromatycznej. Zawiera również dowód na to, że statystyka 2 × F ma
rozkładem χ2. Wreszcie, dodatek D przedstawia obliczenia całkowitej mocy emi-
towanej przez falę skalarną w teorii BD oraz falę tensorową w ogólnej teorii względ-
ności na podstawie artykuł andp.202100600. Te wzory mocy są następnie wyko-
rzystywane do obliczania ograniczeń na promieniowanie grawitacyjne z rotujących
gwiazd neutronowych.
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Chapter 1

An Introduction to Gravitational
Waves

1.1 Introduction

In 1916, Albert Einstein published his General Theory of Relativity (GR) [1] which
describes how the presence of a mass affects spacetime. To understand it pictorially,
we can think of spacetime as a fabric that bends whenever an object is placed on it.
This assumption is analogous to putting a ball in the centre of a taut sheet. The curve
is steeper near the ball and weakens as we move away from the source.

According to GR, gravity is not a force but a consequence of spacetime curva-
ture. Thus, a light object attracted by a heavier one follows the shortest possible
path, known as a geodesic, in this curved region. Any non-uniform changing mass
distribution produces ripples in this spacetime fabric which propagate away from
the source at the speed of light. It means that a variation in the gravitational tidal
field of an object takes time to be felt at vast distances. This information cannot
propagate spontaneously or at any speed greater than that of light. These freely
propagating ripples are known as Gravitational Waves (GWs), and they carry away
energy and momentum from the system. Any theory of gravity described in four or
more dimensions will give rise to GWs if it respects the special theory of relativity.

It is helpful to visualize GWs by considering an example of water waves. If we
drop a stone in a calm lake, it will produce waves in the water that have both trans-
verse and longitudinal components. The transverse waves are present only on the
surface because they require elasticity. In the case of GWs, we have only transverse
polarizations because the longitudinal components vanish due to gauge conditions,
as discussed in the next chapter. In other words, the static gravitational fields have
both transverse and longitudinal components, which fall off as 1

r3 , where r is the dis-
tance between source and observer. But, on the other hand, the radiative part is only
transverse, and they fall off as 1

r . So, only transverse polarizations survive at a vast
distance in the wave zone. One example of the static longitudinal gravitational field
is the tides in oceans caused by the moon. We know that the speed of transverse
waves increases with the elasticity in the medium. Therefore, since GWs travel with
the fastest speed, we consider the spacetime fabric the stiffest possible medium.

Although GWs travel with the speed of light, they are pretty distinct from elec-
tromagnetic (EMWs). GWs are generated by the bulk motion of large masses and
possess wavelengths much longer than the dimensions of the source. Thus, they
carry information about the overall activities and vibrations of objects. On the other
hand, EMWs are usually produced by slight movements of charge pairs within ob-
jects and have wavelengths much smaller than the source’s dimension. Hence, they
exhibit the aggregate properties of microscopic charges at the surfaces of objects.
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GWs or EMWs can be produced only by accelerating masses or charges. But a uni-
formly moving charge in plasma can generate EMWs, but this is not true for GWs.
Unlike EMWs, GWs do not get hindered significantly by interstellar medium, dust
or plasma in the universe, and hence they provide us information from the core of
the source emitting them. The coupling of GWs with matter is given by Newton’s
gravitational constant G which numerical value is 6.67 × 10−11N m2 kg−2. On the
other hand, EMWs couple to a free charge with the strength 1

4πϵ0
whose numerical

value is 8.98 × 109N m2 C−2 (ϵ0 is the permittivity of free space). Comparing these
two coupling constants narrates why GWs travel with almost no hindrance in the
universe, whereas EMWs go through various absorption and scattering processes.

For some time Einstein himself denied the existence of gravitational waves in full
non-linear theory. The first proper theoretical treatment was given by Trautman and
Robinson [2, 3].

A generic metric theory of gravity can possess up to six polarization states of
gravitational waves [4]; two tensor states, two vector states and two scalar states
as hown in Figure 1.1. The tensorial states could be conceived as spin-2 particles,
vector polarizations as spin-1 particles, and scalar polarizations as spin-0 particles
in the field theory language. In the case of EMWs, the polarizations represent the
direction of oscillating electric fields. But in the case of GWs, polarizations represent
deformations in the transverse plane that turn circles made up of test masses into
ellipses. The two tensor polarizations are transverse to the wave, and they differ
from each other by 45 degrees. So it means that if we rotate one polarization by 45
degrees, we get to the second polarization. And a rotation of 180 degrees gets back
to the same state. The two vector polarizations (similar to vertical and horizontal in
the EMWs) differ by 90 degrees which means that a rotation of 360 degrees takes us
to the same polarization. A circle can represent scalar polarization. The tensor and
vector polarizations preserve the area of the circle when transformed into an ellipse
but this is not the case for scalar polarizations.

FIGURE 1.1: Effect of different polarizations on a ring of test particles.
In all the situations, GW travels in the z-direction. Plus and cross
tensor polarizations (black); vector-x (x) and vector-y (y) modes in

red; breathing (b) and longitudinal (l) scalar modes (black).

The difference in polarization can also be understood in the language of particle
physics. Let ϕ be the minimum angle by which one polarization should be rotated
to get the same state. The ϕp is given by

ϕp =
2π

Sp
(1.1)
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where Sp is the spin of the particle. For scalar polarization, Sp = 0, for vector
polarization, Sp = 1 and Sp = 2 corresponds to the tensor polarization.

In electrodynamics, the radiation is dominated by the time-varying dipole mo-
ment, and monopole radiation is prohibited due to charge conservation. In other
words, the first 1

r contribution in the radiative field comes from the dipole moment.
According to GR, there is no monopole radiation due to the mass conservation and
no dipole radiation due to the conservation of linear momentum. The radiation is
dominated by the time-varying quadrupole moment, which is the first contribution
in the radiative 1

r field. But a generic metric theory of gravity also predicts mass
monopole and dipole radiation. One such example is Brans-Dicke [5] theory which
is the main focus of this thesis.

1.2 Gravitational field zones

Einstien’s field equations consist of ten non-linear partial differential equations, mak-
ing it hard to find the exact solutions to these equations in a general case. So, we
divide the spacetime into different regimes according to the strength of tidal fields
and then apply the method most suitable to that region.

Consider a source of dimensions L that is emitting GWs. We represent this source
by the blue colour in Figure 1.2. We divide the spacetime into four different regions.
The first region (1) represents the strong gravity region which requires solving cou-
pled partial differential equations using numerical relativity. In the second region
(2), where r ≥ 10L, one can consider tidal gravitational fields relatively weaker and
linearized theory in flat spacetime can be used. The third region (3), where r ≥ λ

2π ,
is the local wave zone (λ is the wavelength of the GW). In this region, one can ignore
other sources generating GWs, and the wave under consideration propagates freely.
The various calculations in the subsequent chapters of thesis make sense only in the
local wave zone. The region beyond the local wave zone is known as the distant
wave zone (4), which corresponds to the universe on a large scale. In this region,
one requires to consider the effects of gravitational lensing.

1.3 Gravitational wave sources

In principle, any accelerating mass should be able to produce GWs. But due to the
feeble strength of these waves, we sought violently astronomical events to detect
them. Unfortunately, the GWs generated by earthy mechanical systems or waving
hands are too weak to be seen by any current detectors or detectors in the near future.

The most promising candidates for ground-based GW interferometers are the
binary systems consisting of black holes (BHs) and neutron stars (NSs). The first de-
tected GW signal [6] originated from the merger of a binary black hole (BBH) system.
Binary systems consisting of two stars radiate GWs and as a result of radiation reac-
tion the distance between the components of the binary decreases. This results in a
oscillating signal whose amplitude and frequency increases with time and which is
called a chirp. The two stars eventually merge to form a single object.

A supernova explosion is also a credible source for the emission of GWs. During
the lifecycle of a star, the radiation resulting from the nuclear fusion in the interior
balances the inward gravitational force. A massive star dies catastrophically when it
runs out of its nuclear fuel, and its core undergoes a gravitational collapse, forming
possibly an NS or a BH, while the outer layers are blown apart, creating a supernova.
An asymmetric collapse causes the time-varying quadrupole moment, which leads
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FIGURE 1.2: Different zones of gravitational fields are produced by a
source of dimensions L. Zone 1 (red) is the strong gravity zone; region
2 (brown) is the weak field near zone, and region 3 (green) is the local
wave zone. The entire universe beyond, region 4, is the distant wave

zone.

to the emission of GWs in the form of a burst. The waveform of the burst radiation
is not well understood yet, and it is still a topic of research.

Another source of GW is the mountain on the crust of a rotating NS. This moun-
tain can be as high as a few cm, induces deformation in the star, and produces a
time-varying mass quadrupole moment. This deviation from the symmetry is re-
sponsible for almost a pure sinusoid GW signal with the frequency proportional to
the star’s spin frequency in the source frame. This signal from an isolated NS is
weaker than that originated from the binary merger, but its long-lasting nature may
lead to detection with future detectors. A continuous GW from an NS will shed
light on the exotic nuclear physics in the star’s core and impose a constraint on the
equation of state. Despite the absence of any continuous GW, there is a spin-down
limit for Crab, Vela, and several other pulsars limiting the loss of pulsars rotational
kinetic energy due to the emission of GWs to a small fraction.

Finally, we discuss the stochastic GWs resulting from various physical processes
that are inherently stochastic or due to the interference of different coherent signals
that are too weak to be resolved individually. For example, the inflation phase of
accelerated expansion in the early universe at an approximately constant Hubble
rate produces stochastic GWs with quantum mechanical origin. Besides inflation,
several phase transitions in the early cosmos, oscillatory motion of cosmic defects
such as cosmic strings may contribute to such signals.

The future of GW astronomy is bright because they have the potential to surprise
us by exploring entirely new objects and phenomena. In the following subsections,
we shall briefly discuss the physics of these sources.
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1.3.1 Binary system

For most of the evolution of the binary systems, we can treat both the companions as
point sources, and much of their dynamics can be described by quadrupole formula
equations.

The evolution of the orbit of the binary system during the inspiral phase is shown
in Figure 1.3, and the variation in frequency and amplitude of GW signal is shown
in Figure 1.4.

FIGURE 1.3: Orbit of two point like masses in inspiral phase.

FIGURE 1.4: Schematic diagram showing the final stage of inspiral
phase.

There are some crucial parameters needed to understand the physics of a binary
system. These parameters are chirp mass M, total mass M, mass ratio q, effective
inspiral spin parameter χe f f , effective precession spin parameter χP, dimensionless
tidal deformability parameter Λ̃. The more massive object in the binary system is
called the primary component and its mass is taken to be m1 whereas, the mass of
the lighter or secondary object is denoted by m2. The total mass M and the mass
ratio q are defined as

M = m1 + m2, q =
m2

m1
. (1.2)

The mass ratio q measures asymmetricity in the system with a range (0, 1] where
a value closer to 0 implies an asymmetric configuration.

There is a combination of individual masses known as chirp mass defined to be

M =
(m1m2)3/5

(m1 + m2)1/5 . (1.3)
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The significance of the chirp mass is that in the quadrupole approximation, it
determines both the amplitude and the phase modulation of the GW signal from a
binary system, and it is generally better constrained than the individual masses of
the binary.

The objects in the binary system may also possess individual spins. These spins
are encoded in the waveform and the knowledge about individual components bears
vital information regarding the evolution of the binary system. The effective inspi-
ral spin parameter χe f f contains information about the spin components that are
perpendicular to the orbital plane. On the other hand, if there is a significant pro-
jection of the spin in the orbital plane, the orbit will precess and this precession is
parametrized by effective precession spin parameter χP. The analytical expressions
for χe f f is

χe f f =
1
M

(
S⃗1

m1
+

S⃗2

m2

)
· L⃗
|⃗L|

(1.4)

where S⃗1 and S⃗2 are the spins of the primary and secondary components respec-
tively and L⃗ is the Newtonian orbital angular momentum. The expression for χP is
given by

χP = max

{
|S⃗1⊥|

m2
1

, κ
|S⃗2⊥|

m2
2

}
(1.5)

where S⃗i⊥ = S⃗i − (S⃗i · L⃗) L⃗
|⃗L|2 and κ = q (4q+3)

4+3q

An important effect that can be helpful to differentiate between a BH and NS
is the tidal deformation in an object. The external field created by the primary ob-
ject induces a quadrupole deformation in its companion object. This deformation is
measured in terms of tidal deformability (λ) and in the lowest order approximation,
it is given by

λ =
2
3

k2R5 (1.6)

where k2 represents Love number which is dependent on the mass m and the
equation of state and R is the radius of the deformed object. It is convenient to
introduce a dimensionless tidal deformability parameter Λ defined as

Λ = Gλ

(
Gm
c2

)−5

(1.7)

For a binary system, the dominant tidal contribution to the waveform is ex-
pressed in terms of the effective dimensionless tidal deformability parameter Λ̃ de-
fined as

Λ̃ =
16
13

[(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2]

(m1 + m2)5 (1.8)

where Λi are dimensionless tidal deformability parameters for individual com-
ponents. Non-spinning BHs have Λi = 0, and the waveform templates use the
convention that this is valid for all BHs.

If the initial separation between the two bodies is a0, then the system will coalesce
after the time tcoal given by
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tcoal =
5

256
c5

G3
a4

0
µM4 (1.9)

where µ is the reduced mass defined as µ ≡ m1m2
M . The characteristic amplitude

of the emitted waves (for a system on a circular orbit) at a distance r from the source
is

h(r) =
1
r

G5/3

c4 M2/3µω2/3 (1.10)

where ω is the orbital frequency.
These binary systems are considered standard candles because the radiated wave-

form is well known and allows the determination of cosmological parameters. Avail-
ability of the waveform is crucial not only for data analysis issues but also for a
different measurement of the Hubble constant. The complete evolution of a binary
system and the merging of two companion stars can be represented by the Figure
1.5.

FIGURE 1.5: Pictorial representation for the evolution of binary sys-
tem.

The inspiral phase can be well approximated with the Post-Newtonian theory.
There is a significant increase in the signal’s frequency and amplitude, and one
needs numerical relativity to model it. The merger involves general relativistic non-
linearities, relativistic hydrodynamics, large magnetic fields, tidal disruption, etc.,
dictated by unknown physics at nuclear densities. In the ring down phase, the final
compact object formed from the coalescence or the collapse oscillates in its quasi-
normal modes and emits GW whose frequencies and decay times depend on the
nature of the final object: the signal is a superposition of damped sinusoids studied
with perturbative methods.

1.3.2 Supernovae

The broad class of stellar collapse possesses a relatively wide variety of astrophysical
objects, which might be roughly classified into two distinct categories on the basis
of the dynamics of their formation. According to the currently accepted model, Su-
pernovaae of type I arise from the gravitational collapse of a white dwarf (WD) in
a binary system. The WD accretes matter from the companion until it exceeds the
Chandrasekhar mass limit of 1.44 solar masses, undergoing a gravitational collapse.
Following the collapse, the star’s central core reaches a temperature adequate to ini-
tiate the combustion of heavy elements like Carbon, and the energy released in the
reaction induces an explosion. In most cases, the explosion destroys the star. On
the other hand, Supernovae of type II originate from the gravitational collapse of a
massive aged star, leading to a neutron star’s formation. The emission of GWs from
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a Supernova explosion happens in the phase of gravitational collapse of the star,
and the amount of the emitted radiation strongly relies on the degree of asymmetry
of the collapse. A perfectly spherically symmetric collapse would not induce GWs,
whereas a highly asymmetric collapse might generate an intense emission of waves
Figure 1.6.

The efficiency of emitted radiation is defined as the fraction of rest mass energy
converted into gravitational waves. The possibility of strong radiation arises only
when the event is a gravitational collapse with a formation of an NS or BH. Even in
this case, the efficiency is a bit contentious.

FIGURE 1.6: A pictorial representation of supernovae collapse.

There are two different approaches to studying wave emission. The first one
follows the path of analyzing the gravitational collapse of a system in two or three
dimensions, considering all the possible physics like magneto hydrodynamics, neu-
trino physics, and general relativity, in an attempt to get the time dependence of the
quadrupole moment and hence the efficiency to convert rest mass-energy into GW
energy.

In another approach, it is assumed that the collapse has already occurred, and
the study follows the time evolution of a newly formed hot and rapidly rotating
NS. Then, any non-axial symmetric phenomenon will transform rotational kinetic
energy into GWs. Also, convective motions, vibrational modes of oscillation of the
star, and non-axisymmetric emission of neutrinos can get converted into GW emis-
sion.

However, all the models used are not complete because of a lack of knowledge
about the equation of state, viscosity and the difficulty in constructing a full 3-D
numerical general relativistic hydrodynamical code that must also include magnetic
and neutrino phenomena. This shows that theory itself is not enough to provide the
efficiency of GW generation. But this is one typical characteristic in almost all the
models that GWs efficiency depends on the progenitor star’s angular momentum.

While the Supernovae rate in our Galaxy and the local group of galaxies (i.e. up
to distances of the order of 300 kpc) is relatively low and probably less than one
event per two decades (the last observed event was the famous Supernova 1987a),
there might be one Supernova occurring about every two years between 3 and 5
Mpc from Earth [7]. A typical Supernova explosion event should generate GWs in
the 102 − 103 Hz frequency band, with a characteristic amplitude hc that depends on
the total amount of energy released under the form of GWs is given by

h ≈ 2.7 × 10−20
(

∆EGW

M⊙c2

) 1
2
(

1kHz
f

) 1
2
(

10Mpc
r

)
(1.11)
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where ∆EGW is the energy lost in GWs, M⊙ is the solar mass, r is the distance
and c is the speed of light.

The GW signals expected from different class of supernova are shown in Figure
1.7. The chance to detect gravitational burst is strongly dependent on the rate of
the burst events. However, due to the Milky Way’s isolation and the large distances
required to substantially increase the target population’s size, the amplitude distri-
bution of bursts is highly non-uniform. Therefore, extreme events from our Galaxy
are almost certainly rare, and to increase the event rate substantially, one needs to be
able to detect events in the Virgo Cluster. Thus, to have a chance of catching several
events per year, the sensitivity must be able to see characteristic amplitudes of less
than 10−21.

FIGURE 1.7: Calculated GW signals from different class of supernova.

1.3.3 Spinning Neutron Stars

When the mass distribution of a rotating neutron star is non-axisymmetric along
the rotation axis, it emits GWs. This asymmetry in the mass distribution along the
rotation axis can be due to the strong magnetic fields that distort the star, its history,
which created the star in a deformed state, or accretion of matter from a companion
object.

The emission of gravitational radiation can be studied under different categories.

1. If an NS has a mountain due to accretion, the rotation about its axis will result
in the emission of waves. The mountain scenario is shown in the Figure 1.8.

FIGURE 1.8: Mountain on spinning neutron star.
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2. GWs can also be produced when the angular momentum of the NS precesses
with the star’s symmetry axis, as shown in the Figure 1.9. The maximum emis-
sion will occur when both the axis becomes orthogonal. It is because stars are
not a perfect sphere and such a rigid body goes under a free precision. This
motion is called wobbling that may arise due to the accretion from the com-
panion body.

FIGURE 1.9: A wobbling neutron star.

3. An NS can also produce gravitational waves due to r-mode instability. These r-
modes, also known as Rossby waves, have great significance in millisecond NS
physics because they can generate GWs that carry away angular momentum,
causing the star to spin down. The r-modes are shown in Figure 1.10.

FIGURE 1.10: r-mode oscillations.

4. The final category is the emission of GWs through pulsar due to accretion. The
accretion of material from surrounding causes changes in quadrupole moment,
and if this accretion is continuous, there will always be gravitational radiation.
Galaxy’s low mass x-ray binaries have a spinning frequency around 300-700
Hz. Accretion of the material induces an increase in angular momentum of the
star, while on the other hand, GWs carry this momentum away. The variation
in quadrupole moment is due to the change in the structure of the NS crust,
which results from the temperature gradient produced from the matter falling
on the NS. This scenario is shown in Figure 1.11.
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FIGURE 1.11: An accreting pulsar.

GW emission from NSs is a dawn of hope to understand the physics behind such
a compact object. Presently our knowledge is limited on these stars. There are vari-
ous open questions like; what makes pulsars pulse or glitch, superconductivity, solid
core, the origin of the magnetic field of orders 1019 T or the matter which constitute
them. It is believed that the Milky Way contains about a billions of neutron stars,
more than 3000 (mostly pulsars) have been detected so far using EM observations.
Figure 1.12 pictorially represents the possible interior structure of a NS.

FIGURE 1.12: Interior structure of a neutron star.

A combined observation of GWs and EMWs can solve the puzzles of the interior
of NSs like temperature, viscosity, high magnetic fields. This thesis presents GWs
from an NS which contains a mountain. We shall study detailed analysis in the
subsequent chapters.

1.3.4 Cosmological gravitational waves from the big bang

Cosmological GWs may be analogous to cosmic microwave background (CMB) ra-
diation. For example, the origin of CMB comes from the epoch of the surface of
the last scattering, when neutron gas first formed in the universe at a redshift of
z ∼ 103. So, CMB tells us about the universe when it was 105 years old. There
should also be a similar background of neutrinos at a redshift of z ∼ 1010, which
corresponds to 0.1 s after the Big Bang. GWs are weakly coupled to the matter, so
the epoch of their release is z ∼ 1030 which corresponds to Planck time, 10−43s and
hence, they offer an excellent opportunity to view the universe at the time of its cre-
ation. But still, there are ambiguities in the signal amplitude of these waves. For
example, some models suggest enhanced background resulting from the amplifica-
tion of the GW signal due to cosmological inflation or phase transitions in the early
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universe.But in the absence of amplification of background amplitude, we need to
consider a thermal background that was in equilibrium at the extremely high ener-
gies of the Planck era. This background radiation is expected to be redshifted like
any other radiation. Today this radiation would lie in the microwave regime with
an amplitude of h ∼ 10−35, which is beyond the possibility of detection with current
instruments. Figure 1.13 shows a pictorial view of the origin of cosmological GWs
and the universe’s evolution.

FIGURE 1.13: Origin of cosmological gravitational waves.

The intensity of the gravitational wave background is usually characterized by
dimensionless quantity ΩGW( f ),

ΩGW( f ) =
1
ρc

dρGW

d(log f )
(1.12)

where ρGW is the energy density of the stochastic background of gravitational
waves, f is the frequency and ρc is the present value of the critical energy density for
closing the Universe given by

ρc ≡
3H2

0
8πG

(1.13)

The Hubble parameter H0 is usually written as H0 = h0 × 100 km
s−Mpc , where h0

parametrizes the existing experimental uncertainty. We characterize stochastic GW
background with the quantity h2

0ΩGW( f ) which represents the energy density per
unit logarithmic interval of frequency [8].

Significant uncertainties influence the estimates for the background intensity.
The most stringent limits on h2

0ΩGW( f ) come from the Big Bang nucleosynthesis
model and observations∫ f=∞

f=0
h2

0ΩGW( f )(d log f ) < 5.6 × 10−6(Nν − 3) (1.14)

where Nν is the effective number of neutrino species at the time of nucleosynthe-
sis. The CMB anisotropies measured by the COBE experiment yields

h2
0ΩGW( f ) < 7 × 10−11

(
H0

f

)2

, 3 × 10−18Hz < f < 10−16Hz (1.15)

Even though violent astronomical events release enormous energy, we need very
sensitive GW detectors to catch these signals. In the next section, we shall discuss
the detectors briefly.
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1.4 Gravitational Wave detectors

GW strain is generally minimal owing to a very weak coupling of gravity with the
matter as compared to other forces. For instance, the peak GW strain during the
first detection event was as small as 10−21. Thus, it isn’t easy to detect the GWs, and
hence, it took elaborate efforts over many decades to devise an experimental setup
sensitive enough to observe weak GW signals directly.

1.4.1 Current Detectors

In this section, we shall briefly discuss detectors which made the observations of
GWs possible. Currently, four laser interferometric detectors are operational with
the desired sensitivity. Two of them are USA based detectors, known as Laser In-
terferometer Gravitational-Wave Observatory (LIGO), and they are located in Han-
ford, Washington and Livingston, Louisiana. A third detector, known as Virgo, is
situated in Cascina (near Pisa) whereas, a fourth one, known as KAGRA, is located
at the Kamioka mine in Japan. It is worth mentioning that LIGO and Virgo are
ground-based observatories whereas KAGRA is constructed underground. There is
one more detector located in Hannover, Germany and it is called GEO600. The sen-
sitivity of this detector is too low to detect a signal because of shorter arm lengths.
Nevertheless, it is used as an R & D detector with exceptional importance in testing
various technologies before implementing them in LIGO or Virgo.

The quest for GW detectors began in 1957 when Felix Pirani proposed the phys-
ical existence of gravitational radiation at the Chapel Hill conference [9]. Joe Weber,
who listened to the talk of Pirani, came up with the idea of resonant bar detectors
to observe GWs. Weber’s detector was a massive aluminium cylinder vibrating in
its longitudinal modes and it can be considered as two test masses connected to
a spring. The principle behind these detectors is coupling between GW and test
masses and the electromagnetic field is used as the motion transducer.

The first laser interferometers were proposed by Gertsenshtein and Pustovoit in
1962 [10]. and first built by Forward at Hughes Research Laboratories [11]. Later
on, Rainer Weiss studied the noise and performance of such detectors in 1972 [12]
and the continuous efforts of various scientists and engineers in different continents
led to the first agreement between Massachusetts Institute of Technology (MIT) and
California Institute of Technology (Caltech) for LIGO detectors in 1984. On the other
hand due to the pioneering efforts of Allain Brillet in France and Adalberto Giazotto
in Italy in mid 1980s the Virgo project was defined in 1989. Virgo was approved by
the French National Centre for Scientific Research (CNRS), France in 1993 and then
by the National Institute for Nuclear Physics (INFN), Italy in 1994.

GW interferometers are motivated by the Michelson interferometers where light
travelling in two arms adds up to cause an interference pattern at the output (pho-
todetector). In GR, GWs have only two tensor polarization states (h+ and h×) which
are obtained by imposing various gauge conditions known as Transverse-Traceless
(TT) gauge. The physical significance of the word transverse is that the deformations
in the arms are orthogonal to the direction of propagation of the wave, whereas,
traceless means that if a wave passes in the z-direction, then one arm of the detec-
tor stretches in the y-direction and the other arm shrinks in the x-direction and vice
versa in such a way that the volume is not changed. The interaction of the laser inter-
ferometer with the GWs can be understood in terms of the geodesic equation and the
equation of the geodesic deviation. These instruments perform near the dark fringe,
which corresponds to the complete destructive interference at the output without
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any GW signal. The current GW interferometers are designed to detect GWs in the
frequency range ∼ [10,1000] Hz with a strain amplitude (h) of the order 10−21. The
formula below gives the expression for strain amplitude

h =
2∆L

L
(1.16)

where L is the length of the arm and ∆L is the change in the arm induced by a
passing GW. This change in length of the arms is decoded in terms of fringes at
the photodetector. The formula of strain suggests that a very long arm helps in
the detection but, this is challenging for practical and economic constraints. On
the other hand, if the arm is very long, GW amplitude changes with time during
the round trip of light in the arms. A time average of this change will in turn scale
down the sensitivity of the detector. By taking these arguments into account, the arm
length for LIGO has been chosen to be 4 km and that of Virgo and KAGRA is 3 km.
Although a very long arm is not feasible, one can still make the light storage time
higher without extending the interferometer using a Fabry-Perot (FP) cavity. The FP
cavity is a resonant cavity where the stored resonating electromagnetic field enables
us to increase the effective length of the interferometer and make the apparatus more
sensitive. For LIGO, this results in the bouncing of light 300 times by making the
effective length of the interferometer to be 1200 km. This increased effective length
reduces one important noise - the photon shot noise described below but not other
sources of noise like the thermal noise.

The most phenomenal aspect of the GW interferometers is their sensitivity which
allows them to detect very feeble signals. But the hypersensitivity of these detectors
also turns out to be their drawback because they are susceptible to various noise
sources. A GW signal is buried under the resultant of various noises which imposes
a great challenge to extract this signal. The noise sources dominating at the low
frequency are seismic noise and thermal noise from the suspension wires. In the
mid-frequency range, noise is dictated by the thermal noise of the mirrors, whereas
at high frequency, the shot noise has higher influence. In the subsequent paragraphs,
we shall discuss these noise sources briefly.

The sources of seismic noise are the continuous movement of the earth’s crust in
a wide frequency range, bad weather or a heavy vehicle passing nearby. To reduce
this noise, the Virgo detector suspends the mirror with a chain of oscillators which
attenuate vibrations in all the six degrees of freedom, whereas, the LIGO detector
uses a 4-stage pendulum called a ’quad’. The KAGRA detector has been constructed
underground to minimize the seismic noise as well as gravity gradient noise. An-
other source of noise at the low frequency is the thermal noise from wires due to
the random motion of molecules. To overcome this issue, the LIGO and Virgo use
monolithic fused silica wires to suspend the mirrors.

In the mid-frequency range the most important are the Brownian noise and the
thermoelastic noise due to irreversible thermodynamic processes triggered by ther-
mal conductivity. These noises are reduced by introducing large and heavy (40 kg)
mirrors both in LIGO and Virgo as well as low loss coating (TiO2 dopants) which
reduces mechanical dissipation. The noise can be further cut down by cooling the
mirrors to a low temperature and using a larger beam size on the mirror. To this end
the KAGRA detector uses cryogenic mirrors.

In the high-frequency range, the noise is related to the measuring of optical
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power at the photodetector. The measuring of optical power is equivalent to count-
ing the number of photons arriving during a measurement interval and the proba-
bility distribution of photons is given by the Poisson law. There is a displacement
noise at the output due to the fluctuations in the number of photons which is known
as shot noise. The shot noise can be reduced by increasing the power arriving at the
output. Also, fringes in the photodetector become sharper with an increase in the
number of photons. As photons carry momentum, an increase in the power exerts
more mechanical pressure fluctuations on the mirrors and this is known as radiation
pressure noise. This situation is conceptually similar to the Heisenberg microscope.
It is remarkable to witness how a quantum effect due to the uncertainty principle can
be crucial in the measurement of the position of a macroscopic body, like the mirror
of an interferometer, which typically weighs 40 kg. To minimize the combination of
shot noise and radiation pressure noise, the detectors should work at optimal power
Popt

Popt = πcλm f 2 (1.17)

where c is the speed of light, λ is the wavelength of the laser, m is the mass of the
mirror and f is the frequency of the GW.

The input power of LIGO is 40 W and that of Virgo is 18 W but the formula
for optimal power suggests the need of a higher power of about 360 MW for the
desired sensitivity. This power crisis problem is also ironed out with the help of the
FP cavity. In the LIGO detector, the power is increased to 750 kW by making 300
roundtrips in the FP cavity. whereas, the power enhancement in the Virgo is 650 kW
by making 280 roundtrips. Besides using the FP cavity, the power is also recycled
by placing a partial transmitting mirror between the laser and beam splitter. On
the other hand, the signal is also recycled by installing a partially reflective mirror
between the beam splitter and photodetector. As we have recycled both the power
and the signal, the interferometer is called the Dual recycled Fabry-Perot Michelson
interferometer. Figure 1.14 shows a simplified optical configuration and Figure 1.15
displays an aerial view of the Virgo detector which is located in Cascina, Italy.

FIGURE 1.14: Optical system of Virgo detector (Credits: The Virgo
Collaboration)

With the three detectors we can determine the location of the source of grav-
itational waves from a coalescing binary system. The locus of time delay in two
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FIGURE 1.15: Aerial view of Virgo (Credits: The Virgo Collaboration)

detectors forms an annulus. If we include the third detector, the annuli intersect at
two different points, one of which is the location of the source while the other point
is the mirror image of the source. One can resolve this ambiguity using additional
information about sky location contained in the amplitudes of the responses of the
detectors to the gravitational wave signal (see [13] for details). The presence of four
or more detectors improves considerably the sky localization [14].

1.4.2 Future Detectors

The accomplishment of current detectors has inspired scientists and funding agen-
cies to explore the cosmos by investing in future detectors with enhanced perfor-
mance. We shall consider future projects in this section.

The current LIGO instruments are planned for an upgrade to LIGO A+ by 2025.
One of the major improvements is the introduction of frequency-dependent light
squeezing to reduce shot noise at low frequency and radiation pressure noise at high
frequency. Other changes involve the replacement of mirrors that have low thermal
noise in the coating and low scattered light. The Virgo detector is also going through
similar changes and it is called AdV+. These improvements are expected to increase
the sensitivity by a factor of 2 and hence the reachable volume in space increases
by a factor of 8. With this sensitivity, we can detect 17-300 BBH/month and 1-13
BNS/month which would help in population studies and imposing constraints on
the Hubble parameter. Besides LIGO A+ and AdV+, a third LIGO detector is also
going to be operational in the Hingoli district, Maharashtra, India in the late 2020s.
LIGO India is jointly funded by the National Science Foundation (NSF), USA, the
Department of Atomic Energy (DAE) and the Department of Science and Technol-
ogy (DST), Government of India. The addition of a fifth detector will help in the sky
localization and increase the fraction of time that all the instruments are operating.
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There are also plans for building very sophisticated third-generation detectors
in 2030s by implementing advanced technologies. The European project, Einstein
Telescope (ET) [15], is planned to be an underground detector with 10 km arms. It
consists of two detectors, one at low frequency for BHBH merger and the other at a
higher frequency for NSNS signals. This entire setup has a triangular shape which
allows us to extract the polarization of the signal just by using one observatory. The
US Cosmic Explorer (CE) [16] is an L- shaped ground-based detector with 40 km
arms. Both ET and CE are expected to have 10 times higher sensitivity which means
that they can record 1000 times more events as compared to current detectors.

The ground-based detectors are sensitive to stellar-mass objects in the range from
around one solar mass to around hundred solar masses because the frequency emit-
ted by them lies between 5 Hz to a few kHz. But various objects in the universe
emit at lower frequency and this suggests the need for a detector in space. The Laser
Interferometer Space Antenna (LISA) is a space-based detector funded by European
Space Agency (ESA) with a substantial contribution from the National Aeronautics
and Space Administration (NASA) and it is planned to be launched in 2034 [17]. It
is a triangular-shaped detector with 2.5 million km arms and sensitive to the fre-
quency range from around 100 mHz to around 0.1 Hz. This instrument is designed
to witness the events like white dwarf binaries, the inspiral of a compact object into
a massive black hole in the centre of a galaxy or massive distant black hole binaries
with a long coalescence period. LISA may also be able to detect mHz stochastic GW
background which could be produced by processes occurring at the TeV scale in the
early Universe. With this detector, there is a hope to test the no-hair property of BHs
as well as imposing constraints on dark matter candidates and modified theories of
gravity.

There is also a quest for searching low-frequency GW by using a network (array)
of pulsars. Pulsars are very accurate clocks with a great homogeneity in pulse pro-
file, and little variation in frequency. A passing GW can induce a phase shift in the
pulse profile and using the data from different pulsars allows us to make an indirect
observation of GW. The International Pulsar Timing Array (IPTA) [18] uses pulsars
to detect lower frequency GW from slowly moving supermassive black holes at the
centres of galaxies. The IPTA consists of the European Pulsar Timing Array (EPTA),
NANOGrav from the US and Canada and Parkes Pulsar Timing Array (PPTA) which
is an Australian collaboration.
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Chapter 2

Gravitational Waves Polarizations
in Brans-Dicke theory

2.1 Introduction

Isaac Newton believed that inertial forces such as centrifugal forces must arise from
the acceleration with respect to "absolute space." On the other hand, Ernst Mach
argued that inertial forces are more likely caused by acceleration with respect to
the mass of the celestial bodies, and this idea is known as Mach?s principle. This
principle made a substantial contribution to the development of a new scalar-tensor
theory of gravitation which is known as Brans-Dicke (BD) theory proposed by Carl
Brans and Robert Dicke [5]. The foundations of BD theory are built on the previous
work of Pascual Jordan [19] as well as Markus Fierz [20], and sometimes this theory
is also referred to as Jordan-Fierz-Brans-Dicke theory.

In the last 100 years, GR has successfully passed various experimental tests prov-
ing itself to be the most promising theory of gravity. But then a natural question
arises, why is there a quest to find an alternative theory of gravity? There are plenty
of reasons that justify this question, and one of them is related to understanding the
accelerated expansion of the universe. It is more reasonable to substitute GR by an
alternative theory of gravity instead of introducing the concept of dark energy in
Einstein’s field equations to expound this expansion. This is because dark energy
does not fit the standard model, and also its nature is not perceived by the laws of
modern physics [21]. But while exploring new models of gravity, one must discern
that any new theory must obey some constraints imposed by field theory. GR is also
a field theory and the following rules determine the credibility of any new theory of
gravity:

1. There should exist vibrational modes which are freely excitable in the absence
of any source. They are also called degrees of freedom (DOF). So, a theory is
classified by the number of vibrational modes and the spin of these modes.

2. The next characteristic is the propagation of these modes in an empty space. If
the mode is massless, we have Coulomb potential, which results in the long-
range force. On the other hand, a massive mode generates Yukawa potential,
which is responsible for short-range force.

3. Finally, one needs to consider the interaction of these modes with themselves
as well as other fields.

We can verify the efficacy of these requirements in the BD theory. This theory
has three DOF. The first two of them are same as in GR. They are known as ten-
sor polarization or spin-2 massless graviton. The third polarization is known as
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scalar polarization or spin-0 graviton. All three polarizations are massless because
gravity is a long-range force and gravitational waves travel with the speed of light.
The interaction of modes can be understood by considering the Einstein equivalence
principle (EEP). The BD theory satisfies the EEP, and hence it is a metric theory of
gravity. And in metric theories of gravity, only the metric (g) interacts with the mat-
ter. So, the scalar field mediates in such a way that it generates a gravitational field
along with the matter. Once the gravitational field is set up, it produces a metric
which in turn acts back on the matter as described by EEP, but the scalar field cannot
respond to the matter directly [22]. For example, let us consider the Schwarzchild
metric generated by a compact object. The other astronomical objects in the universe
(planets, galaxies, etc.) will source this scalar field and hence deviate the resultant
metric from the Schwarzchild metric. In this theory, Newton’s constant of gravita-
tion G is not constant anymore, but G is determined by the totality of the matter in
the universe through an auxiliary field equation. This theory still has general coordi-
nate invariance, but it has an additional degree of freedom ϕ(x) that determines the
strength of gravity. In the presence of the scalar field, Einstein’s equation modifies
to

Gµν = f (φ)
[

T(matter)
µν + T(φ)

µν

]
(2.1)

where f (ϕ) is a coupling constant analogous to the Newton’s constant in the GR,
and it depends on ϕ, which in turn depends on position (x). T(matter)

µν is the energy-

momentum tensor produced by the matter, and T(φ)
µν is energy-momentum tensor

produced by the scalar field φ.
Although BD theory satisfies the EEP, it does not meet the strong equivalence

principle (SEP). This is true because the value of coupling constant depends on ϕ,
which itself depends on the position. On the other hand, a form of velocity depen-
dence in local physics can also enter indirectly if the value of the scalar field changes
with time. Then the rate of variation of the coupling constant could depend on the
velocity of the frame. It is worth noting that GR is the only theory which satisfies
SEP otherwise all metric theories violates this principle at some level [22]. Also for
the sake of complete introduction of the BD theory, we should mention that it is a
purely dynamical theory which means coupled partial differential equations govern
its structure and evolution [22].

2.2 Experimental tests of Brans-Dicke theory

2.2.1 Post-Newtonian and Parameterized post-Newtonian formalism

To understand the experimental tests of the BD theory in the weak-field limit, we
need to digress a little bit and get an idea of the post-Newtonian (PN) expansion and
parameterized post-Newtonian (PPN) framework . In the PN expansion, we expand
the metric in the powers of v

c . This approach is valid in the weak-field limit and slow-
motion approximation (v << c). When the speed of gravity approaches infinity, we
get back to the Newtonian potential. In the PPN formalism, we add parameters
(coefficients) in front of the potentials obtained by PN expansion and add a few
new potentials with their own parameters. This allows us to obtain a framework
that encompasses a broad spectrum of alternative theories, and that can be used to
calculate a wide range of testable phenomena. The only aspect that changes from
one theory of gravity to the other is the numerical value of the various coefficients
that appear in front of the potentials [22], [23].



2.2. Experimental tests of Brans-Dicke theory 21

There are ten independent parameters which appear in the PPN formalism which
are named as γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3 and ζ4. A heuristic interpretation of these pa-
rameters is given below:

• γ: It measures spatial curvature produced by unit rest mass.

• β: It measures non-linearity in gravity.

• ξ: It is non-zero in any theory of gravity that predicts preferred-location effects
such as a galaxy-induced anisotropy in the local gravitational constant.

• α1, α2, α3: They measure whether or not the theory predicts post-Newtonian
preferred-frame effects.

• ζ1, ζ2, ζ3, ζ4: They determine whether the linear momentum and angular mo-
mentum are conserved or not.

The value of γ is 1 in GR and 1+ωBD

2+ωBD
in BD where ωBD is a parameter in BD theory

defined below in the next subsection. The parameter β is unity in both theories.
Also, parameters αi and ζi vanish in GR as well as BD, and hence both theories
are conservative with no preferred-frame effects. To test the BD theory, we need
to measure the value of γ with the help of experiments. Once γ is obtained, we
can infer the value of BD parameter ωBD. For a detailed analysis on PN and PPN
formalism, refer to [22], [23], [24].

2.2.2 Experimental tests of BD theory in the weak-field limit

The weak-field limit parameter ϵ is given by

ϵ =
GM
Rc2 (2.2)

where G is the Newtonian gravitational constant, M is the characteristic mass scale
of the phenomenon, R is the characteristic distance scale, and c is the speed of light.

In the weak-field limit ϵ << 1. This is the case when we study a phenomenon in
the Solar system where ϵ < 10−5.

Measurement of γ: In the BD theory, the value of the parameter ωBD is constant.
As ωBD tends to infinity, γ tends to unity, and the BD theory is no different from GR.
Also, a higher value of ωBD diminishes the effect of the scalar field. Below we shall
discuss the bounds obtained on the value of γ from different experimental tests.
These methods are:

1. The deflection of light: The development of very-long-baseline radio interfer-
ometry (VLBI) helped scientists to measure the deflection of light with bet-
ter accuracy. Early measurements took advantage of a series of the heav-
enly coincidences where groups of strong quasistellar radio sources pass very
close to the Sun. A 1995 VLBI measurement using 3C273 and 3C279 yielded
γ− 1 = (−8± 34)× 10−4 [25]. A 2009 measurement using the Very Long Base-
line Array (VLBA) targeting the same two quasars plus two other nearby radio
sources yielded γ − 1 = (−2 ± 3)× 10−4 [26]. In recent years, transcontinen-
tal and intercontinental VLBI observations of quasars and radio galaxies have
been made primarily to monitor the Earth’s rotation. A 2004 analysis of al-
most 2 million VLBI observations of 541 radio sources, made by 87 VLBI sites
yielded γ − 1 = (−1.7 ± 4.5) × 10−4 [27] . Analyses that incorporated data
through 2010 yielded γ − 1 = (−0.8 ± 1.2)× 10−4 [28, 29, 22].
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2. The time delay of light: A radar signal sent across the solar system past the
Sun to a planet or satellite and returned to the Earth suffers an additional non-
Newtonian delay in its round-trip travel time. A significant improvement in
the value of γ was reported in 2003 from Doppler tracking of Cassini spacecraft
while it was on its way to Saturn, with a result γ − 1 = (2.1 ± 2.3)× 10−5 [30].
Using this result, one obtains that massless scalar-tensor theories must have
ωBD > 40000 to be compatible with this constraint [22].

Constancy of G: We have seen that G is not constant in BD theory. So, measuring
the quantity Ġ

G can provide a deviation from GR. The best limits on a current Ġ
G come

from improvements in the ephemeris of Mars using range and Doppler data from
the Mars Global Surveyor (1998-2006), Mars Odyssey (2002-2008), and Mars Recon-
naissance Orbiter (2006-2008), together with improved data and modeling of the
effects of the asteroid belt. The limits on Ġ

G thus obtained are (0.1 ± 1.6)× 10−13yr−1

[31, 32, 22]. There are also some constraints imposed using the recent GW ob-
servations of binary neutron stars. The events GW170817 and GW190425 yields
−7 × 10−9yr−1 ≲ Ġ

G ≲ 5 × 10−8yr−1 and −4 × 10−9yr−1 ≲ Ġ
G ≲ 2 × 10−8yr−1 re-

spectively [33]. There are also upper bounds on the variation of G obtained from
pulsating white dwarfs. For example, the upper bound using the white dwarf G117-
B15A is Ġ

G ≈ −1.8 × 10−10yr−1, whereas the bound obtained from R548 is Ġ
G ≈

−1.3 × 10−10yr−1 [34].
Nordtvedt effect: Nordtvedt showed that many metric theories of gravity pre-

dict that massive bodies violate the weak equivalence principle, that is, fall with
different accelerations depending on their gravitational self-energy [35]. This vio-
lation of the equivalence principle by massive bodies is known as the "Nordtvedt
effect" and measured by the parameter ηN . In GR, ηN is zero, and a non-zero value
of ηN gives the deviation from GR. Various experiments have been carried out to
measure this effect but the one conducted by Eöt-Wash group is the most enhanced
test. In this experiment, WEP was examined for laboratory bodies whose chemi-
cal compositions mimic that of the Earth and Moon, and they obtained the result
|ηN | = (4.4 ± 4.5)× 10−4 [22].

2.2.3 Experimental tests of BD theory in strong-field limit

The value of ϵ ≈ 1 defines the strong-field regime. It corresponds to a region in
the vicinity of a neutron star or black hole. To test the theories of gravitation in a
strong gravity regime, one can consider a binary system. It is known that the orbit
of inspiralling binary will decay because of the emission of gravitational radiation.
In GR, there is only quadrupolar emission, but scalar-tensor theories also predict
dipolar emission. One can test the dipole radiation by observing the rate of change of
the orbital period. Before we consider known binary systems, it is worth mentioning
two propositions:

• In a binary system with identical objects, dipole emission is suppressed. For
example, a system having two neutron stars will result in weak dipole radia-
tion, if there is any [22].

• Roger Penrose proposed that black holes in BD theory are identical to their
GR counterparts. Motivated by this remark, Thorne and Dykla showed that
during gravitational collapse to form a black hole, the BD scalar field is radi-
ated away, in accord with Price’s theorem, leaving only its constant asymptotic
value, and a GR black hole [36, 22].
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Although Hulse-Taylor binary (PSR 1913+16) confirmed the existence of gravita-
tional radiation in GR, it could not provide a reliable test for dipole radiation because
of the mass ratio of the system.

However, the discovery of binary pulsar systems with a white dwarf compan-
ion, such as J1738+0333, J1141-6545 and J0348+0432 has made it possible to perform
robust tests of the existence of dipole radiation. This is because such systems are
necessarily asymmetrical. Already, significant bounds have been placed on dipole
radiation using J1738+0333 and J1141-6545 [37, 38]. Also, constraints have been put
on the dipole radiation using the event GW170817 [39].

2.2.4 Search for nontensorial gravitational waves

Another approach to test the BD theory in the strong-field regime is to search for
gravitational radiation from isolated rotating neutron stars [40]. One can search for
scalar, vector or tensor polarizations in LIGO, Virgo, and KAGRA gravitational de-
tector data [41] [42] [43]. In [44], the first search has been carried in LIGO detector
data from its first observational run for around 200 known pulsars without relying
on any particular alternative theory of gravity. This investigation could not discover
any GW signal, but it imposed upper limits for scalar, vector and tensor amplitudes
[4].

2.3 Polarizations

The action S in the BD theory is written in the Jordan-Fierz frame

S = Sg[gµν, φ] + Sm[ψm, gµν] (2.3)

Sg ≡ 1
16π

∫
d4x
√
−g
[

φR − ωBD

φ
∇µ φ∇µ φ

]
(2.4)

Sm ≡
∫

d4x
√
−gLm

[
ψm, gµν

]
(2.5)

where
gµν is the metric tensor, φ is the scalar field, ωBD is a parameter which measures

how strongly φ couples to the matter content, ψm are the matter fields and Lm is
the Lagrangian of matter fields. The scalar field is not just added to the gravi-
tational tensor field, but arises through the nonminimal coupling term. P. Jordan
was trying to embed four-dimensional curved space in five-dimensional flat space-
time. He proved that a constraint in formulating projective geometry could be a
four-dimensional scalar field, which allows one to describe a spacetime-dependent
gravitational "constant," as initially proposed by P. A. M. Dirac [45].

The field equations are obtained by varying the action S with respect to the metric
tensor gµν and the scalar field φ. This gives

Rµν −
1
2

Rgµν =
8π

φ
Tµν +

ωBD

φ2

[
∂µ φ∂ν φ − 1

2
gµνgαβ∂α φ∂β φ

]
+

1
φ

[
∇µ∂ν φ − gµνgαβ∇α∂β φ

]
(2.6)

R − ωBD

φ2 gµν∂µ φ∂ν φ + 2
ωBD

φ
gµν∇µ∂ν φ = 0 (2.7)
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where Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is defined as

Tµν ≡ − 2√−g
δSm

δgµν
(2.8)

Our goal is to solve Eq. (2.6) and Eq. (2.7) simultaneously and eliminate the
curvature terms. To do so, we multiply Eq. (2.6) by gµν and subtract it from Eq. (2.7).
The multiplication of Eq. (2.6) with gµν and using the conditions that gµνgµν = 4,
gµνRµν = R and gµνTµν = T, gives

− R =
8π

φ
T − ωBD

φ2 ∂µ φ∂µ φ − 3
φ
∇µ∂µ φ (2.9)

By solving Eq. (2.9) and Eq. (2.7) simultaneously, we get

(3 + 2ωBD)

φ
∇µ∂µ φ =

8π

φ
T (2.10)

To study the local wave zone solution, we linearize the equations by considering

gµν(x) = ηµν + hµν(x) (2.11)

φ(x) = φ0 + δφ(x) = φ0

[
1 +

δφ

φ0

]
(2.12)

where

φ0 ≡ 4 + 2ωBD

(3 + 2ωBD)

1
G

(2.13)

In the above equations, ηµν is the metric of flat spacetime, hµν is a small perturba-
tion in the Minkowski spacetime with |hµν| ≪ 1 and |δϕ| ≪ ϕ0. In the limiting case
when ωBD tends to infinity, we are into the regime of general relativity i.e. ϕ0 = G−1.
We also make use of the fact that covariant derivative becomes an ordinary deriva-
tive (∇µ ≈ ∂µ) in the process of linearization.
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The expressions for Affine connection, Riemann curvature tensor, Ricci tensor
and Ricci scalar in terms of a generic metric gµν are

Γµ
αβ =

1
2

gµν
[
∂αgβν + ∂βgνα − ∂νgαβ

]
(2.14)

Rµνρσ = gρλ

[
∂µΓλ

νσ − ∂νΓλ
µσ + Γλ

µηΓη
νσ − Γλ

νηΓη
µσ

]
(2.15)

Rµν = gρσRρµσν (2.16)

R = gµνRµν (2.17)

The corresponding linearized expressions in terms of a small perturbation hµν

are

Γµ
αβ =

1
2

[
∂αhµ

β + ∂βhµ
α − ηµρ∂ρhαβ

]
+O(h2) (2.18)

Rµνρσ =
1
2
[
∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ

]
+O(h2) (2.19)

Rµν =
1
2

[
∂τ∂µhτ

ν + ∂ν∂τhτ
µ −2hµν − ∂µ∂νh

]
+O(h2) (2.20)

R = ∂µ∂νhµν −2h +O(h2) (2.21)

By linearizing Eq. (2.6) in the vacuum (Tµν = 0), we get

Rµν −
1
2

ηµνR = ω[∂µΦ∂νΦ − 1
2

ηµν∂αΦ∂αΦ] + [−∂µ∂νΦ + ηµν∂α∂αΦ] (2.22)

where Φ ≡ − δφ(x)
φ0

.
We can ignore the terms in the first square brackets on the right-hand side of Eq.

(2.22) because they are of the second order in Φ. Hence, Eq. (2.22) can be written as

Rµν −
1
2

ηµνR = −∂µ∂νΦ + ηµν2Φ (2.23)

where 2 ≡ ∂α∂α is the d’Alembert operator. Similarly, we can linearize Eq. (2.10)
in the vacuum and get

(3 + 2ωBD)

φ
∇µ∂µ φ ≈ 3 + 2ωBD

1 + δφ
φ0

∂µ∂µ φ0 + δφ

φ0
= 0 (2.24)

or,

2Φ = 0 (2.25)

In Eq. (2.24), ∂µ[φ0 + δφ] = ∂µ[δφ] because φ0 is constant for a fixed ωBD.
We can now impose various gauge conditions to extract the number of inde-

pendent components and simplify the field equations. We start with infinitesimal
coordinate transformations known as gauge transformations. They are of the form
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x′µ = xµ + ξµ (2.26)

such that |∂νξµ| ≪ 1.
In this new primed coordinate system, gµν is transformed as

g′µν = ηµν + h′µν (2.27)

where h′µν is defined as

h′µν ≡ hµν − ∂µξν − ∂νξµ (2.28)

The scalar field remains the same in new coordinate because scalars are invariant
under coordinate transformations.

Φ(x) → Φ′(x) = Φ(x) (2.29)

Under this gauge transformation, the Riemann tensor is invariant. In order to
derive wave equation, we define

h̄µν ≡ hµν −
1
2

ηµνh + ηµνΦ (2.30)

h̄ ≡ ηµνh̄µν (2.31)

h ≡ ηµνhµν (2.32)

Multiplying the Eq. (2.30) by ηµν on both sides and using the fact that ηµνηµν = 4,
we get

h̄ = h − 1
2

4h + 4Φ (2.33)

h̄ = −h + 4Φ (2.34)

We use the relation in Eq. (2.34) to express hµν in terms of h̄µν. This allows us to
write the Eq. (2.23) in terms of h̄µν.

hµν = h̄µν +
1
2

ηµνh − ηµνΦ (2.35)

hµν = h̄µν +
1
2

ηµν[−h̄ + 4Φ]− ηµνΦ (2.36)

hµν = h̄µν −
1
2

ηµνh̄ + ηµνΦ (2.37)

To expand Eq. (2.23) in terms of h̄µν, we need to express Ricci tensor and Ricci
scalar in terms of hµν which can be further written down in terms of h̄µν using the
Eq. (2.37). This can be done as

Rµν =
1
2
[
∂µ∂αhα

ν + ∂α∂νhµα −2hµν − ∂µ∂νh
]

(2.38)

R = ∂ν∂ρhρν −2h (2.39)
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Using Eq. (2.37), Eq. (2.38) and Eq. (2.39), Eq. (2.23) can be written as

1
2

∂µ∂ρh̄ρν +
1
2

∂ν∂αh̄µα − ∂µ∂νΦ− 1
2
2h̄µν +

1
2

ηµν2

(
h̄
2
− Φ

)
− ηµν∂α∂βh̄αβ −

1
2

ηµν2

(
h̄
2
− 3Φ

)
= −∂µ∂ν + ηµν2Φ

After some algebraic manipulations, we rewrite the above equation in a simpler
form as

2h̄µν − ∂µ∂αh̄αν − ∂ν∂αh̄αµ + ηµν∂α∂βh̄αβ = 0 (2.40)

The next step is to express Eq. (2.40) in the primed coordinate system. To do so,
we need to find the expression for h′ to find h̄′

h′µν = hµν − ∂µξν − ∂νξµ (2.41)

Multiplying both sides by ηµν, we get

h′ = h − 2∂αξα (2.42)

Using the fact that Φ′ = Φ, h̄′µν can be written as

h̄′µν = h′µν −
1
2

ηµνh′ + ηµνΦ′ (2.43)

h̄′µν = (hµν −
1
2

ηµνh + ηµνΦ)− (∂µξν + ∂νξµ) + ηµν∂αξα (2.44)

h̄′µν = h̄µν − (∂µξν + ∂νξµ) + ηµν∂αξα (2.45)

By multiplying both sides of Eq. (2.45) by ηµν and using the fact that ηµνηµν = 4,
we get

h̄′ = h̄ + 2∂αξα (2.46)

In terms of h̄′µν, Eq. (2.40) can be written as

2h̄′µν − ∂µ

(
∂αh̄′αν

)
+ ∂ν

(
∂αh̄′αµ

)
+ ηµν∂β

(
∂αh̄′αβ

)
= 0 (2.47)

We impose an extra condition on ξµ to simplify the Eq. (2.47). To do so, consider
the term ∂µh′µν

∂µh̄′µν = ∂µh̄µν − ∂µ(∂µξν + ∂νξµ) + ∂µηµν∂αξα (2.48)

∂µh̄′µν = ∂µh̄µν −2ξν (2.49)

If we choose ξµ such that 2ξν = ∂µh̄µν, it will make ∂µh̄′µν = 0 and then Eq. (2.47)
can be written as

2h̄′µν = 0 (2.50)

The condition above is called the Lorentz gauge. Next we apply d’Alembert op-
erator on both sides of the Eq. (2.45) and impose the rule that derivatives commute.
This gives
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2h̄′µν = 2h̄µν − ∂µ2ξν + ∂ν2ξµ + ηµν∂α2ξα (2.51)

We can still choose 2ξµ = 0 and preserve the Lorentz gauge. This condition
together with Eq. (2.50) tells us

2h̄′µν(x) = 2h̄µν(x) = 0 (2.52)

and 2h̄µν(x) = 0 can be expanded as

− 1
c2

∂2h̄µν

∂t2 +
∂2h̄µν

∂x2 +
∂2h̄µν

∂y2 +
∂2h̄µν

∂z2 = 0 (2.53)

We also impose an additional freedom (∂µξµ = − 1
2 h̄ + Φ) in the choice of the

Lorentz gauge on Eq. (2.46) and obtain

h̄ = 2Φ (2.54)

In Eqs. (2.53) and (2.54), we have omitted the prime (’) and moved back to the
unprimed frame. The Eq. (2.53) is a wave equation and its solution can be written in
the form

h̄µν = Aµν (⃗k)eikαxα (2.55)

Similarly, the solution of 2Φ = 0 has the form

Φ(x) = b(⃗k)eikαxα (2.56)

where Aµν and b are constant amplitudes.
The condition 2h̄µν = 0 gives

− kβkβ Aµνeikαxα = 0 (2.57)

which implies

kβkβ = 0 (2.58)

ηαβkαkβ = 0 (2.59)

In the similar way, the condition ∂µh̄µν = 0 gives

kµ Aµν = 0 (2.60)

The Eq. (2.60) is the transversality condition for the gravitational waves. It tells
that the whole plane wave solution is perpendicular to kµ

Using the fact the h̄ = 2Φ in Eq. (2.37), we get

hµν = h̄µν (2.61)

and this implies that hµν is also a plane transverse wave. This can be concluded
from Eq. (2.55) and Eq. (2.60).

We can understand the wave behaviour by studying the term eikαxα . It can be
further written as eikαxα = cos(kαxα) + i sin(kαxα). The argument of sine and cosine
functions can be expanded as



2.3. Polarizations 29

kαxα = k0x0 +
3

∑
i=1

kixi (2.62)

x0 = −ct (2.63)

kαxα = −ck0t + k⃗.⃗x (2.64)

where k⃗ = (k1, k2, k3) and x⃗ = (x1, x2, x3). Let ck0 = ω, then

kαxα = −ωt + k⃗.⃗x (2.65)

h̄µν = Aµν[cos(ωt − k⃗.⃗x)− i sin(ωt − k⃗.⃗x)] (2.66)

where ω is the angular frequency of the wave. The vector k⃗ points in the direction
of the wave propagation. The length of vector k⃗ is |⃗k| where

|⃗k| = 2π

λ
(2.67)

and λ is the wavelength of the wave. Using Eq. (2.58), we can write

kβkβ = −(k0)2 + (k1)2 + (k2)2 + (k3)2 = 0 (2.68)

(k1)2 + (k2)2 + (k3)2 = (k0)2 (2.69)

The left-hand side of the equation above is |⃗k|2 and right-hand side is (ω
c )

2. This
gives us

|⃗k|2 =
(ω

c

)2
(2.70)

or,

ω = c|⃗k| (2.71)

The Eq. (2.71) is known as the dispersion relation for a the wave.
For a wave propagating in the +z direction, k1 = k2 = 0. In this case, Eq. (59)

gives k3 = ω
c and the four-vector kµ becomes

kµ =
(ω

c
, 0, 0,

ω

c

)
(2.72)

We can expand Eq. (2.60) as

kµ Aµν = k0A0ν + k1A1ν + k2A2ν + k3A3ν = 0 (2.73)

Since k1 = k2 = 0, we get

A0ν = −A3ν (2.74)

The Eq. (2.74) can also be written as

Aν0 = −Aν3 (2.75)
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because Aµν = Aνµ. With the help of above equation, the relation between some
of the components can be expressed as

A00 = −A03 = −A30 = +A33 (2.76)

A10 = −A13 (2.77)

A20 = −A23 (2.78)

We started with 10 components of the metric tensor. By applying the transversal-
ity condition, we have obtained equations Eq. (2.76), Eq. (2.77) and Eq. (2.78). These
three equations reduce the components from 10 to 6.

The condition 2ξµ = 0 allows us to write ξµ as

ξµ(x) = ξ̃µ (⃗k)eikαxα (2.79)

and the condition ∂µξµ = 0 gives

∂µ[ξ̃
µ (⃗k)eikαxα ] = ξ̃µ

∂[eikαxα
]

∂xµ
= ξ̃µ × ikα

∂xα

∂xµ
[eikαxα

] = iξ̃µkµ[eikαxα
] = 0 (2.80)

which implies

kµ ξ̃µ = 0 (2.81)

Using the Eq. (2.45), Eq. (2.66) and Eq. (2.79), we can express A′
µν in terms of

Aµν. After some computation, we get

h̄′µν = [Aµν − iξ̃µkν − iξ̃νkµ]eikαxα (2.82)

or

h̄′µν = A′
µνeikαxα (2.83)

where

A′
µν = Aµν − iξ̃µkν − iξ̃νkµ (2.84)

We can compute the components of metric tensor using the above equation.

A′
00 = A00 − iξ̃0k0 − iξ̃0k0 (2.85)

or

A′
00 = A00 − 2iξ̃0k0 (2.86)

We have already computed that kµ = (k, 0, 0, k) where k = ω
c . By lowering the

index, we get kµ = (−k, 0, 0, k). This gives us

A′
00 = A00 + 2iξ̃0k (2.87)

A′
11 = A11 − 2iξ̃1k1 = A11 (2.88)

and
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A′
22 = A22 − 2iξ̃2k2 = A22 (2.89)

because k1 = k2 = 0. For the same reason

A′
21 = A21 (2.90)

In the same way, we can find

A′
31 = A31 − iξ̃1k (2.91)

A′
32 = A32 − iξ̃2k (2.92)

We can choose ξ0, ξ1 and ξ2 such that A′
00 = 0, A′

31 = 0 and A′
32 = 0.

Using the fact that h = 2Φ, we can write

h = h00 + h11 + h22 + h33 = h11 + h22 = 2Φ (2.93)

We have ignored h00 and h33 in Eq. (2.93) because

hµν = h̄µν = Aµνeikαxα (2.94)

and we have already set A00 = 0. Since A33 = A00 [Eq. (2.76)], A33 is also equal
to zero. This makes h00 = 0 and h33 = 0.

Now, we can summarize the metric hµν.

1. The metric hµν has 16 components. Since it is a symmetric tensor, we are left
only with 10 independent components. [h12 = h21, h13 = h31, h23 = h32, h10 =
h01, h02 = h20 and h03 = h30] are 6 conditions.

2. The transversality condition kµ Aµν reduces them from 10 to 4 as given in equa-
tions (2.76), (2.77) and (2.78).

3. We have chosen ξ0, ξ1 and ξ2 such that they vanish the components A00, A31
and A32.This gauge condition reduces the number of independent components
from 6 to 3.

4. Now we have to compute only 3 components. They are h12, h11 and Φ. They
are called as three independent polarization states of gravitational waves.h12
is called the ‘cross’ polarization h×, h11 is called the ‘plus’ polarization h+ and
Φ is called the ‘scalar’ field polarization hS.

The GW described using the above gauges has a very simple form as written
below

hµν(t) =


0 0 0 0
0 h11 + Φ h12 0
0 h21 −h11 + Φ 0
0 0 0 0

 =


0 0 0 0
0 h+ + hS h× 0
0 h× −h+ + hS 0
0 0 0 0

 (2.95)

or

hµν(t, x⃗) = h+(t, x⃗)e+µν + h×(t, x⃗)e×µν + hSeS
µν (2.96)

where
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e+µν ≡


0 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 0

 (2.97)

e×µν ≡


0 0 0 0
0 0 +1 0
0 +1 0 0
0 0 0 0

 (2.98)

eS
µν ≡


0 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 0

 (2.99)

In the following, it will be convenient to use the parameter ζ instead of the pa-
rameter ωBD:

ζ ≡ 1
2ωBD + 4

. (2.100)

To obtain approximate expressions for the two polarizations h+ and h× we use the
standard quadrupole formalism (see Chapter 1.7 of [46]). Assuming that the wave
propagates in the +z direction, we have the following formulae for h+ and h× po-
larizations

h+ =
G

rc4 (1 − ζ)(Q̈xx
W (t′)− Q̈yy

W (t′))

h× =
2G
rc4 (1 − ζ)Q̈xy

W (t′) (2.101)

where G is the gravitational constant, c is the speed of light, t′ is the retarded time, r is
the distance of the source, Q̈ij

W is the second time derivative of the mass quadrupole
moment in the wave frame. In the limit ωBD → ∞, i.e. ζ → 0 the above expressions
for the two polarizations reduce to the expression in classical general relativity given
by Eqs. (1.114) of [46].

The scalar polarization is derived in Chapter 13.5 of [23] and it is given by the
following expression (see Eqs. (13.164) and (13.168a) in [23])

hS =
2G
rc2 ζ

[
M(t′) +

1
c

Ḋz
W(t′)− 1

2c2 Q̈zz
W(t′)

]
(2.102)

where Ḋi
W is the first time derivative of the mass dipole moment in the wave frame

and M is the mass monopole moment. In GR, there is no contribution from the
mass monopole moment and dipole moment because of mass and linear momen-
tum conservation. But monopole and dipole radiation appear in BD theory because
the scalar field ϕ does not satisfy a conservation law. The response of these three
polarizations on a ring of test particles is shown in the Figure 2.1.
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FIGURE 2.1: Effect of different polarizations in BD theory on a ring of
test particles. In all the situations, GW travels in the z-direction.
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Chapter 3

Neutron Stars in Brans-Dicke
Theory

3.1 Rotating Neutron Star

3.1.1 Multipole moments

If the star is perfectly symmetric, both dipole and quadrupole moments vanish, and
there is no gravitational radiation. However, a real neutron star is not perfectly sym-
metric because there may be some elastic deformations of its solid crust, which may
be due to strong magnetic fields present in the neutron stars. We model the defor-
mation as a mountain on a neutron star. This asymmetry leads both to quadrupolar
and dipolar gravitational-wave emission

The multipole expansion I<L> in terms of symmetric trace-free (STF) tensors is
given by [23]

I<L> =
∫

ρ(x⃗)x<L>d3x (3.1)

where x⃗ = (x, y, z) are Cartesian coordinates, ρ is the density of the star and d3x is
the volume element. < L > denotes the STF tensor and L represents a collection of l
individual indices. When l = 1 and < L >=< i > we get

x<L> = xi (3.2)

and when l = 2 and < L >=< ij > we have

x<L> = xixj − 1
3

r2δij (3.3)

where r2 is equal to x2 + y2 + z2 and δij is the Kronecker delta function. Using the
above relations, the i component of the dipole moment Di

s in the star’s frame is given
by

Di
s ≡ I<i> =

∫
ρxid3x. (3.4)

Similarly, the ij component of the quadrupole tensor Qij
s in the star’s frame is calcu-

lated as
Qij

s ≡ I<ij> =
∫

ρ[xixj − 1
3

r2δij]d3x (3.5)

For simplicity, we consider the star to be a sphere of radius a, and we assume that
the size of the mountain is minimal compared to the radius of the star. Consequently,
we can model the mountain as a point mass. Moreover, we assume that the Cartesian
coordinate of the mountain are (a, 0, 0). Thus the mass density ρ of the mountain is
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given by
ρ = mδ(x − a)δ(y)δ(z) (3.6)

where δ is the Dirac delta function and m is the mass of the mountain. Using
the equations above, we can easily determine the components of the dipole and
quadrupole moments for this model.

Ds = [ma, 0, 0] (3.7)

and

Qs =


2
3

ma2 0 0

0 −1
3

ma2 0

0 0 −1
3

ma2

 . (3.8)

Since our system is nearly spherical, it can also be expanded in terms of multipole
moments Ilm given by

Ilm =
∫

ρrlY∗
lm(θ, ϕ)d3x (3.9)

where (r, θ, ϕ) are usual spherical coordinates, Y∗
lm(θ, ϕ) is the complex conjugate of

spherical harmonics functions and d3x = r2 sin θdrdθdϕ. The density of the moun-
tain in spherical coordinates can be written as

ρ = m
δ(r − a)δ(θ − π

2 )δ(ϕ)

r2 sin θ
. (3.10)

For the quadrupolar emission the most dominant moment is I22 and for the case of
our model it can be simplified as

I22 =

√
15

32π
ma2. (3.11)

3.1.2 Gravitational wave signal from a rotating neutron star

To obtain the explicit equations for the polarization function h+, h×, and hS, we first
transform the dipole vector Ds and quadrupole matrix Qs from the source to wave
frame. Following the construction in Chapter 2.5 of [46], we have

DW(t) = S · R(t) · Ds (3.12)

and
QW(t) = S · R(t) · Qs · R(t)T · ST (3.13)

where R is the transformation matrix from the source frame to an inertial frame, and
S is the transformation matrix from the inertial frame to the wave frame as shown in
Figure 3.1. The matrix R is given by

R(t) =

cos ϕs(t) − sin ϕs(t) 0
sin ϕs(t) cos ϕs(t) 0

0 0 1

 (3.14)
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where ϕs(t) is the instantaneous rotational phase of the star. The matrix S has the
form

S =

cos ι 0 − sin ι
0 1 0

sin ι 0 cos ι

 (3.15)

where ι is the angle between the angular momentum vector of the rotating neutron
star and the direction along which the wave travels. We assume that the rotational
phase ϕs(t) is slowly varying, and it can be modelled by Taylor expansion as

ϕs(t) = ϕo + 2π
s

∑
k=0

f (k)0
tk+1

(k + 1)!
(3.16)

where ϕo is a constant phase offset, f (k)0 is the kth time derivative of the instantaneous
frequency evaluated at t = 0 at and s is the number of spin-down parameters.

FIGURE 3.1

Using Eqs. (A.40) and neglecting the second order time derivatives of the phase
ϕ(t), we obtain the following expressions for the two tensor polarizations

h+(t) = ho
1 + cos2 ι

2
cos 2ϕs(t) (3.17)

h×(t) = ho cos ι sin 2ϕs(t) (3.18)

where ho is the constant amplitude given by

ho =
16π2G

c4 (1 − ζ)Q
f 2
0
r

(3.19)
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where ζ is the BD parameter as defined in Eq. (2.100) and quadrupole parameter Q
is given by

Q = Qxx
s − Qyy

s (3.20)

and f0 is the spin frequency of the star. We notice that when ζ → 0, the expressions
for h+ and h× reduce to the polarizations in classical general relativity.

To calculate the scalar polarization, we make a simplifying assumption that the
only non-vanishing component of the dipole moment in the star’s frame is in the
x-direction like in the simple mountain model in Section 3.1.2, i.e. we have

Ds = (D, 0, 0). (3.21)

With this assumption, we obtain the following formula for the scalar polarization,
neglecting the mass monopole’s contribution (see [23]). The scalar polarization has
contributions both from the dipole and quadrupole parts.

hS(t) = −hd
o sin ι sin ϕs(t) + hq

o
sin2 ι

2
cos 2ϕs(t). (3.22)

where constant amplitudes hd
o and hq

o are given by

hd
o =

4πG
c3 ζD

f0

r
, (3.23)

hq
o =

16π2G
c4 ζQ

f 2
0
r

. (3.24)

We see that the quadrupole part of the radiation gives in a signal at twice the spin
frequency of the star whereas dipole radiation results in a signal at once the spin
frequency.

In this box, we briefly explain the absence of the dipole radiation in GR. First,
let us consider an isolated system with only two point masses m1 and m2 as
shown in Figure 3.2. The dipole moment, in this case, is given by

d⃗ = m1⃗r1 + m2⃗r2 =
m1⃗r1 + m2⃗r2

M
M (3.25)

where M ≡ m1 + m2. This simplifies to

d⃗ = M⃗rcom (3.26)

where r⃗com is the position vector of the centre of mass (COM) of the system.
The power P emitted in the gravitational dipole radiation is

P =
2G
3c3 < | ¨⃗d|2 > (3.27)

where < · > implies the time average. Using Eq. (3.26) and Eq. (3.27), we get

P =
2GM2

3c3 < | ¨⃗rcom|2 > (3.28)

But for an isolated system, the acceleration of the COM is zero, and hence
there is no gravitational dipole radiation in GR. In reality, no system is per-
fectly isolated unless we take the entire universe as our system.



3.1. Rotating Neutron Star 39

FIGURE 3.2: Two point masses m1 and m2 moving under the gravita-
tional field of each other.

3.1.3 Response of the interferometric detector to a gravitational-wave sig-
nal form a rotating neutron star

To derive the detector’s response function to gravitational-wave signal from a rotat-
ing neutron star, we follow the formalism presented in Section II of [47]. We obtain
the response separately for the tensor and the scalar polarization. Thus we divide
the three-dimensional matrix H(t) of the spatial metric perturbation produced in the
wave frame into tensor part HT(t) and the scalar part HS(t) defined by

HT(t) =

h+(t) h×(t) 0
h×(t) −h+(t) 0

0 0 0

 (3.29)

and

HS(t) =

hS(t) 0 0
0 hS(t) 0
0 0 0

 . (3.30)

Then the response function hBD

T to the tensor polarization and the response function
hBD

S to the scalar polarization are given by

hBD

T (t) =
1
2

n1 · [H̃T(t)n1]−
1
2

n2 · [H̃T(t)n2] (3.31)

and
hBD

S (t) =
1
2

n1 · [H̃S(t)n1]−
1
2

n2 · [H̃S(t)n2]. (3.32)
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In the above expressions, n1 and n2 denote the unit vectors parallel to the arm num-
ber 1 and 2 respectively. n1 × n2 points outwards from the surface of the Earth. The
responses are defined as the difference between the wave-induced relative length
changes of the two interferometer arms. We assume that the detector arms are or-
thogonal and choose the x-axis to be along the first interferometer arm and the y-axis
to be along the second arm. Hence we have

n1 = (1, 0, 0), n2 = (0, 1, 0). (3.33)

The matrices H̃T(t) and H̃S(t) are tensorial and scalar matrices respectively of the
spatial metric perturbation produced by the wave in the proper reference frame of
the detector. They are related to matrices in the wave frame by the following trans-
formations

H̃T(t) = M(t)HT(t)M(t)T (3.34)

and
H̃S(t) = M(t)HS(t)M(t)T. (3.35)

The matrix M is a three-dimensional orthogonal matrix that transforms from the
wave Cartesian coordinates in the wave frame to the Cartesian coordinates in the
detector’s proper reference frame. We have assumed that the wave travels in the
+z-direction. The matrix M can be expressed as

M = M3M2MT
1 . (3.36)

M1 is the matrix of transformation from wave to celestial sphere frame coordinates
given by

M1 =

 sin α cos ψ − cos α sin δ sin ψ − cos α cos ψ − sin α sin δ sin ψ cos δ sin ψ
− sin α sin ψ − cos α sin δ cos ψ cos α sin ψ − sin α sin δ cos ψ cos δ cos ψ

− cos α cos δ − sin α cos δ − sin δ


(3.37)

where δ is the declination of the gravitational-wave source, α is its right ascension
and ψ is the polarization angle. M2 is the matrix of transformation from celestial
coordinates to cardinal coordinates

M2 =

sin λ cos(ϕr + Ωrt) sin λ sin(ϕr + Ωrt) − cos λ
− sin(ϕr + Ωrt) cos(ϕr + Ωrt) 0

cos λ cos(ϕr + Ωrt) cos λ sin(ϕr + Ωrt) sin λ

 (3.38)

where λ is the latitude of the detector’s site, Ωr is the rotational angular velocity of
the Earth, ϕr is the deterministic phase which defines the position of the Earth in its
diurnal motion at time t = 0. (ϕr + Ωrt) coincides with the local sidereal time of
the detector’s site. M3 is the matrix of transformation from cardinal coordinates to
detector proper reference frame coordinates.

M3 =

− sin(γ + π
4 ) cos(γ + π

4 ) 0
− cos(γ + π

4 ) − sin(γ + π
4 ) 0

0 0 1

 (3.39)

where the angle γ determines the orientation of the detector’s arms with respect to
local geographical directions.
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Tensor response. The tensor response has exactly the same form as the response
of the detector in classical general relativity except for the factor 1− ζ in the constant
amplitude ho (see Eq. (3.19)). The detailed derivation is given in Section II of [47].
Here we only summarize the basic formulae. The tensor response can be expressed
as a linear combination of four time-dependent functions hi(t).

hBD

T (t) =
4

∑
i=1

Aihi(t) (3.40)

where Ai are four constant amplitudes given by

A1 = ho

[
1
2
(1 + cos2 ι) cos 2ψ cos 2ϕo − cos ι sin 2ψ sin 2ϕo

]
(3.41)

A2 = ho

[
1
2
(1 + cos2 ι) sin 2ψ cos 2ϕo + cos ι cos 2ψ sin 2ϕo

]
(3.42)

A3 = ho

[
−1

2
(1 + cos2 ι) cos 2ψ sin 2ϕo − cos ι sin 2ψ cos 2ϕo

]
(3.43)

A4 = ho

[
−1

2
(1 + cos2 ι) sin 2ψ sin 2ϕo + cos ι cos 2ψ cos 2ϕo

]
. (3.44)

where ϕo is the constant phase offset. The four time dependent functions hi(t) have
the form

h1 = a(t) cos 2ϕ(t) (3.45)

h2 = b(t) cos 2ϕ(t) (3.46)

h3 = a(t) sin 2ϕ(t) (3.47)

h4 = b(t) sin 2ϕ(t). (3.48)

The expressions for two amplitude modulation functions a(t) and b(t) read.

a(t) =
1
16

sin 2γ(3 − cos 2λ)(3 − cos 2δ) cos[2(α − ϕr − Ωrt)]

− 1
4

cos 2γ sin λ(3 − cos 2δ) sin[2(α − ϕr − Ωrt)]

+
1
4

sin 2γ sin 2λ sin 2δ cos[α − ϕr − Ωrt]− 1
2

cos 2γ cos λ sin 2δ sin[α − ϕr − Ωrt]

+
3
4

sin 2γ cos2 λ cos2 δ,

(3.49)

b(t) = cos 2γ sin λ sin δ cos[2(α − ϕr − Ωrt)] +
1
4

sin 2γ(3 − cos 2λ) sin δ sin[2(α − ϕr − Ωrt)]

+ cos 2γ cos λ cos δ cos[α − ϕr − Ωrt] +
1
2

sin 2γ sin 2λ cos δ sin[α − ϕr − Ωrt].

(3.50)

The phase ϕ(t) of the signal in the detector’s frame is approximately given by

ϕ(t) = 2π
s

∑
k=0

f (k)0
tk+1

(k + 1)!
+

2π

c
n0 · rd(t)

s

∑
k=0

f (k)0
tk

k!
(3.51)
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where n0 is the constant unit vector in the direction of the star in the SSB reference
frame

n0 =

cos α cos δ
sin α cos δ

sin δ

 (3.52)

and rd is the position vector of the detector in that frame. The approximation that
led to Eq. (3.51) above are discussed in detail in Sec. IIB and Appendix A of [47].

Scalar response We obtain the formula for the response of a detector to the scalar
polarization by plugging in matrices M1, M2, and M3 given by Eqs. (3.37), (3.38), and
(3.39) into the Eq. (3.32). An extensive algebraic manipulations yields

hBD

S (t) = c(t)hS (3.53)

where c(t) is the amplitude modulation function given by

c(t) =
1
8
[
(−1 + 3 cos 2δ) cos2 λ sin 2γ + 2 cos(α − ϕr − tΩr) sin 2γ sin 2δ sin 2λ

]
+

1
8

cos2 δ [(−3 + cos 2λ) cos[2(−α + ϕr + tΩr)] sin 2γ + 4 cos 2γ sin λ sin[2(α − ϕr + tΩr)]]

− 1
2

cos 2γ cos λ sin 2δ sin(α − ϕr − tΩr).

(3.54)

The scalar polarization can be written as a linear combination of four time dependent
functions hiS(t)

hBD

S (t) =
4

∑
i=1

AiShiS(t) (3.55)

where the four constant amplitudes AiS are given by

A1S = −hd
o sin ι sin ϕo (3.56)

A2S = −hd
o sin ι cos ϕo (3.57)

A3S = hq
o sin2 ι cos 2ϕo (3.58)

A4S = −hq
o sin2 ι sin 2ϕo. (3.59)

The amplitudes hd
o and hq

o are given by Eqs. (3.23) and (3.24) respectively. The time
dependent functions hiS(t) have the form

h1S(t) = c(t) cos ϕ(t) (3.60)

h2S(t) = c(t) sin ϕ(t) (3.61)

h3S(t) = c(t) cos 2ϕ(t) (3.62)

h4S(t) = c(t) sin 2ϕ(t). (3.63)

We see that the scalar part of the response has contributions both from the dipole and
quadrupole radiation. The functions h1S(t) and h2S(t) determine the response corre-
sponding to the dipole contribution, whereas h3S(t) and h4S(t) define the quadrupole
contribution.

It is helpful to rewrite the above equations as a correction to the GR part. To do
so, first, we rewrite constant amplitudes for tensor polarizations as
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A1 = hGR
o

[
1
2
(1 + cos2 ι) cos 2ψ cos 2ϕo − cos ι sin 2ψ sin 2ϕo

]
− ζhGR

o

[
1
2
(1 + cos2 ι) cos 2ψ cos 2ϕo − cos ι sin 2ψ sin 2ϕo

] (3.64)

A2 = hGR
o

[
1
2
(1 + cos2 ι) sin 2ψ cos 2ϕo + cos ι cos 2ψ sin 2ϕo

]
− ζhGR

o

[
1
2
(1 + cos2 ι) sin 2ψ cos 2ϕo + cos ι cos 2ψ sin 2ϕo

] (3.65)

A3 = hGR
o

[
−1

2
(1 + cos2 ι) cos 2ψ sin 2ϕo − cos ι sin 2ψ cos 2ϕo

]
− ζhGR

o

[
−1

2
(1 + cos2 ι) cos 2ψ sin 2ϕo − cos ι sin 2ψ cos 2ϕo

] (3.66)

A4 = hGR
o

[
−1

2
(1 + cos2 ι) sin 2ψ sin 2ϕo + cos ι cos 2ψ cos 2ϕo

]
− ζhGR

o

[
−1

2
(1 + cos2 ι) sin 2ψ sin 2ϕo + cos ι cos 2ψ cos 2ϕo

] (3.67)

where

hGR
o ≡ 16π2G

c4 Q
f 2
0
r

(3.68)

The combined tensor and scalar response can be written as

h(t) = hBD

T (t) + hBD

S (t) (3.69)

which can be simplified to

h(t) = hGR

T (t)− ζhGR

T (t) + hBD

S (t) (3.70)

We notice that the last two terms in Eq. (3.70) are corrections to the GR.
It is also advantageous to express the constant amplitude functions in terms of

numerical astrophysical values.

ho = 4.22 × 10−25(1 − ζ

10−3 )

(
1kpc

r

)(
f0

100Hz

)2
(

Q
1033 kg m2

)
(3.71)

hd
o = 1.01 × 10−26

(
ζ

10−3

)(
1kpc

r

)(
f0

100Hz

)(
D

1029 kg m

)
(3.72)

hq
o = 4.22 × 10−28

(
ζ

10−3

)(
1kpc

r

)(
f0

100Hz

)2
(

Q
1033 kg m2

)
(3.73)

Often an asymmetric rotating neutron star is modeled as an ellipsoid rotating
about its principal axis. In the model, the quadrupole coefficient Q in Eqs. (3.71) and
(3.73) is given by

Q = Izzε (3.74)

Izz is the moment of inertia of the neutron star about the z-axis, and ϵ is the ellipticity
defined as

ε ≡
|Ixx − Iyy|

Izz
(3.75)
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where Ixx and Iyy are the moments of inertia about the x and the y axis respectively.
In terms of fiducial astrophysical values, Q can be expressed as

Q = 1033kg m2

(
Izz

1038 kg m2

)( ε

10−5

)
. (3.76)

3.2 Detection statistic and parameter estimation

To obtain the detection statistic for the signal derived in the previous section, we
use the maximum likelihood method described in Chapter 6 of [46]. We assume that
the noise n(t) in the detector is an additive and zero-mean Gaussian process. Thus
when the signal s(t) is present, the data can be written as

x(t) = n(t) + s(t). (3.77)

For the Gaussian case, the log-likelihood function is given by

ln Λ = (x|s)− 1
2
(s|s). (3.78)

where for the case of white noise with one-sided spectral density So, the scalar prod-
uct (·|·) is defined as

(x|y) ≡ 2
So

∫ T0

0
x(t)y(t)dt. (3.79)

Our signal is represented by a linear combination of time-dependent functions hl(t).

s(t) = A1h1(t)+ A2h2(t)+ A3h3(t)+ A4h4(t)+ A3Sh3S(t)+ A4Sh4S(t)+ A1Sh1S(t)+ A2Sh2S(t),
(3.80)

where the eight amplitudes depend on the six parameters h0, hd
0, hq

0, ψ, ι and ϕ0. The
first six terms in the signal (3.80) originate from the quadrupolar radiation, whereas
the last two are the dipolar contribution.

The signal s(t) can be expressed in the following compact form

s(t) =
8

∑
l=1

Alhl(t) = AT · h, (3.81)

where AT is the transpose of A and · denotes matrix multiplication. A is a vector
of constant amplitudes and h represents a vector of time-dependent functions hl(t)
given by.

A =


A1

.

.

.
A8

 and h =


h1(t)

.

.

.
h8(t)

 (3.82)

By substituting Eq. (3.81) into the likelihood function (3.78), we get

ln Λ = AT · N − 1
2

AT · M · A, (3.83)
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where N is a vector with components

Nl ≡ (x|hl), l = 1, ..., 8 (3.84)

and M is a matrix with components of the amplitudes Ai

Mij ≡ (hi|hj), i, j = 1, ..., 8. (3.85)

The maximum likelihood estimators of the amplitudes Ai are found by maximizing
the Eq. (3.83) with respect to amplitudes

∂ ln Λ
∂Ai

= N − A · M = 0 (3.86)

and this results in the following explicit formulae for maximum likelihood estima-
tors Âi of amplitudes Ai

Â = M−1 · N (3.87)

By substituting these estimators back in Eq. (3.83), we obtain the L-statistic. The final
result is

L =
1
2

NT · M−1 · N. (3.88)

Two fundamental quantities for the data analysis method presented in this paper
are the signal-to-noise ratio ρ and the Fisher matrix Γ. The signal-to-noise ratio is
defined as

ρ =
√
(s|s) (3.89)

and for the signal (3.81) it is given by

ρ =
√

AT · M · A. (3.90)

The Fisher matrix for the case of Gaussian noise is defined by

ΓAl Al′
=

(
∂s

∂Al

∣∣∣∣ ∂s
∂Al′

)
, l, l′ ∈ [1, 8]. (3.91)

and for the case of signal (3.81), we simply have

Γ(A) = M. (3.92)

For the case of Gaussian noise, the signal-to-noise ratio determines the probability
of detection of the signal. For a large signal-to-noise ratio, the inverse of the Fisher
matrix approximates the covariance matrix of the estimators of the parameters. For
the case of signal (3.81), which is a linear function of the amplitude parameters,
one can show that the maximum likelihood estimators of the amplitudes given by
Eq. (3.87) are unbiased, and their covariance matrix is precisely equal to the inverse
of the Fisher matrix.

We shall now obtain an explicit form of the L-statistic for the case of the gravitational-
wave signal from a rotating neutron star in BD theory. First, we need the matrix M
given by Eq. (3.85). It can approximately be computed as

M =

(
MQ 0

0 MD

)
, (3.93)
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where

MQ ≈ 1
2



A C 0 0 E 0
C B 0 0 G 0
0 0 A C 0 E
0 0 C B 0 G
E G 0 0 H 0
0 0 E G 0 H

 (3.94)

and

MD ≈ 1
2

(
H 0
0 H

)
. (3.95)

A ≡ (a|a) , B ≡ (b|b) , C ≡ (a|b) , E ≡ (a|c), G ≡ (b|c) and H ≡ (c|c). To obtain the
above approximation, we assume that the phase ϕ(t) has many oscillations over the
observation time T0. Consequently, we have

∫ T0
0 sin ϕ(t)dt ≈ 0 and

∫ T0
0 cos ϕ(t)dt ≈

0.
Similarly, we can split the column vector N into a quadrupolar part as well as a

dipolar part and write it as

N =

[
NQ

ND

]
, (3.96)

where

NQ =



(x|h1)

(x|h2)

(x|h3)

(x|h4)

(x|h3S)

(x|h4S)


, (3.97)

and

ND =

[
(x|h1S)

(x|h2S)

]
. (3.98)

Consequently the likelihood ratio statistic L can be expressed as a sum of the two
statistics FBD

Q and FBD

D for the quadrupole and dipole part of the signal respectively.

L = FBD

Q + FBD

D (3.99)

where
FBD

Q =
1
2

NT
Q M−1

11 NQ (3.100)

and
FBD

D =
1
2

NT
D M−1

22 ND. (3.101)
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The explicit expressions for FBD

Q and FBD

D are given by

FBD

Q =
(G2 − BH)[(x|h1)

2 + (x|h3)2] + (E2 − AH)[(x|h2)2 + (x|h4)
2]− AB[(x|h3S)

2 + (x|h4S)
2]

2U

+
2[CH − GE](x|h1)(x|h2) + 2CH(x|h3)(x|h4)

2U

+
2 [(GA − CE)(x|h2) + (BE − GE)(x|h1)] (x|h3S)

2U

+
2[(GA − CE)(x|h4) + (BE − GC)(x|h3)](x|h4S)

2U
(3.102)

where

U = E2B − 2CEG + C2H + AG2 − ABH (3.103)

and

FBD

D =
(x|h1S)

2 + (x|h2S)
2

H
(3.104)

From Eq. (3.87) the amplitude estimators take the following explicit form

Â1 = 2
(x|h1)(G2 − BH) + (x|h2)(CH − GE) + (x|h3S)(EB − GC)

U
, (3.105)

Â2 = 2
(x|h1)(CH − EG) + (x|h2)(E2 − AH) + (x|h3S)(AG − EC)

U
, (3.106)

Â3 = 2
(x|h3)(G2 − BH) + (x|h4)(CH − GE) + (x|h4S)(EB − GC)

U
, (3.107)

Â4 = 2
(x|h3)(CH − EG) + (x|h4)(E2 − AH) + (x|h4S)(AG − EC)

U
, (3.108)

Â3S = 2
(x|h1)(EB − CG) + (x|h2)(AG − CE) + (x|h3S)(C2 − AB)

U
, (3.109)

Â4S = 2
(x|h3)(EB − CG) + (x|h4)(AG − CE) + (x|h4S)(C2 − AB)

U
, (3.110)

Â1S = 2
(x|h1S)

H
, (3.111)

Â2S = 2
(x|h2S)

H
. (3.112)
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It should be noted that amplitude estimators (Â1, Â2, Â3, Â4) are related to the quadrupo-
lar part in the tensor polarization, the estimators (Â3S, Â4S) correspond to the quadrupo-
lar part in scalar polarization and (Â1S, Â2S) represent the dipole part in the scalar
polarization. The quadrupole part has six amplitudes, four from tensor polarization
and two from scalar polarization. On the other hand, the dipole part has only two
amplitudes from the scalar polarization. The observations indicate that the ζ coef-
ficient in the Brans-Dicke theory is small. Consequently, the quadrupole part from
the scalar polarization is small compared to the quadrupole part from the tensor po-
larizations. Also, the amplitude h0 is deviated from its GR counterpart by a factor
of (1 − ζ) and to first approximation we can neglect parameter ζ in h0. Thus we can
safely approximate the quadrupole radiation in BD theory by quadrupole radiation
in ordinary GR. Thus the statistic L in Eq. (3.99) can be approximated by

L = F+D, (3.113)

where F is the statistic for the quadrupole signal in Einstein’s GR and D is the statis-
tic for the dipole signal in BD theory. The F-statistic is given by

F =
B
[
(x|h1)

2 + (x|h3)2]+ A
[
(x|h2)2 + (x|h4)

2]
V

− 2C [(x|h1)(x|h2) + (x|h3)(x|h4)]

V

(3.114)

and corresponding amplitude estimators are

Â1 = 2
B(x|h1)− C(x|h2)

V
, (3.115)

Â2 = 2
A(x|h2)− C(x|h1)

V
, (3.116)

Â3 = 2
B(x|h3)− C(x|h4)

V
, (3.117)

Â4 = 2
A(x|h4)− C(x|h3)

V
(3.118)

where
V = AB − C2. (3.119)

The D-statistic is equal to FBD

D given by Eq. (3.104). F-statistic has been used exten-
sively in searching GWs from known pulsars [48], [49], [50].

With the approximations above, we are left only with the six amplitude param-
eters A = (A1, A2, A3, A4, A1S, A2S) which depend on five astrophysical parameters
θ = (ho, hd

o , ψ, ι, ϕ0) and the GW signal in Eq. (3.80) simplifies to

s = A1h1 + A2h2 + A3h3 + A4h4 + A1Sh1S + A2Sh2S. (3.120)

3.2.1 Data analysis method

In this section, we shall present the data analysis method to detect the signal s(t)
given by Eq. (3.120) and estimate its parameters. The signal s(t) is a linear combi-
nation of six amplitudes, and these amplitudes are functions of five astrophysical
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parameters. To detect the signal, we adopt the likelihood ratio test which is equiva-
lent to comparing the statistic L given by Eq. (3.113) to a threshold. Once the signal is
detected, we obtain the maximum likelihood estimators Âl of the six amplitude pa-
rameters Al using the Eqs. (3.111, 3.112, 3.115, 3.116, 3.117, 3.118). It is important
to estimate the five astrophysical parameters ho, hd

o , ψ, ι, and ϕ0. We estimate these
five parameters by a least-squares (LS) fit determined by six amplitude parameters.

The estimators are obtained by minimizing the following function with respect
to the astrophysical parameters:

LS =
6

∑
l=1

6

∑
l′=1

[
Âl − Al(ho, hd

o , ψ, ι, ϕ0)
]

ΓAl Al′

[
Âl′ − Al′(ho, hd

oS, ψ, ι, ϕ0)
]

, (3.121)

where ΓAl Al′
are components of the Fisher matrix given by Eq. (3.92). The least-

squares fit involves a non-linear minimization procedure for which we need the
initial values for the five parameters (ho, hd

o , ψ, ι, ϕ0) with respect to which the LS
function is minimized. We use an analytic solution for the six parameters in terms
of the amplitude estimators for the initial values. Several such solutions exist, but
we use the one given by the equations below. Firstly we introduce the following
auxiliary quantities.

A ≡ Â2
1 + Â2

2 + Â2
3 + Â2

4, (3.122)

P ≡ Â1Â4 − Â2Â3, (3.123)

h0+ =

√
1
2
(A +

√
A2 − 4P2), (3.124)

h0× = sign(P)

√
1
2
(A −

√
A2 − 4P2). (3.125)

The quadrupole amplitude hQ
0 is then given by

ho = h0+ +
√
(h0+)2 − (h0×)2. (3.126)

The expressions for parameters ψ and ι are

tan 4ψ =
2(Â1Â2 + Â3Â4)

Â2
1 + Â2

3 − Â2
2 − Â2

4

(3.127)

and

ι = arccos
(

h0×
ho

)
. (3.128)

We see that the quadrupole amplitude and angles ψ and ι can be calculated from
the four amplitudes of the quadrupole signal. With the value of inclination angle ι
obtained from Eq. (3.128) above, we easily obtain expressions for dipole amplitude
hd

o and phase angle ϕo from the two dipole amplitudes.

hd
0S =

√
Â2

1S + Â2
2S

sin ι
(3.129)
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ϕo = arctan

(
Â1S

Â2S

)
(3.130)
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Chapter 4

Monte Carlo Simulations

4.0.1 Monte Carlo simulations

We have performed Monte Carlo simulations to test the performance of the data
analysis method proposed in the previous Section. Each simulation consists of gen-
erating a signal given by Eq. (3.120) and adding it to white, Gaussian noise. Then for
each simulation we calculate the F and D statistics given by Eqs. (3.114) and (3.104)
and we estimate the four quadrupole amplitudes and the two dipole amplitudes
from Eqs. (3.115, 3.116, 3.117, 3.118) and (3.111, 3.112) respectively. We perform
the simulations for a range of signal-to-noise ratios. For each value of the signal-to-
noise ratio we repeat our simulations 1000 times for different realizations of noise.

Figure 4.1 shows the plots of the means and standard deviations of the D-statistic
and the F- statistic against the signal-to-noise ratio of the signals added whereas
Figure 4.2 shows the sum of D and F statistics. We compare the simulated values
with the theoretical predictions. In Gaussian noise the 2 × F-statistic has the non-
central χ2 distribution with 4 degrees of freedom (when the signal is present) and
non-centrality parameter equal to ρ2 whereas 2 ×D-statistic has the non-central χ2

distribution with 2 degrees of freedom. For any non-central χ2 distribution with k
independent degrees of freedom, the mean (µ) and standard deviation (σ) are given
by

µ = k + λ (4.1)

and
σ =

√
2(k + 2λ) (4.2)

where λ is the non-centrality parameter. In our case, λ = ρ2, where ρ is the signal-
to-noise ratio defined by Eq. (3.89).
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FIGURE 4.1: Simulated mean µ and standard deviation σ of the F-
statistic (left panels) and the D-statistic (right panel) for an array of

SNRs. Continuous lines are the theoretical predictions.

FIGURE 4.2: Simulated mean µ and standard deviation σ of the sum
of F-statistic and D-statistic for an array of SNRs. Continuous lines

are the theoretical predictions.

For the case of amplitude parameters we calculate biases and variances of the
parameter estimators and compare them with the theoretical values. For a parame-
ter, the numerical bias in percentage is numerical value−true value

true value × 100. The theoretical
biases of parameter estimators are zero whereas the variances are square roots of
the diagonal elements of the inverse of the Fisher matrix given by Eq. (3.92). Figures
4.3 and 4.4 show the biases and standard deviations of the estimators of the four
quadrupole amplitudes.
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FIGURE 4.3: Bias and standard deviation of the quadrupole ampli-
tudes A1 (left panel) and A2 (right panel). Theoretical predictions are

drawn as continuous lines.

FIGURE 4.4: Bias and standard deviation of the quadrupole ampli-
tudes A3 (left panel) and A4 (right panel). Theoretical predictions are

drawn as continuous lines.

In Figure 4.5 we present the bias and standard deviation of the estimators of two
amplitudes from the dipole radiation.
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FIGURE 4.5: Bias and standard deviation of dipole amplitudes: A1S
(left) and A2S (right)

.

From our simulations we also estimate the five astrophysical parameters θ =
(ho, hd

o , ψ, ι, ϕo) using the least squares procedure presented in the previous section.
The theoretical estimates of the standard deviation can be obtained from the Fisher
matrix Γ(θ) for the astrophysical parameters which is given by the following for-
mula

Γ(θ) = JT · Γ(A) · J (4.3)

where Γ(A) is the Fisher matrix for the amplitude parameters given by Eq. (3.92) and
J is the 6 × 5 Jacobi matrix with elements Jlm = ∂Al

∂θm
(l ∈ [1, 6] and m ∈ [1, 5]).

Figures 4.6, 4.7, and 4.8 present the biases and standard deviations of the five
astrophysical parameters.We have plotted the theoretical mean and standard devia-
tion against the initial estimators and estimators obtained from the LS procedure as
described in the subsection 3.2.1 of chapter 3.
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FIGURE 4.6: Bias and standard deviation of estimators of the two am-
plitude parameters ho (left panels) and hd

o (right panels). The crosses
are for initial estimators obtained from the Eqs. (3.126, 3.129) and the
dots are for the estimators from the least-squares procedure. Con-
tinuous lines are theoretical predictions from the Fisher matrix. The

standard deviation is a log-log plot.
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FIGURE 4.7: Bias and standard deviation of estimators of angles ψ
(left panels) and ι (right panels). The crosses are for initial estimators
obtained from the Eqs. (3.127, 3.128) and the dots are for the estima-
tors from the least-squares procedure. Continuous lines are theoret-
ical predictions from the Fisher matrix. The standard deviation is a

log-log plot.

FIGURE 4.8: Bias and standard deviation of phase angle ϕo. The
crosses are for initial estimators obtained from the Eq. (3.130) and the
dots are for the estimators from the least-squares procedure. Con-
tinuous lines are theoretical predictions from the Fisher matrix. The

standard deviation is a log-log plot.

The astrophysical parameters are related to amplitude parameters by non-linear
transformation consequently we can expect that their estimators will be unbiased
and minimum variance only asymptotically, for a large signal-to-noise ratio. Also,
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the estimators obtained from the LS procedure agree well with the theoretical pre-
dictions.
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Chapter 5

Analysis of LIGO-Virgo-Kagra data

5.1 Introduction

In this chapter, we discuss the results of our quest to search for the continuous waves
(CWs) from known pulsars. We look for the signals at once and twice the spin fre-
quency of the star. We include in the analysis the search for dipole radiation pre-
dicted by Brans-Dicke (BD) theory that comes at once the spin frequency of the pul-
sar. First, we briefly discuss the data used for this analysis and some basic definitions
used frequently in searching for continuous GWs.

5.2 Data

Electromagnetic observations from different observatories provided ephemerides
(pulsar position, frequency and frequency measurements) used to follow potential
GW signals in the data through a coherent integration process. The ephemerides for
the pulsars have been obtained from observations using the CHIME, Hobart, Jodrell
Bank, MeerKAT, Nancay, NICER and UTMOST observatories.

After obtaining the pulsar parameters, we have used LVK O2 and O3 data to
perform our analysis. The O2 run commenced on October 30, 2016, and ended on
August 25, 2017. The Virgo detector joined the observation run on August 01, 2017.
The duty factors for LLO, LHO and Virgo were 57%, 59% and 80%, respectively.
The O3 observation was run between April 01, 2019, and March 27, 2020. The duty
factors for LLO, LHO and Virgo were 76%, 71% and 76%, respectively.

5.3 Definitions

This section presents some essential definitions that frequently appear in the searches
of continuous GWs from pulsars.

1. Recycled pulsar: A pulsar that may not necessarily rotate fast enough to be
classified as a millisecond pulsar, but is expected to have acquired its high
rotational velocity by accreting matter from a companion star.

2. Glitches: A transient increase in the spin frequency or its first derivative is
known as a glitch, and this phenomenon is usually common in young non-
recycled pulsars. Glitches affect the GW phase identically to the electromag-
netic radiation phase with an unknown phase offset at the glitch time.

3. Restricted orientation: The determination of the pulsar’s orientation from the
X-ray modelling of its pulsar wind nebulae is known as restricted orientation.
This provides a prior on inclination angle and polarization angle.
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4. Clean process: The removal of narrow-band spectral artefacts at the calibra-
tion and power lines is known as the cleaning process.

5. Spin-down limit: The limit placed on the amplitude of gravitational waves
from a pulsar is based on the assumption that all the rotational kinetic en-
ergy lost by the star as it spins down is through gravitational radiation. This
assumes a precisely known distance to the pulsar, whereas in reality, pulsar
distances can be uncertain by up to a factor of about two. However, we do
know that there are other ways that pulsars loose energy, with the primary as-
sumed mechanism being electromagnetic radiation. So, this is the maximum
GW amplitude that the scalar or tensor polarization can achieve.

6. Upper limit: A statement on the maximum value some quantity can have
while still being consistent with the data. Here, the quantity of interest is the
maximum intrinsic gravitational-wave strain amplitude of a given continuous
wave signal arriving at Earth. We use a 95 % degree-of-belief limit, i.e. given
the data there is a 95% probability that the quantity is below this limit.

7. High value pulsars: A pulsar is known as a high-value pulsar if the upper limit
on the amplitude of the signal is less than the spin-down limit (hul

0 < hsd
0 ). In

this case, we say that pulsar has surpassed the spin-down limit.

8. Ellipticity: Roughly it can be thought of as the ratio between the size of de-
formation, or "mountain", ∆r, compared to star’s radius, r, so ε = ∆r/r. But,
technically this is a ratio of the difference between two perpendicular moments
of inertia and the third perpendicular, principal, moment of inertia.

9. Characteristic age: The "age" of a pulsar as determined using its current fre-
quency and spin-down rate, and an assumption about the mechanism(s) that
is slowing it down, i.e., through gravitational-wave emission.

10. Millisecond pulsar: A rapidly rotating pulsar with a rotational period less
than about 30 milliseconds and a very low spin-down rate.

5.4 Search Methods

This section briefly explains different search methods employed to detect continuous
GWs.

1. Targeted search: In a targeted search, we look for signals from known pulsars.
The GW rotational phase is accurately determined from EM observations. This
search is over a small parameter space and limited to unknown signal ampli-
tude and orientation. This is a relatively sensitive search method.

2. Narrow band search: The narrow band search is performed around expected
frequencies. Here, we drop the assumption that the GW phase evolution fol-
lows that of EM observation. This search is more computationally expensive
than the targeted search due to the larger parameter space, and hence, only a
few targets are considered.

3. Directed search: We look at signals from a small sky region in a directed
search. This region is a high probability region where a supernovae explosion
occurred.
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4. All sky search: In an all-sky search, we look for signals in all directions over a
wide range of parameters.

This thesis employs the targeted search method to search for continuous waves
from pulsars.

5.5 Data Analysis Methods

In targeted searches, there are three different procedures to analyze the data obtained
from detectors. They are:

1. Time domain Bayesian method: Fermi-Dirac distribution priors are used in
this method, and raw GW data is heterodyned using their expected phase evo-
lution. In addition, it includes the correction for relative motion of source with
respect to the detector and various relativistic effects [51].

2. 5n-vector method: This method is a multi-detector matched filter in the fre-
quency domain, based on the sidereal modulation of the expected signal am-
plitude and phase [52].

3. F/G/D-statistics: The F-statistics is used when amplitude, phase and polar-
izations are unknown [47]. The G-statistics is implemented when amplitude
and phase are unknown, but polarizations are known [53]. The D-statistics
is used to search for the dipole radiation in the BD theory [54]. The F and
D-statistics are given by Eqs. (3.114) and (3.104) respectively in chapter 3.

The details of time domain Bayesian method and 5n-vector method are presented
in the LIGO-Virgo-Kagra paper [55]. This thesis utilises F/G/D-statistics to search
for CW signals in the noisy detector data.

5.6 Theoretical models for GW emission

We search for signals from three theoretical models using the F/G/D-statistics. These
models are briefly described in subsequent subsections.

5.6.1 Dual Harmonic

In this model, the GWs are emitted at both once and twice the spin frequency of
the pulsar. Consider a rotating ellipsoid (symmetric top) as shown in the Figure 5.1.
The pulsar is at rest in the body axes system (unprimed coordinate system), and
the space axes system (primed coordinate system) represents the inertial reference
frame. The Z-axis rotates about the Z’-axis with an angular velocity 2π f0 that points
in the Z-direction, where f0 is the spin frequency of the pulsar [56], [57].

The angular momentum L⃗, in this case, is given by

L⃗ =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 0
0

2π f0

 (5.1)
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FIGURE 5.1: An ellipsoid rotates about an axis different from its prin-
cipal axes. The ellipsoid is at rest in the body axes XYZ (black), and it

rotates about Z’-axis, an inertial frame (green).

where Iij is the moment of inertia tensor. This gives Lx = 2π f0 Ixz, Ly = 2π f0 Iyz
and Lz = 2π f0 Izz. The angular velocity in the Z-direction produces angular mo-
mentum in all three directions and in this model, GWs are emitted at the frequencies
f = f0 and f = 2 f0.

The signals h21 and h22 at once and twice the pulsar rotation frequency can be
defined as [55]

h21 = −C21
2

[
F+(α, δ, ψ; t) sin ι cos ι cos

(
ϕ(t) + ΦC

21

)
+

F×(α, δ, ψ; t) sin ι sin
(

ϕ(t) + ΦC
21

)]
, (5.2)

h22 = −C22

[
F+(α, δ, ψ; t)(1 + cos2 ι) cos

(
2ϕ(t) + ΦC

22

)
+

2F×(α, δ, ψ; t) cos ι sin
(

2ϕ(t) + ΦC
22

)]
, (5.3)

where C21 and C22 are the dimensionless constants that give the component ampli-
tudes, the angles (α, δ) are the right ascension and declination of the source, while
the angles (ι, ψ) describe the orientation of the source’s spin axis with respect to the
observer in terms of inclination and polarization, ΦC

21 and ΦC
22 are phase angles at a

defined epoch and ϕ(t) is the rotational phase of the source given by the Eq. (3.51).
The antenna functions F+ and F× describe how the two polarization components
(plus and cross) are projected onto the detector. h21 corresponds to l=2, m=1, and h22
represents l=2, m=2 components in spherical harmonics. The explicit formulae for
F+(t) and F×(t) are
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F+(t) = a(t) cos 2ψ + b(t) sin 2ψ (5.4)

F+(t) = b(t) cos 2ψ − a(t) sin 2ψ (5.5)

where a(t) and b(t) are modulation functions given by Eqs. (3.49) and (3.50).

5.6.2 Single Harmonic

In this model, the GWs are emitted at twice the spin frequency of the pulsar. Con-
sider a rotating ellipsoid (symmetric top) as shown in the Figure 5.2. The pulsar is at
rest in the body axes system (unprimed coordinate system), and the space axes sys-
tem (primed coordinate system) represents the inertial reference frame. The z-axes
of both the coordinate systems coincide, and the angular velocity 2π f0 points in the
Z-direction, where f0 is the spin frequency of the pulsar. This situation represents a
symmetric top that rotates about one principal axis.

FIGURE 5.2: An ellipsoid rotates about an axis same as its principal
axes. The body coordinate system is represented by XYZ (black), and

the inertial coordinate system is shown by X’Y’Z’ (green).

The angular momentum L⃗, in this case, is given by

L⃗ =

Ixx 0 0
0 Iyy 0
0 0 Izz

 0
0

2π f0

 (5.6)
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and we get Lx = Ly = 0 and Lz = 2π f0 Izz. The angular velocity in the z-direction
produces angular momentum only in the z-direction and in this model, GWs are
emitted at the frequency f = 2 f0.

For the ideal case of a steadily spinning triaxial star emitting GWs only at twice
the rotation frequency, the equatorial ellipticity is defined by Eq. (3.75) as

ε ≡
|Ixx − Iyy|

Izz
, (5.7)

The ellipticity defines the amount of deformation as a fraction of the star’s ra-
dius. For the single harmonic model, C21 = 0 and C22 = 2h0 where h0 is the the
amplitude of the circularly polarized signal that would be observed if the source lay
directly above or below the plane of the detector and had its spin axis pointed di-
rectly towards or away from the detector. The equation for h0, given by Eq. (3.68), is
[58]

h0 = 2C22 =
16π2G

c4
Izzε f 2

0
r

, (5.8)

where r is the distance of the source. The spin-down limit in this case is [59]

hsd
0 =

1
r

(
5GIzz

2c3
| ḟ0|
f0

)1/2

(5.9)

and it is derived as Eq. (D.19) in Appendix D.

5.6.3 Dipole radiation

As discussed in previous chapters, BD theory predicts three independent polariza-
tion states: two tensor polarizations, as in GR, and an additional scalar polariza-
tion. The dominant scalar radiation in BD theory originates from the time-dependent
dipole moment. The signal h11(l = 1, m = 1) due to dipole radiation is [54]

h11 = A1Sh1S + A2Sh2S, (5.10)

Using Eqs. (3.56), (3.57), (3.60) and (3.61) from chapter 3, we obtain

h11 = −hd
0 c(α, δ; t) sin ι sin(ϕ(t) + ϕ0), (5.11)

where c(α, δ; t) is the amplitude modulation function and ϕ0 is the phase angle at
time t = 0. We see that the dipole radiation comes at the rotational frequency of the
pulsar. We assume that the only non-vanishing component D of the dipole moment
in the pulsar’s frame is in the x-direction. We derived the dipole amplitude hd

0 in Eq.
(3.23) of chapter 3 and it is given by

hd
0 =

4πG
c3 ζ

D f0

r
, (5.12)

where ζ is the parameter of the BD theory defined by Eq. (2.100). The spin-down
limit for the dipole radiation is

hd,sd
0 =

1
r

(
ζ

12G
c3 Izz

| ḟ0|
f0

)1/2

(5.13)

and it is derived as Eq. (D.11) in Appendix D.
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In this case, we consider NS as a perfect sphere, and a mountain on its equator
produces a time-varying dipole moment. These mountains might be leftover from
the conditions during the supernova explosion when the star formed or could be
caused during the pulsar’s lifetime, such as through accretion. The gravity on the
surface of a pulsar is so robust that, according to our measurements, any mountain
larger than a few centimeter would be flattened as it crumbled under its own weight.

5.7 Results

We have used the F/G/D-statistics only for the 23 high-value pulsars for this PhD
thesis. No statistically significant signals were detected and consequently we im-
posed upper limits in gravitational wave amplitudes.

The 95% confidence upper limits on the dipole amplitude are given in the second
last column of Table 5.1, and the last column shows the false alarm probability, i.e.,
the probability that the obtained values of the D-statistic result only from the noise
in the data. The most constraining upper limit for dipole radiation is obtained for
the millisecond pulsar J0437-4715.

The results for quadrupolar emission in high-value pulsars are shown in Table
5.2. As no CWs were observed, we present the 95% credible upper limits on the
gravitational-wave amplitudes C22 and C21 for the dual harmonic run (searching for
the mass quadrupole modes l = 2, m = 1, 2) and the gravitational-wave amplitude
h0 for the single harmonic (l = 2, m = 2) search. These were all calculated using
coherently combined data from all three detectors over the O2 and O3 observing
runs or just the O3 run, as appropriate. Due to the calibration amplitude systematic
uncertainties for the detectors, the amplitude estimates can have uncertainties of up
to ∼ 8%. Table 5.3 presents the results for two promising pulsars: Crab and Vela.

No evidence was found for GWs from any pulsars using the standard search
methods or the BD method. However, we have produced updated upper limits on
the signal amplitudes and surpassed (built limits smaller than) the spin-down lim-
its for 23 pulsars, 9 of which did so for the first time. Two-millisecond pulsars are
included in this number: J0437 − 4715 and J0711 − 6830, and J0537 − 6910 which
was not analysed in this work but was found to surpass its spin-down limit in a pre-
vious analysis. This is exciting because most pulsars surpassing their spin-downs
are younger pulsars, and they are spinning down faster, therefore delivering more
energy that can be converted to GWs. Moreover, lower mountains are adequate for
millisecond pulsars to emit observable GWs due to their higher frequencies. So, for
these pulsars, our observations furnish very stringent limits on the mountain height
of fractions of a millimetre. We have enhanced the limits calculated in the previous
analysis for the Crab pulsar, calculating the upper limit to be the maximum percent-
age of spin-down caused by GWs to be less than 0.009% (previously ∼ 0.02%). This
means other mechanisms cause the majority of the spin-down. With an ellipticity of
7.2 × 10−6 this corresponds to a maximum mountain height of ∼ 2 cm (previously
∼ 3 cm).
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TABLE 5.1: Limits on Gravitational-wave Amplitude from dipole ra-
diation in Brans-Dicke theory for 23 Pulsars using the D-statistic.

Pulsar Name f0 Ṗ0 Distance h95%
0d FAP

(J2000) (Hz) (ss−1) (kpc)

J0437−4715 173.7 1.4×10−20 0.16 9.7×10−27 0.92
J0534+2200 29.6 4.2×10−13 2.00 9.5(7.0)×10−26 0.95(0.31)
J0711−6830 182.1 1.4×10−20 0.11 1.9×10−26 0.96
J0835−4510 11.2 1.2×10−13 0.28 1.1(0.74)×10−23 0.89(0.39)
J0908−4913 9.4 1.5×10−14 1.00 1.4×10−22 0.89
J1101−6101 15.9 8.6×10−15 7.00 4.7×10−25 0.99
J1105−6107 15.8 1.6×10−14 2.36 2.0×10−25 0.99
J1302−6350 20.9 2.3×10−15 2.30 2.3×10−25 0.93
J1412+7922 16.9 3.3×10−15 2.00 9.6×10−25 0.54
J1745−0952 51.6 8.6×10−20 0.23 2.0×10−26 0.97
J1756−2251 35.1 1.0×10−18 0.73 1.7×10−25 0.99
J1809−1917 12.1 2.6×10−14 3.27 2.7×10−23 0.97
J1813−1749 22.4 1.3×10−13 6.20 2.1×10−25 0.95
J1828−1101 13.9 1.5×10−14 4.77 6.6×10−24 0.96
J1838−0655 14.2 4.9×10−14 6.60 4.7×10−24 0.52
J1849−0001 26.0 1.4×10−14 7.00 1.7×10−26 0.99
J1856+0245 12.4 6.2×10−14 6.32 1.1×10−23 0.71
J1913+1011 27.8 3.4×10−15 4.61 7.5×10−26 0.98
J1925+1720 13.2 1.0×10−14 5.06 5.7×10−24 0.84
J1928+1746 14.5 1.3×10−14 4.34 2.6×10−24 0.72
J1935+2025 12.5 6.1×10−14 4.60 4.2×10−24 0.99
J1952+3252 25.3 5.8×10−15 3.00 8.1×10−26 0.99
J2229+6114 19.4 7.8×10−14 3.00 5.3(5.8)×10−26 0.99(0.95)

Values in parentheses are those produced using the restricted orientation. The last
column shows the false-alarm probability (FAP) for a signal, assuming that the 2D
value has a χ2 distribution with 2 degrees-of-freedom. f0 is the spin-frequency of
the pulsar, Ṗ0 is the first time derivative of the time period and h95%

0d is the 95%
credible upper limits on the dipole amplitudes of h0d.
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5.8 Summary

In this thesis, we have searched for evidence of GWs from 23 pulsars throughout
the LIGO and Virgo O2 and O3 runs and across all three detectors (LIGO Hanford,
LIGO Livingston and Virgo). These 23 pulsars are the ones that surpassed their
spin-down limit. Searches were carried out for three emission models. One as-
sumed GW emission from the l = m = 2 mass quadrupole mode, and the other
assumed emission from the l = 2, m = 1, 2 modes. The third model corresponds
to l = m = 1(dipole radiation). For the single harmonic search, new upper limits
on amplitude h0 were produced. New limits on C21 and C22 are found for the dual
harmonic search. The millisecond pulsars that surpassed their spin-down limits,
J0437-4715 and J0711-6830, have upper ellipticity limits of 8.5 × 10−9 and 5.3 × 10−9,
respectively. These ellipticity values are lower than the maximum values predicted
for various neutron star equations of state [60]. Therefore, our results provide new
constraints in physically realistic parts of the ellipticity parameter space. No search
found strong evidence of GW emission from any of the pulsars. However, with so
many pulsars now surpassing their spin-down limit, including the millisecond pul-
sars J0437-4715 and J0711-6830, the next observing run O4 could add more pulsars
to this count and bring us closer to observing CWs from pulsars for the first time. In
addition to the search for CW signals consisting of the tensorial polarizations pre-
dicted by GR, this paper provides the first search explicitly targeting the emission of
scalar polarization modes predicted by the Brans-Dicke theory.
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TABLE 5.3: A comparison between Crab and Vela pulsars.

Crab (J0534+2200) Vela (J0835-4510)
Glitch occurred No glitch occurred
GWs contributes < 0.009% of the spin-
down

GWs contributes < 0.27% of the spin-
down

h95%
0 = 1.3(1.2)× 10−26 at d = 2 kpc h95%

0 = 1.8(1.7)× 10−25 at d = 0.28 kpc
Q95%

22 = 5.6(5.0)× 1032 kg-m2 Q95%
22 = 7.2(7.1)× 1033 kg-m2

ε95% = 7.2(6.5)× 10−6 ε95% = 9.3(9.2)× 10−5

h95%
0 is the 95% credible upper limits on the amplitudes h0, Q95%

22 is the 95% credible
upper limits on the quadrupole moments and ϵ95% is the 95% credible upper limits
on the ellipticity. Values in parentheses are those produced using the restricted
orientation.
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Appendix A

STF tensors and Spherical
harmonics

A.1 Multipole expansion

In the Newtonian gravity, the gravitational potential due to a spherically symmetric
body at an exterior point is given by Uext = −GM

r . Here G is the gravitational con-
stant, M is the total mass of the body, and r is the distance of the point of observation
from the centre of the body. Even if the body is not spherically symmetric, we can
use the same expression for the potential at a vast distance (compared to the size of
the body). This approximation is valid because from a very large distance, the body
can be considered as a point mass.

But if the body is not spherically symmetric, then the potential in the vicinity of
the body depends on the total mass of the body as well as the distribution of this
mass. The theory of multipole expansion takes into account the distribution of mass
in a body, and we shall discuss two different formalisms for the multipole expansion
[23].

A.1.1 Spherical-harmonic decomposition

This method is valid when a body is not perfectly spherical but slightly deviated
from a sphere, for example, a mountain on a neutron star or spherical bodies de-
formed due to centrifugal forces or tidal forces. In this case, the gravitational poten-
tial at an exterior point is given by

Uext(t, x⃗) = G ∑
l,m

4π

2l + 1
Ilm(t)

Ylm(θ, ϕ)

rl+1 (A.1)

In the above expressions, the range of l is 0 to ∞ , and that of m is −l to l. The
quantity Ilm is known as multipole moments of mass distribution and it is given by

Ilm(t) =
∫

ρ(t, x⃗′)r′lY∗
l,m(θ

′, ϕ′)d3x′ (A.2)

where ρ(t, x⃗′) is the density of the body. It should be noted that (r, θ, ϕ) corre-
sponds to the field point and (r′, θ′, ϕ′) corresponds to the source point. Yl,m(θ, ϕ)
are known as spherical harmonics functions which are the solution of the angular
part of the Laplace equation. The angle θ varies from 0 to π, whereas ϕ varies from
0 to 2π. For m = 0, we have

Yl,0(θ) =

√
2l + 1

4π
Pl(cos θ) (A.3)
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where

Pl(µ) ≡
1

2l l!
dl

dµl (µ
2 − 1)l (A.4)

For m > 0,

Yl,m(θ, ϕ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos θ)eimϕ (A.5)

where

Pm
l (µ) ≡ (−1)m (1 − µ2) m

2 dm

dµm Pl(µ) (A.6)

Y∗
l,m(θ, ϕ) is the complex conjugate of Yl,m(θ, ϕ). One of the crucial properties of

spherical harmonics is

Yl,−m(θ, ϕ) = (−1)mY∗
l,m(θ, ϕ) (A.7)

The physical interpretation of l and m is as follows. l = 0 and m = 0 gives
monopole moment, l = 1 and m = (−1, 0, 1) corresponds to dipole moment and
l = 2 and m = (−2,−1, 0, 1, 2) compares with the quadrupole moment.

The decomposition in spherical harmonics relies on spherical polar coordinates,
and keeps the polar angles (θ, ϕ) segregated from the radial coordinate r.

A.1.2 Symmetric tracefree tensors

The next approach is to expand gravitational potential in terms of tensorial combi-
nations of the unit vector n̂ = x⃗

r instead of spherical harmonics. Each tensor that we
shall construct from n̂ will have the property of being symmetric under the exchange
of any two of its indices, and of being tracefree in any pair of indices; these tensors
are known as symmetric tracefree tensors, or STF tensors. In this case, the potential
at an external point can be written as

Uext(t, x⃗) = G
∞

∑
l=0

(−1)l I<L>∂<L>

(
1
r

)
(A.8)

where

I<L>(t) =
∫

ρ(t, x⃗′)x′<L>d3x′ (A.9)

In the above expression, < L > denotes the STF tensor and L represents a collec-
tion of l individual indices. I<L> represents the multipole expansion in terms of STF
tensor. For example, let l = 2 and < L >=< ij >, then

∂L

(
1
r

)
= ∂i∂j

(
1
r

)
=
(
3njnk − δjk

)
r−3 (A.10)

If the function is continuous, then the partial derivatives commute, and hence
we can write ∂i∂j = ∂j∂i. This, in general, valid for any number of indices. If we
exclude the origin, then

( 1
r

)
is a continuous function. We observe that the tensors

on the right-hand side are all symmetric under an exchange of any two indices, and
that they all vanish when a trace is taken over any pair of indices (which means that
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the indices within the pair are made equal and summed over). So, we can conclude
that ∂L

( 1
r

)
is a STF tensor and we can write it as ∂<L>

( 1
r

)
.

Similarly, we can understand the difference between x′L and x′<L>. When l = 1
and < L >=< i >, we get

x′<L> = x′L = x′i (A.11)

When l = 2 and < L >=< ij >

x′L = x′ix′j (A.12)

x′<L> = x′ix′j − 1
3

r′2δij (A.13)

By using the above equations, the dipole moment in terms of STF tensor is given
by

Di ≡ I<i> =
∫

ρ(t, x⃗′)x′id3x′ (A.14)

and the quadrupole moment is written as

Qij ≡ I<ij> =
∫

ρ(t, x⃗′)(x′ix′j − 1
3

r′2δij)d3x′ (A.15)

Similarly, one can obtain higher multipole moments using more number of in-
dices.

A.1.3 The relation between spherical harmonics decomposition and STF
tensors

We have seen that spherical harmonics decomposition and STF tensors are two dif-
ferent ways of finding the gravitational potential from the same body. Therefore,
there must exist a way to move from one formalism to another.

The multipole moments in spherical harmonics can be obtained from STF using
the relation

Il,m = Y<L>
l,m I<L> (A.16)

where Y<L>
lm is a constant STF tensor which are related to spherical harmonics

using the relation

Yl,m(θ, ϕ) = Y∗<L>
l,m n<L> (A.17)

where n<L> is is a STF combination of unit radial vectors given by

n̂ = (nx, ny, nz) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (A.18)

For a quadrupole moment tensor, < L >=< ij > and I<L> = I<ij> = Qij. This
gives

Ilm = Y
<ij>
lm Qij (A.19)

The reverse relation to obtaining STF tensors from spherical harmonics is given
by
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I<L> =
4π(l)!

(2l + 1)!!

l

∑
m=−l

Y∗<L>
lm Ilm (A.20)

where Y∗<L>
lm is the complex conjugate of Y<L>

lm . For a quadrupole moment tensor,
l = 2, < L >=< ij > and I<L> = I<ij> = Qij. This gives

Qij =
16π

15

2

∑
m=−2

Y
∗<ij>
2m I2m (A.21)

One of the important properties of constant STF tensor is

Y<L>
l,−m = (−1)mY∗<L>

lm (A.22)

A.2 Mountain on a neutron star

We shall obtain the multipole expansion for a case when there is a mountain on
a spherical neutron star of radius ‘a’. In the frame of the star, let the coordinates
of the mountain are (x, y, z) = (a, 0, 0). In spherical coordinates, the position of
the mountain is given by (r, θ, ϕ) = (a, π

2 , 0). The quadrupole moment of a perfect
sphere is zero, so we need to find the quadrupole moment only due to the mountain.
We shall also replace the primed variables with the unprimed variables because it is
a definite integration.

Calculation using spherical-harmonic decomposition

Ilm =
∫

ρrlY∗
lm(θ, ϕ)d3x (A.23)

In spherical coordinates, the density of mountain of mass m is given by

ρ = m
δ(r − a)δ(θ − π

2 )δ(ϕ)

r2 sin θ
(A.24)

and the volume element is written as d3x = r2 sin θdrdθdϕ. The gravitational
wave emission is dominated by l = m = 2, so shall compute I22.

Y22(θ, ϕ) =

√
15

32π
sin2 θe2iϕ and Y∗

22(θ, ϕ) =

√
15

32π
sin2 θe−2iϕ (A.25)

Plugging back in all the expressions, we get

I22 =

√
15

32π
m
∫ a

0
r2δ(r − a)dr

∫ π

0
δ(θ − π

2
) sin2 θdθ

∫ 2π

0
e−2iϕδ(ϕ)dϕ (A.26)

or,

I22 =

√
15

32π
ma2 (A.27)
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Calculation using STF tensors

Qij =
∫

ρ(xixj − 1
3

r2δij)d3x (A.28)

In cartesian coordinates, the volume element d3x = dxdydz and the density of
mountain of mass m is given by

ρ = mδ(x − a)δ(y)δ(z) (A.29)

x1 = x, x2 = y, x3 = z and r2 = x2 + y2 + z2. The Q11 component is given by

Q11 = Qxx =
2
3

∫
ρx2dxdydz − 1

3

∫
ρy2dxdydz − 1

3

∫
ρz2dxdydz (A.30)

We can analyze each term separately.

∫
ρx2dxdydz = m

∫ ∞

−∞
x2δ(x − a)dx

∫ ∞

−∞
δ(y)dy

∫ ∞

−∞
δ(z)dz = ma2 (A.31)

∫
ρy2dxdydz = m

∫ ∞

−∞
δ(x − a)dx

∫ ∞

−∞
y2δ(y)dy

∫ ∞

−∞
δ(z)dz = 0 (A.32)

∫
ρz2dxdydz = m

∫ ∞

−∞
δ(x − a)dx

∫ ∞

−∞
δ(y)dy

∫ ∞

−∞
z2δ(z)dz = 0 (A.33)

Substituting Eq. (A.31), Eq. (A.32) and Eq. (A.33) in Eq. (A.30), we get

Q11 = Qxx =
2
3

ma2 (A.34)

By following the same procedure, we can also calculate other components of the
STF quadrupole tensor. The final result is

Qij =


2
3

ma2 0 0

0 −1
3

ma2 0

0 0 −1
3

ma2

 (A.35)

A.2.1 Verifying the relation between spherical harmonics decomposition
and STF tensors

We shall obtain the I22 component from STF quadrupole tensor using the relation
Eq. (A.19)
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We use simple trigonometric identities to obtain constant STF tensors. From
any standard textbook, the spherical harmonic function can be written as

Y22 =

√
15

32π
sin2 θe2iϕ (A.36)

which can be expanded as

Y22 =

√
15

32π

[
sin2 θ cos2 ϕ − sin2 θ sin2 ϕ + 2i sin2 θ sin ϕ cos ϕ

]
(A.37)

Using the Eq. (A.18), we can write

nxx = sin2 θ cos2 ϕ

nyy = sin2 θ sin2 ϕ

nzz = cos2 θ

nxy = sin2 θ sin ϕ cos ϕ

nyz = sin θ cos θ sin ϕ

nxz = sin θ cos θ cos ϕ (A.38)

In terms of unit vectors, we can express Eq. (A.37) as

Y22 =

√
15

32π
[nxx + nyy + inxy + inyx] (A.39)

Now, comparing Eq. (A.39) with Eq. (A.17), we obtain

Y<xx>
22 =

√
15

32π

Y
<yy>
22 = −

√
15

32π

Y<zz>
22 = 0

Y
<xy>
22 = −i

√
15

32π

Y
<yz>
22 = 0

Y<zx>
22 = 0 (A.40)

The only non-vanishing components of Qij are Qxx, Qyy and Qzz. Plugging back

the expressions for Qij and Y
<ij>
lm (from the box above) in Eq. (A.19) gives

I22 = Y<xx>
22 Qxx + Y

<yy>
22 Qyy + Y<zz>

22 Qzz (A.41)

or,

I22 =

√
15

32π
ma2 (A.42)

This result matches the one obtained directly from the spherical harmonics de-
composition.
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Appendix B

The χ2 distribution

If Z1, Z2,...,Zk are k independent (i.e. E[ZiZj] = E[Zi]E[Zj] when i ̸= j) standard
normal random variables (i.e. with zero mean and variance equal to one), then

Qk = Z2
1 + Z2

2 + Z2
3 + ... + Z2

k (B.1)

has a χ2 distribution with k degrees of freedom. The probability density function
of this destribution is given by

f (x) =
x

k
2−1e−

x
2

2
k
2 Γ( k

2 )
(B.2)

The mean of the distribution is given by

µ0 = k (B.3)

and the variance is

σ2
0 = 2k (B.4)

This is called the central χ2 distribution because all the independent random vari-
able have standard normal distribution with zero mean (µ = 0) and the variance
equal to one (σ2 = 1).

There is also a noncentral χ2 distribution which is the generalization of the central
χ2 distribution. Let X1, X2,...,Xk are k independent normal random variables with
means µ1, µ2,...,µk and variances equal to one, then

Pk = X2
1 + X2

2 + X2
3 + ... + X2

k (B.5)

has the noncentral χ2 distribution with k degrees of freedom. The mean of this
distribution is given by

µ̄ = k + λ (B.6)

λ =
k

∑
i=1

µ2
i (B.7)

and the variance is

σ̄2 = 2(k + 2λ) (B.8)
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Appendix C

Signal detection and parameter
estimation

C.1 Signal detection and parameter estimation in Gaussian
noise

Suppose that we want to detect a known signal s(t) embedded in noise n(t), where
s(t) and n(t) are continuous functions of time t. The signal detection problem can
be posed as a hypothesis testing problem, where the null hypothesis is that the sig-
nal is absent, and the alternative hypothesis is that the signal is present. A solution
to this problem has been found by Neyman and Pearson [61]. They have shown
that, subject to a given false alarm probability, the test that maximizes the detection
probability is the likelihood ratio test. Likelihood ratio Λ is the ratio of the proba-
bility density function (pdf) when the signal is present to the pdf when it is absent.
Assuming that the noise is additive, the data x(t) can be written as

x(t) = n(t) + s(t). (C.1)

In addition if the noise is a zero-mean, stationary, and Gaussian random process, the
log likelihood ratio log Λ is given by

log Λ = (x|s)− 1
2
(s|s), (C.2)

where the scalar product ( · | · ) is defined by

(x|y) ≡ 4ℜ
∫ ∞

0

x̃( f )ỹ∗( f )
S̃( f )

d f . (C.3)

In Eq. (C.3) ℜ denotes the real part of a complex expression, f is the frequency,
the asterisk is complex conjugation, and S̃ is the one-sided spectral density of the noise
in the detector. x̃( f ) is the Fourier transform defined by

x̃( f ) =
∫ +∞

−∞
x(t)e−2πi f tdt (C.4)

Eq. (C.2) is called the Cameron-Martin formula. From the Cameron-Martin for-
mula we immediately see that the in the Gaussian case, the likelihood ratio test con-
sists of correlating the data x(t) with the signal s(t) that is present in the noise and
comparing the correlation to a threshold. Such a correlation G = (x|s) is called the
matched filter. The matched filter is a linear operation on the data.

An important quantity is the optimal signal-to-noise ratio ρ defined by
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ρ2 ≡ (s|s) = 4
∫ ∞

0

|s̃( f )|2

S̃( f )
d f . (C.5)

Since data x is Gaussian and G is linear in x, it has a normal probability density
function. Probability density distributions p0 and p1 of correlation G when respec-
tively signal is absent and present are given by.

p0(G) =
1√

2πρ2
exp[−1

2
G2

ρ2 ] (C.6)

p1(G) =
1√

2πρ2
exp[−1

2
(G − ρ2)2

ρ2 ]. (C.7)

Probability of false alarm QF and of detection QD are readily expressed in terms
of error functions.

QF =
1
2
[1 − er f (

1√
2

Go

ρ
)] (C.8)

QD =
1
2
[1 − er f (

1√
2
(

Go

ρ
− ρ))], (C.9)

where Go is the threshold and the error function er f is defined as

er f (x) =
2√
π

∫ x

0
e−t2

dt. (C.10)

Thus to detect the signal we proceed as follows. We choose a certain value of the
false alarm probability. From Eq. (C.8) we calculate the threshold Go. We evaluate the
correlation G. If G is larger than the threshold Go we say that the signal is present. We
see that in the Gaussian case, a single parameter – signal-to-noise ratio ρ determines
both probabilities – of false alarm and detection, and consequently the receiver’s
operating characteristic. For a given false alarm probability, the greater the signal-
to-noise ratio, the greater the probability of detection of the signal.

In general, we know the signal as a function of several unknown parameters
θ. Thus to detect the signal we also need to estimate its parameters. A convenient
method is the maximum likelihood method, by which estimators are those values
of the parameters that maximize the likelihood ratio. Thus the maximum likelihood
estimators θ̂ of parameters θ are obtained by solving the set of equations

∂Λ(θ, x)
∂θi

= 0, (C.11)

where θi is the ith parameter. The quality of any parameter estimation method
can be assessed using the Fisher information matrix Γ and the Cramèr - Rao bound
[62]. The components of this matrix are defined by

Γij ≡ E
[

∂ log Λ
∂θi

∂ log Λ
∂θj

]
= −E

[
∂2 log Λ
∂θi∂θj

]
. (C.12)

The Cramèr-Rao bound states that for unbiased estimators, the covariance matrix
of the estimators C ≥ Γ−1. (The inequality A ≥ B for matrices means that the matrix



C.2. The case of a monochromatic signal in white noise 81

A − B is non-negative definite). In the case of Gaussian noise, the formula for the
Fisher matrix takes the form

Γij =

(
∂s(θ)

∂θi

∣∣∣∣∂s(θ)
∂θj

)
, (C.13)

where the scalar product ( · | · ) is given by Eq. (C.3).

C.2 The case of a monochromatic signal in white noise

Let us consider an application of the maximum likelihood estimation method to the
case of a simple signal - a monochromatic signal. The monochromatic signal depends
on three parameters: amplitude Ao, phase ϕo, and angular frequency ωo, and it has
the form

s = Ao cos(ωot − ϕo). (C.14)

Let us rewrite the signal (C.14) as

s = Ac cos(ωot) + As sin(ωot), (C.15)

where

Ac = Ao cos ϕo, (C.16)
As = Ao sin ϕo. (C.17)

Let us also assume that the noise n(t) is white. In the case of a white noise, the
one-sided spectral density S̃( f ) is constant and we denote it by S0. Then using the
Parseval’s theorem, the scalar product (x|y) can be written as

(x|y) = 2
S0

∫ +∞

−∞
x(t)y(t)dt. (C.18)

We need (x|s) and (s|s) to calculate log Λ. The expression of (x|s) is

(x|s) = 2
S0

∫ +∞

−∞
x(t)s(t)dt =

2
S0

∫ +∞

−∞
x(t)[Ac cos(ωot) + As sin(ωot)]dt (C.19)

Let us assume that observation time is fixed and finite observation time is equal
to T. In this case,

(x|s) = 2T
S0

[Ac < x(t) cos(ωot) > +As < x(t) sin(ωot) >] (C.20)

where the operator < · > is defined as

< g(t) >≡ 1
T

∫ T

0
g(t) dt (C.21)

Similarly, (s|s) is given by

(s|s) = 2T
S0

[
A2

c < cos2(ω0t) > +A2
s < sin2(ω0t) > +Ac As < sin(2ω0t) >

]
(C.22)
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The signal to noise ratio ρ2 is given by

ρ2 = (s|s) ≈ T
S0

[
A2

c + A2
s
]
=

T
S0

A2
0 (C.23)

where A2
0 = A2

c + A2
s . We make use of the following identities in the expression

of (s|s): cos2(ω0t) = 1+cos(2ω0t)
2 and sin2(ω0t) = 1−cos(2ω0t)

2 . We assume that the ob-
servation time T is much larger than the period of the wave. Thus approximately we
have that

∫ T
0 sin(2ω0t) =

∫ T
0 cos(2ω0t) ≈ 0. For the monochromatic signal above,

the log Λ ratio is given by

log Λ =
T
S0

[2Ac < x cos(ωot) > +2As < x sin(ωot) > −1
2
(A2

c + A2
s )] (C.24)

The maximum likelihood estimators Âc and Âs of the amplitudes Ac and As are
obtained by solving the set of the following two linear equations which are obtained
by differentiating Eq. (C.24) with respect to Ac and As.

∂ log Λ
∂Ac

= 0, (C.25)

∂ log Λ
∂As

= 0 (C.26)

or

2 < x cos(ωot) > −Ac = 0, (C.27)
2 < x sin(ωot) > −As = 0. (C.28)

The maximum likelihood estimators of amplitudes are

Âc = 2 < x cos(ωot) >, (C.29)
Âs = 2 < x sin(ωot) > . (C.30)

and substituting them back into the log likelihood ratio we get

log Λr = 2
T
So

[
< x cos(ωot) >2 + < x sin(ωot) >2] (C.31)

where log Λr is called reduced likelihood ratio. The maximum likelihood esti-
mators ϕ̂o and Âo of the phase and amplitude are given by

ϕ̂o = atan[
< x sin(ωot) >
< x cos(ωot) >

],

Âo = 2
√
< x cos(ωot) >2 + < x sin(ωot)2 >. (C.32)

In practice, we are dealing with discrete data. If we divide the time T into N
equally spaced samples, we have T = N∆, where ∆ is the step size. The integral
sign becomes the summation sign and we have
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< x(t) cos(ωot) >=
1
T

∫ T

0
x(t) cos(ωot)dt ≈ 1

N∆

N

∑
k=1

x(tk) cos(ωotk)∆ (C.33)

or,

< x(t) cos(ωot) >=
1
N

N

∑
k=1

x(tk) cos(ωotk). (C.34)

So, in the discrete case, the maximum likelihood estimators Âc and Âs are

Âc = 2 < x cos(ωot) >=
2
N

N

∑
k=1

x(tk) cos(ωotk), (C.35)

Âs = 2 < x sin(ωot) >=
2
N

N

∑
k=1

x(tk) sin(ωotk).

In the case of discrete data spectral density is given by S0 = 2σ2∆ and we can
rewrite the Eq. (C.31) as

log Λr = 2
N∆

2σ2∆

( 1
N

N

∑
k=1

x(tk) cos(ωotk)

)2

+

(
1
N

N

∑
k=1

x(tk) sin(ωotk)

)2
 (C.36)

or,

log Λr =
1

Nσ2

( N

∑
k=1

x(tk) cos(ωotk)

)2

+

(
N

∑
k=1

x(tk) sin(ωotk)

)2
 . (C.37)

For the discrete case, the expression for ρ2 is

ρ2 =
1
2

A2
0

σ2 N. (C.38)

We shall denote the reduced likelihood ratio log Λr by F and we shall call it
the F - statistic. Thus to find the maximum likelihood estimators of parameters
of the monochromatic signal, we first find the maximum of the F - statistic with
respect to angular frequency, and the angular frequency ω̂o corresponding to the
maximum of F is the maximum likelihood estimator of ωo. Then we use Eqs. (C.32)
with ωo = ω̂o to find the maximum likelihood estimators of phase and amplitude.
The maximum likelihood detection method consists of correlating the data x(t) with
two filters Fc = cos(ωotk) and Fs = sin(ωotk).

The F - statistic for the monochromatic signal can also be written as

F =
|X̃|2
Nσ2 , (C.39)

where X̃ is the discrete Fourier transform of the data:

X̃ =
N

∑
k=1

x(tk) exp(−iωotk). (C.40)
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Thus searching for a monochromatic signal in the white noise consists essentially
of Fourier transforming the data.

C.3 The Fisher Matrix

In this Section we shall calculate the Fisher matrix (see Eq. C.12) for the case of a
monochromatic signal buried in the white noise.

C.3.1 The case of known angular frequency

Using the above results, we can also calculate the Fisher matrix for this case. Since
we have only two unknown parameters in this example, the Fisher matrix will be a
2 × 2 matrix. The elements of the Fisher matrix for a monochromatic signal s(t) (see
Eq. C.15) are given by

Γ11 =

(
∂s(θ)
∂Ac

∣∣∣∣∂s(θ)
∂Ac

)
=

(
cos(ω0t)

∣∣∣∣ cos(ω0t)
)
=

2
S0

∫ T

0
cos2(ω0t)dt =

2
S0

∫ T

0

[
1 + cos(2ω0t)

2

]
dt ≈ T

S0
(C.41)

Similarly,

Γ12 =

(
∂s(θ)
∂Ac

∣∣∣∣∂s(θ)
∂As

)
=

(
cos(ω0t)

∣∣∣∣ sin(ω0t)
)
≈ 0 (C.42)

Γ21 =

(
∂s(θ)
∂As

∣∣∣∣∂s(θ)
∂Ac

)
=

(
sin(ω0t)

∣∣∣∣ cos(ω0t)
)
≈ 0 (C.43)

Γ22 =

(
∂s(θ)
∂As

∣∣∣∣∂s(θ)
∂As

)
=

(
sin(ω0t)

∣∣∣∣ sin(ω0t)
)
≈ T

S0
(C.44)

With the above approximations, the Fisher matrix Γ for the signal (C.14) are given
by

Γij =
T
S0

[
1 0
0 1

]
(C.45)

where i, j = (Ac, As).
The covariance matrix is inverse of the Fisher information matrix. That is

C = Γ−1 =
S0

T

[
1 0
0 1

]
. (C.46)

In the discrete case the covariance matrix takes the form

C =
2σ2

N

[
1 0
0 1

]
, (C.47)

where σ2 is the variance of the noise and N is the number of data points.
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C.3.2 The case of unknown frequency ω0

So far we have studied the case when the unknown parameters are Ac and As. We
can extend it to the case when the angular frequency ω0 is also an unknown param-
eter. As done previously, we can again compute the Fisher matrix but now it will be
a 3 × 3 matrix as we have 3 unknown parameters. Following the similar calculation,
we get

Γ11 ≈ T
S0

(C.48)

Γ12 =

(
∂s(θ)
∂Ac

∣∣∣∣∂s(θ)
∂As

)
=

(
cos(ω0t)

∣∣∣∣ sin(ω0t)
)
≈ 0 (C.49)

Γ13 =

(
∂s(θ)
∂Ac

∣∣∣∣∂s(θ)
∂ω0

)
=

(
cos(ω0t)

∣∣∣∣− Act sin (ω0t) + Ast cos (ω0t)
)
≈ AsT2

2S0
(C.50)

Γ21 =

(
∂s(θ)
∂As

∣∣∣∣∂s(θ)
∂Ac

)
=

(
sin(ω0t)

∣∣∣∣ cos(ω0t)
)
≈ 0 (C.51)

Γ22 =

(
∂s(θ)
∂As

∣∣∣∣∂s(θ)
∂As

)
=

(
sin(ω0t)

∣∣∣∣ sin(ω0t)
)
=

T
S0

(C.52)

Γ23 =

(
∂s(θ)
∂As

∣∣∣∣∂s(θ)
∂ω0

)
=

(
sin (ω0t)

∣∣∣∣− Act sin (ω0t) + Ast cos (ω0t)
)
≈ −AcT2

2S0
(C.53)

Γ31 = Γ13 (C.54)

Γ32 = Γ23 (C.55)

Γ33 =

(
∂s(θ)
∂ω0

∣∣∣∣∂s(θ)
∂ω0

)
=

(
−Act sin (ω0t) + Ast cos (ω0t)

∣∣∣∣− Act sin (ω0t) + Ast cos (ω0t)
)

≈ T3

3S0
(A2

c + A2
s ) (C.56)

Thus the 3 × 3 Fisher matrix, in this case, is given by

Γij =
T
S0

 1 0 AsT
2

0 1 − AcT
2

AsT
2 − AcT

2
T2

3 A2
0

 (C.57)

and the covariance matrix has the form

C = Γ−1
ij =

12A2
0

T2ρ2


T2
(

1
3
− A2

c

4A2
0

)
−Ac AsT2

4A2
0

−T
As

2A2
0

−Ac AsT2

4A2
0

T2
(

1
3
− A2

s

4A2
0

)
T

Ac

2A2
0

−T
As

2A2
0

T
Ac

2A2
0

1
A2

0

 , (C.58)

where ρ is the signal-to-noise ratio given by Eq. (C.23) and A2
0 = A2

c + A2
s .
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While calculating the terms of the Fisher matrix, we have made the following
approximations for the oscillatory terms.∫ T

0
t cos(ω0t − ϕ)dt ≈

∫ T

0
t sin(ω0t − ϕ0)dt ≈ 0, (C.59)

∫ T

0
t2 cos(ω0t − ϕ)dt ≈

∫ T

0
t2 sin(ω0t − ϕ0)dt ≈ 0. (C.60)

C.3.3 The unknown parameters are A0 , ϕ and ω0

Previously we have written down the signal as a function of Ac, As and ω0. But it
can also be written as a function of A0, ϕ0 and ω0.

s(A0, ϕ0, ω0) = A0 cos (ω0t − ϕ0) (C.61)

Using the same analysis, the Fisher matrix can be computed as

Γij = ρ2


1

A2
0

0 0

0 1 − T
2

0 − T
2

T2

3

 (C.62)

and hence the covariance matrix is

C = Γ−1
ij =

1
ρ2

A2
0 0 0

0 4 6
T

0 6
T

12
T2

 (C.63)

We have expressed the signal in two different sets of parameters. So, we can
calculate the Jacobian matrix to move from one parameter space to another. The
relation between two different sets of parameters is

Ac = A0 cos ϕ0

As = A0 sin ϕ0

ω0 = ω0

and the Jacobian matrix is given by

J =


∂Ac
∂A0

∂Ac
∂ϕ0

∂Ac
∂ω0

∂As
∂A0

∂As
∂ϕ0

∂As
∂ω0

∂ω0
∂A0

∂ω0
∂ϕ0

∂ω0
∂ω0

 =

cos ϕ0 −A0 sin ϕ0 0
sin ϕ0 A0 cos ϕ0 0

0 0 1

 (C.64)

The determinant of the Jacobian matrix is

|J| = A2
0. (C.65)
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C.4 Statistical properties of the F-statistic and maximum like-
lihood estimators

C.4.1 Statistical properties of the maximum likelihood estimators

Let us consider the discrete case and assume that the data are given by

xk = sk + nk, k = 1, ..., N (C.66)

where noise samples nk are drawn from zero mean value Gaussian noise of variance
σ2 and are independent. Thus we have

E[nk] = 0, (C.67)
E[nknl ] = δklσ

2, (C.68)

where δkl is the Kronecker delta function.
For the monochromatic signal, the signal samples sk are given by

sk = Ac cos(ω0tk) + As sin(ω0tk) (C.69)

The expectation values of the data samples read

E[xk] = sk + E[nk] = sk. (C.70)

The expectation value of the product of the data samples is given by

E[xkxl ] = E[(sk + nk)(sl + nl)] = E[sksl + sknl + nksl + nknl ] (C.71)

or
E[xkxl ] = sksl + E[nknl ], (C.72)

where we have used the fact that E[sknl ] = E[sk]E[nl ] = 0 because E[nl ] = 0 and
similarly E[slnk] = 0. As we have seen before, when k = l, E[nknl ] = σ2 otherwise
E[nknl ] = 0. This gives

E[xkxl ] = sksl + σ2δkl (C.73)

Let us now calculate the expectation values and variances of the estimators of the
amplitude parameters Ac and As assuming that the angular frequency ω0 is known.

The estimator Âc of the parameter Ac is given by

Âc =
2
N

N

∑
k=1

xk cos(ω0tk) =
2
N
(sk + nk) cos(ω0tk) (C.74)

or

Âc =
2
N
(Ac cos(ω0tk) + As sin(ω0tk) + nk) cos(ω0tk) (C.75)

or

Âc =
2
N
(Ac cos2(ω0tk) +

As

2
sin(2ω0tk) + nk cos(ω0tk)) (C.76)

The expectation value of Âc is
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E[Âc] = Ac
2
N

N

∑
k=1

cos2(ω0tk) + As
1
N

N

∑
k=1

sin(2ω0tk) + E[nk] cos(ω0tk) (C.77)

We use the identity that cos2(ω0tk) =
1+cos(2ω0tk)

2 and the fact that ∑N
k=1 sin(2ω0tk) ≈

∑N
k=1 cos(2ω0tk) ≈ ∑N

k=1 cos(ω0tk) ≈ 0
This gives

E[Âc] = Ac
2
N

1
2

N

∑
k=1

1 (C.78)

or

E[Âc] = Ac (C.79)

Thus, the expectation of the estimator Âc of the amplitude Ac is equal to the true
value of the amplitude. Such an estimator is called an unbiased estimator.

The variance of the estimator Âc is given by

Var(Âc) = E[(Âc − E[Âc])
2] = E[(Âc − Ac)

2] = E[(Â2
c + A2

c − 2Âc Ac)] (C.80)

or

Var(Âc) = E[Â2
c ] + E[A2

c ]− 2E[Âc Ac] (C.81)

Using the fact that E[A2
c ] = A2

c and E[Ac] = Ac, we get

Var(Âc) = E[Â2
c ]− A2

c (C.82)

The value of E[Â2
c ] can be calculated as shown below

E[Â2
c ] =

4
N2 E

[
N

∑
k=1

N

∑
l=1

xl cos(ω0tl)xk cos(ω0tk)

]
(C.83)

or

E[Â2
c ] =

4
N2

N

∑
k=1

N

∑
l=1

E [xlxk] cos(ω0tl)xk cos(ω0tk) (C.84)

Using the Eq. (C.73), this can be written as

E[Â2
c ] =

4
N2

N

∑
k=1

N

∑
l=1

[
sksl + σ2δkl

]
cos(ω0tl) cos(ω0tk) (C.85)

or

E[Â2
c ] = A2

c +
2
N

σ2. (C.86)

Thus variance of the estimator of amplitude Ac reads

Var(Âc) =
2
N

σ2 (C.87)

We can do the similar analysis for As and the final results are
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E[Âs] = As (C.88)

Var(Âs) =
2
N

σ2 (C.89)

Thus we see that the variances of the estimators of the amplitudes Ac and As are
precisely equal to the diagonal elements of the covariance matrix given by Eq. (C.47)
which is the inverse of the Fisher matrix. Consequently, as E[Âc] and E[Âs] are unbi-
ased, by Cramèr-Rao inequality the estimators E[Âc] and E[Âs] are also of minimum
variance. Such estimators are called efficient. Thus in the case of know angular fre-
quency, the amplitude estimators are unbiased and efficient.

In the case of unknown angular frequency ω0, this is not the case and the estima-
tors of the amplitudes and ω0 can only tend to be unbiased and efficient asymptoti-
cally for high signal-to-noise ratio. From the diagonal elements of of the covariance
matrix given by Eq. (C.58) the variances of the parameters are

Var(Ac) =
12A2

0
N2

(
1
3
− A2

c

4A2
0

)
1
ρ2 , (C.90)

Var(As) =
12A2

0
N2

(
1
3
− A2

s

4A2
0

)
1
ρ2 , (C.91)

Var(ω0) =
12

N2∆2
1
ρ2 . (C.92)

To test the performance of the maximum likelihood estimators in this case, we
have performed a Monte Carlo simulations. For each simulation we add the monochro-
matic signal to Gaussian noise. We calculate the F-statistic using the Fast Fourier
Transform. We find the maximum of the statistic and record the angular frequency
corresponding to the maximum. This is called the coarse search. Then we find the
maximum of F more accurately using the Brent’s algorithm with the initial value for
ω0 from the coarse search. This second step is called the fine search. Then from the
equations (C.35), we calculate the maximum likelihood estimators of the amplitudes
using the estimate of ω0 from the fine search. We have performed this simulation
for an array for signal-to-noise ratios from 2 to 42. For each value of SNR, we have
performed 1000 injections of the signal to the noise. In Figure C.1, we have plotted
biases and standard deviations of the estimators of the two amplitudes for each SNR
and in Figure C.2, we have plotted bias and standard deviation of the estimator of
angular frequency.

We see that above a certain threshold signal-to-noise ratio (ρth, ρth ∼ 8 in our
case), the maximum likelihood estimators are unbiased to a very good accuracy and
their variances are close to the minimum variance obtained from the Fisher matrix.
Below the threshold signal-to-noise ratio, large deviations occur. This is because
when SNR is low, the maximum of the statistic may occur at a frequency for a high
noise excursion and not near the frequency of the injected signal.

C.4.2 Statistical distribution of the F - statistic

In this section, we shall prove that for Gaussian noise the function 2 × F where F is
the F - statistic given by Eq. (C.37) has a χ2 distribution with two degrees of freedom.

We have
2F = Z2

1 + Z2
2 , (C.93)
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FIGURE C.1: The bias and standard deviation of Âc and Âs in the
three parameter estimation.

FIGURE C.2: The bias and standard deviation of ω̂0.
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where

Z1 =

√
2
N

1
σ

[
N

∑
k=1

xk(t) cos(ωotk)

]
(C.94)

and

Z2 =

√
2
N

1
σ

[
N

∑
k=1

xk(t) sin(ωotk)

]
. (C.95)

As the functions Z1 and Z2 are linear function of the Gaussian data xk, Z1 and Z2
also have Gaussian distributions.

Let us calculate the expectation values of Z1 and Z2 when the signal is absent
and present.

E[Z1] =

√
2
N

1
σ

N

∑
k=1

E[(nk + sk)] cos(ωotk). (C.96)

Thus when the signal is absent (sk = 0) we have E0[Z1] = 0 as Gaussian noise has
zero mean. When the signal is present we have

E1[Z1] =

√
2
N

1
σ

N

∑
k=1

sk cos(ωotk)

=

√
2
N

1
σ

[
N

∑
k=1

(Ac cos2(ωotk) + As sin(ωotk) cos(ωotk))

]

=

√
2
N

1
σ

[
N

∑
k=1

(Ac(
1
2
(1 + cos(2ωotk)) + As sin(ωotk) cos(ωotk))

]

=

√
N
2

Ac

σ
(C.97)

where the last equality results form neglecting the oscillatory terms. Similarly for
the variable Z2 we have

E0[Z2] = 0, (C.98)

E1[Z2] =

√
N
2

As

σ
. (C.99)

To calculate the variances of Z1 and Z2, we need the expectation values E[Z1Z1]
and E[Z2Z2]. We have

E[Z1Z1] =
2

Nσ2

N

∑
k=1

N

∑
l=1

E[xlxl ] cos(ωotk) cos(ωotl)

=
2

Nσ2

N

∑
k=1

N

∑
l=1

(sksl + σ2δkl) cos(ωotk) cos(ωotl). (C.100)

When the signal is absent we have

E0[Z1Z1] =
2
N

N

∑
k=1

cos2(ωotk)

=
1
N

N

∑
k=1

(1 + cos(2ωotk)

= 1. (C.101)
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where the last equality results form neglecting an oscillatory term.
Thus when signal is absent we have

Var[Z1] = 1. (C.102)

Let us next show that functions Z1 and Z2 are independent random variables, i.e.
E[Z1Z2] = E[Z1]E[Z2] both when the signal is present and absent. We have

E[Z1Z2] =
2

Nσ2

N

∑
k=1

N

∑
l=1

E[xkxl ] cos(ωotk) sin(ωotl)

=
2

Nσ2

N

∑
k=1

N

∑
l=1

(sksl + σ2δkl) cos(ωotk) sin(ωotl)

=
2

Nσ2

N

∑
k=1

N

∑
l=1

sksl cos(ωotk) sin(ωotl) +
1
N

N

∑
k=1

sin(2ωotk). (C.103)

Neglecting oscillatory term we have

E[Z1Z2] =
2

Nσ2

N

∑
k=1

N

∑
l=1

E[sk cos(ωotk)]E[sl sin(ωotl)]

=
2

Nσ2

N

∑
k=1

N

∑
l=1

E[xk cos(ωotk)]E[xl sin(ωotl)]

= E[Z1]E[Z2]. (C.104)

Thus we have shown that in the case when signal is absent 2×F is the sum of the
squares of two independent Gaussian random variables Z1 and Z2 with zero means
and variances equal to one. Thus when signal is absent by definition (Appendix B)
2 × F has central χ2 distribution with two degrees of freedom.

Now we consider the case when signal is present in the data. In this case 2 × F

is the sum of the squares of two Gaussian random variables Z1 and Z2 which, as we
have shown above are independent.

The non-centrality parameter λ is defined as

λ = E2
1[Z1] + E2

1[Z2]. (C.105)

From Eqs. (C.97) and (C.99) we have

λ =
N
2

A2
c + A2

s
σ2 =

N
2

A2
0

σ2 . (C.106)

Thus by Eq. (C.38), the non-centrality parameter is precisely equal to the signal-to-
noise ratio squared.

Let us next calculate the expectation value of 2F. We have

E1[Z1Z1] =
2

Nσ2

N

∑
k=1

N

∑
l=1

(sksl + σ2δkl) cos(ωotk) cos(ωotl). (C.107)
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Using sk = Ac cos(ωotk) + As sin(ωotk), we get

E[
1Z1Z1] =

2
Nσ2

N

∑
k=1

N

∑
l=1

A2
c cos2(ωotk) cos2(ωotl)

+
2

Nσ2

N

∑
k=1

N

∑
k=1

Ac As [sin(ωotk) cos(ωotl) + cos(ωotk) sin(ωotl)] cos(ωotk) cos(ωotl)

+
2

Nσ2

N

∑
k=1

N

∑
k=1

A2
s sin(ωotk) cos(ωotk) sin(ωotl) cos(ωotl) + 1

(C.108)

Neglecting oscillatory terms we get

E[
1Z1Z1] =

2
Nσ2

N

∑
k=1

N

∑
l=1

A2
c cos2(ωotk) cos2(ωotl) + 1. (C.109)

or
E[

1Z1Z1] =
N

2σ2 A2
c + 1. (C.110)

Similarly

E[
1Z2Z2] =

N
2σ2 A2

s + 1. (C.111)

Then
E1[2F] = E1[Z2

1 + Z2
2 ] = 2 +

N
2σ2 (A2

c + A2
s ) = 2 + λ. (C.112)

To obtain the variance of 2F, we start with calculating E1[Z4
1 ] when the signal is

present. It is written as

E1[Z4
1 ] =

4
N2σ4

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

E[xkxlxmxn] cos(ωotk) cos(ωotl) cos(ωotm) cos(ωotn)

(C.113)
To solve the Eq. (C.113), we make use of Isserlis theorem which states that

E[xkxlxmxn] = E[xkxl ]E[xmxn] + E[xkxm]E[xlxn] + E[xkxn]E[xmxl ] (C.114)

Ignoring the oscillatory terms after implementing the summation, we get

E1[Z4
1 ] =

1
4

N2A4
c

σ4 + 3
NA2

c
σ2 + 3 (C.115)

The next term is E1[Z4
2 ] which is given by

E1[Z4
2 ] =

4
N2σ4

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

E[xkxlxmxn] sin(ωotk) sin(ωotl) sin(ωotm) sin(ωotn)

(C.116)
or,

E1[Z4
2 ] =

1
4

N2A4
s

σ4 + 3
NA2

s
σ2 + 3 (C.117)
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The expression for E1[Z2
1Z2

2 ] is

E1[Z2
1Z2

2 ] =
4

N2σ4

N

∑
k=1

N

∑
l=1

N

∑
m=1

N

∑
n=1

E[xkxlxmxn] cos(ωotk) cos(ωotl) sin(ωotm) sin(ωotn)

(C.118)
or,

E1[Z2
1Z2

2 ] =
1
4

N2A2
c A2

s
σ4 +

1
2

N
(

A2
c + A2

s
)

σ2 + 1 (C.119)

The variance of 2 × F− statistic is

Var1[2F] = E1[Z4
1 ] + E1[Z4

2 ] + 2E1[Z2
1Z2

2 ]− E2
1[2F] (C.120)

By substituting Eqs. (C.119, C.117, C.115, C.112) in Eq. (C.120), we get

Var1[2F] = 2 (2 + 2λ) (C.121)

Hence, Eqs. (C.112 and C.121 ) show that 2 × F has the the expected form of
the mean and variance of a non-central χ2 distribution in the presence of a signal
(Appendix B). This completes the proof that when the signal is present 2 × F has
noncentral χ2 distribution with two degrees of freedom.
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Appendix D

Power emitted and spin-down
limits

The total power per unit area radiated away in BD theory is given by [63], [64]

dP
dA

=
c3

16π f (ζ)
< ḣ2

+(t) + ḣ2
×(t) +

(
1 − ζ

ζ

)
ḣ2

s (t) > (D.1)

where f (ζ) ≡ (1 − ζ)G is the coupling constant of this theory, and h+(t), h×(t)
and hs(t) denote the plus, cross, and scalar polarizations. < . > represents the time
average and the parameter ζ is defined by Eq. (2.100). dA is the area element in
spherical coordinates given by dA = r2 sin ιdιdρ. The total power can be divided
into two parts as

dP
dA

=
dP(T)

dA
+

dP(S)

dA
(D.2)

where dP(T)

dA is the power emitted in the tensor polarizations

dP(T)

dA
≡ c3

16π(1 − ζ)G
< ḣ2

+(t) + ḣ2
×(t) > (D.3)

and dP(S)

dA is the power radiated away in the scalar polarization.

dP(S)

dA
≡ c3

16πζG
< ḣ2

s (t) > (D.4)

To compute the spin-down limit of the dipole radiation, first we need to find
the power emitted in the scalar radiation for a spinning NS with a mountain on
its equator. We can ignore the contributions from mass monopole and quadrupole
moments and approximate the scalar polarization given by Eq. (3.22) as

hS(t) ≈ −hd
0 sin ι sin ϕs(t) (D.5)

where ϕs(t) = ωt and ω is the spinning frequency of the star. hd
0 is the amplitude

of dipole radiation given by Eq. (3.23)

hd
0 ≡ 4πG

c3 ζD
f0

r
, (D.6)

D is the dipole moment of the star in the comoving frame and ω = 2π f0. By
plugging the first time derivative of Eq. (D.5) into Eq. (D.4), we obtain

P(S) =
c3

16πGζ
ω2r2

(
hd

0

)2
< cos2(ωt) >

∫ π

ι=0

∫ 2π

ρ=0
sin3 ιdιdρ (D.7)



96 Appendix D. Power emitted and spin-down limits

and using the fact that < cos2(ωt) >≈ 1/2, we obtain

P(S) =
c3

12Gζ
ω2r2

(
hd

0

)2
(D.8)

The rotational kinetic energy of the star is given by

E =
1
2

Iω2 (D.9)

and the rate of loss of the kinetic energy is

dE
dt

= Iωω̇ (D.10)

I is the moment of inertia of the star.
By comparing Eqs. (D.8) and (D.10), we get

hd
0sd =

1
r

√
ζ

12G
c3 I

| ḟ0|
f0

(D.11)

To calculate the spin-down limit due to the quadrupole radiation in GR, we can
obtain the power in the tensor polarizations in the BD theory and take the limiting
case of ζ → 0

dP(T)

dA
≡ c3

16π(1 − ζ)G
< ḣ2

+(t) + ḣ2
×(t) > (D.12)

where h+(t) and h×(t) are decribed by Eqs. (3.17, 3.18)

h+(t) = ho
1 + cos2 ι

2
cos 2ϕs(t) (D.13)

h×(t) = ho cos ι sin 2ϕs(t) (D.14)

and ho is the constant amplitude given by Eq. (3.19)

ho =
16π2G

c4 (1 − ζ)Q
f 2
0
r

(D.15)

By substituting the derivatives of Eqs. (D.13) and (D.14) in Eq. (D.12), we get

P(T) =
c3

32πG
h2

0ω2r2
∫ 2π

ρ=0
dρ
∫ π

ι=0

[
sin ι + sin ι cos4 ι + 6 sin ι cos2 ι

]
dι (D.16)

or,

P(T) =
2
5

c3

G
h2

0r2ω2 (D.17)

In Eq. (D.16), we have already taken into account < cos2(2ωt) >≈< sin2(2ωt) >≈
1/2. By equating Eq. (D.17) and (D.10), we get

hq
0sd =

1
r

√
5G
2c3 I

| ḟ0|
f0

(D.18)
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The Eq. (D.18) gives the spin-down limit for the quadrupole radiation in tensor
polarizations. Since, there is no ζ dependence, this is indeed the expression for the
spin-down limit in GR and we can write it as

hsd
0 =

1
r

√
5G
2c3 I

| ḟ0|
f0

(D.19)
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