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Abstract
Constraining neutrino cross-section and flux models using T2K Near Detector with

proton information in Markov chain Monte Carlo framework

Kamil SKWARCZYŃSKI

T2K (Tokai to Kamioka) is a long-baseline neutrino oscillation experiment located in Japan.
It uses the near detector ND280 and the far detector (FD) Super-Kamiokande to measure
neutrino oscillations and determine whether CP is violated in the lepton sector or not. The
work presented herein details the process of using data collected by ND280 to constrain the
predicted event spectra at Super-Kamiokande. The analysis uses the Markov chain Monte
Carlo method without assumptions on the underlying posterior probability density function.
The Thesis describes new event samples splitting data based on the presence of protons, as
well as new systematic parameters describing neutrino cross-section. Thanks to the use of the
ND280 data, it was possible to decrease the uncertainty on FD spectra prediction by a factor of
six. This error reduction enabled the precise measurement of neutrino oscillation parameters.
T2K data show a preference for nearly maximal CP violation in the lepton sector, with the
value of δCP close to −π/2 and exclude CP conserving values of 0 and π within 90% credible
intervals. In addition, T2K data suggest the normal mass hierarchy and lower θ23 octant,
and provide the most precise measurement of sin2 θ23 = 0.552+0.022

−0.053. The work described
in the Thesis has been included in the T2K official results presented at the Neutrino 2022
conference. The Thesis presents exploratory studies using proton kinematic variables and
sensitivity studies with the use of the upgraded ND280 detector.

HTTP://WWW.NCBJ.GOV.PL
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Streszczenie
Ograniczanie modeli odziaływań i strumienia neutrin dzięki wykorzystaniu bliskiego
detektora T2K z użyciem informacji o protonach w pakiecie próbkującym Monte Carlo

łańcuchami Markowa

Kamil SKWARCZYŃSKI

T2K (Tokai to Kamioka) jest neutrinowym eksperymentem z długą bazą znajdującym się
w Japonii. T2K używa zarówno bliskiego detektora ND280, jak i dalekiego detektora Super-
Kamiokande (SK), aby mierzyć oscylacje neutrin w celu określenia, czy symetria CP jest ła-
mana w sektorze leptonowym, czy też nie. Praca ta opisuje użycie danych zebranych przez
ND280 w celu ograniczenia błędu na rozkłady przypadków przewidywane w SK. W analizie
użyto próbkowania Monte Carlo łańcuchami Markowa bez żadnych założeń co do funkcji
rozkładu prawdopodobieństwa. W pracy opisano nowe próbki przypadków z podziałem
w zależności pd obecności protonu oraz nowe parametry opisujące niepewność przekroju
czynnego. Dzięki użyciu danych ND280 udało się zmniejszyć błąd na przewidywania w SK
o czynnik sześć. To pozwoliło dokonać precyzyjnego pomiaru parametrów oscylacji neu-
trin. Dane eksperymentu T2K wskazują na prawie maksymalne łamanie CP w sektorze
leptonowym z wartością δCP blisko −π/2 i wykluczają wartości zachowujące CP, 0 i π,
z 90% przedziałem wiarygodności. Ponadto dane T2K sugerują normalna hierarchię mas
oraz niższy oktant kąta mieszania θ23, dostarczając również najdokładniejszego na świecie
pomiaru sin2 θ23 = 0.552+0.022

−0.053. Analiza ta stała się częścią oficjalnych wyników T2K poka-
zanych na konferencji Neutrino 2022. Rozprawa opisuje również studia eksploracyjne z uży-
ciem zmiennych kinematycznych protonu, jak i studia czułości z wykorzystaniem ulepszo-
nego detektora ND280.

HTTP://WWW.NCBJ.GOV.PL
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Introduction

Alea iacta est.

Julius Caesar

Why do we exist, what is time, or when will the world end? These are some questions asked
by scientists; some seem trivial, others complex; however, it is the property of science that
even those seemingly bizarre, uninteresting questions increase our understanding of the sur-
rounding world. One such question that is tackled in this Thesis is: why do we observe
mostly matter in the Universe? As suggested by Sakharov [1], this mystery can be solved
by violation of CP symmetry. CP violation in the lepton sector can manifest itself in a differ-
ent behaviour of neutrinos and their antimatter counterparts. The parameter describing CP
violation is δCP, with allowed values from −π to π.

Neutrinos are quite peculiar elementary particles that are very hard to detect and have
a very small mass. Three neutrino flavours have been observed (e, µ, τ) and LEP measure-
ments [2] suggest there are no more types of light active neutrinos. Neutrinos can oscillate,
which means that a neutrino of one flavour can change into another flavour while propa-
gating through time and space. If sin δCP is non-zero, we will observe different oscillation
amplitudes for neutrinos and antineutrinos. The measurement of δCP is the main goal of
modern neutrino experiments.

One of the experiments studying CP violation in the lepton sector is Tokai-to-Kamioka
(T2K). T2K is a long-baseline neutrino experiment using a near detector station (ND280 and
others) and a far detector, Super-Kamiokande. T2K uses a muon-neutrino beam created at
the J-PARC laboratory in eastern Japan. The beam is first measured at the Near Detector
station, which is close to the neutrino beam production point and where the oscillation effect
is negligible, while Super-Kamiokande is located at such a distance for which the effect is
maximal. The event rates in Super-Kamiokande depend on the neutrino flux, cross-section
and oscillation probabilities. One of the detectors in the near detector station, namely ND280,
is used to reduce the cross-section and flux uncertainty, thus allowing to greatly constrain
predicted event rates in the far detector. The latest T2K results favour nearly maximal CP
violation [3].

Modelling of the neutrino cross-section is the leading systematic error in the T2K experi-
ment; therefore, ND280 uses several event samples tailored towards constraining particular
reaction modes. One of many important effects is related to Final State Interactions (FSI):
when a particle produced in a neutrino interaction and propagating through the target nu-
cleus can interact with nucleons inside it (scattering, absorption, etc.). Such interactions can
strongly affect the topology of an event that we are able to observe. Another interesting effect
is due to the so-called Two Particles Two Holes (2p2h) model: an interaction of a neutrino
with a correlated pair of nucleons inside the target nucleus. For neutrinos, a 2p2h interaction
can occur on either a neutron-neutron (nn) pair or a neutron-proton pair (pn).

The Author of this Thesis is a member of the T2K collaboration and was one of the main
analysts for the Oscillation Analysis (OA) presented for the first time at the Neutrino 2022
conference [3] and later by the Author at the ICHEP 2022 conference [4]. The Author par-
ticipated in the writing of six Technical Notes covering the details of various aspects of the
analysis.



This Thesis describes the development and inclusion of a new ND280 event sample,
namely a CC νµ sample with no pions, no photons and no protons (CC0π-0p-0γ) or multiple
protons (CC0π-Np-0γ) in the observed final state, into the ND280-related part of T2K oscil-
lation analysis. CC0π-0p-0γ and CC0π-Np-0γ samples (henceforth called “proton-tagged
samples”) have different properties in many regards. As it will be shown, ND280 can recon-
struct protons with momentum above the detection threshold of about 450 MeV/c, which
means that CC0π-0p-0γ events tend to have overall lower values of four-momentum trans-
fer (Q2) than events classified as CC0π-Np-0γ. Many effects are dependent on Q2, such as
Pauli blocking, and the proton-tagged samples are highly sensitive to them. The nucleon FSI
has a big impact on final nucleon kinematic variables; consequently, proton-tagged samples
can help in constraining this systematic uncertainty. Moreover, new samples are sensitive to
the 2p2h pair ratio as pn and nn have different distributions of outgoing proton kinematic
variables.

Additionally, the Author made multiple improvements to the analysis software used by
the collaboration. The technical work is not described in the Thesis, as it was focused on
bug fixes and software optimization and validations. The Author was also involved in data
acquisition and beam tests for new detector prototypes.

The Thesis consists of the following Chapters:
Chapter 1 serves as an introduction to neutrino physics. A big emphasis is placed on

neutrino oscillations and CP violation in the lepton sector. Furthermore, the interactions of
∼1 GeV neutrinos are outlined, and in addition, the Spectral Function, FSI and other nuclear
effects are described to fully understand the difficulties in measuring neutrinos.

Chapter 2 contains a description of the T2K experiment, including neutrino beam produc-
tion and near and far detectors. The main attention is placed on the near detector ND280, its
role in the T2K experiment, and its detection capabilities.

Chapter 3 describes all event samples used in the ND280 detector. The key point of this
Chapter is the description of proton-tagged samples (CC0π-0p-0γ and CC0π-Np-0γ) devel-
oped by the Author. Cuts used, sample composition, basis properties, and binning studies
are described in detail.

Chapter 4 outlines the sources of systematic uncertainties in ND280 analysis, which are
flux modelling, interactions modelling, and detector effects. All uncertainties are described
briefly. The Author has implemented the systematic error related to nucleon FSI (previously
only pion FSI were available). Furthermore, the Author introduced the systematic error af-
fecting the modelled ratio of pn to nn interactions in 2p2h. The impact of both uncertainties
on proton kinematics is studied.

Chapter 5 is an introduction to the T2K Oscillation Analysis (OA), which uses two ap-
proaches to obtain results: frequentist grid search and Bayesian Markov chain Monte Carlo
(MCMC). The Author used the latter one, which is described in detail. Furthermore, the
Chapter describes methods to analyse the output of MCMC, for example, posterior predic-
tive distributions, extracting correlations, and the highest posterior density method.

Chapter 6 describes the T2K results which were presented at the ICHEP conference [4].
The emphasis was placed on parts in which the Author had the largest contribution, which
includes the posterior predictive distribution and the postfit values for systematic parame-
ters. Finally, the neutrino oscillation results are presented, which were not done directly by
the Author, but would not be possible without the Author’s work.

Chapter 7 presents a sensitivity study realized by the Author using proton kinematic vari-
ables in the fit for the first time in T2K. Sensitivity studies with upgraded ND280 are also
carried out. The upgraded ND280 uses a new detector consisting of novel scintillation cubes.
The impact of correlations of parameters related to carbon and oxygen nuclei was estimated.
Both studies are important first steps for future analyses.



Finally, Chapter 8 summarizes the results, compares them to other neutrino experiments
and discusses future prospects.

Appendix A describes multiple additional studies conducted by the Author to help better
understand the presented results, but not necessary for comprehending and following the
Thesis. Lastly, Appendix B depicts plots for all samples and parameters, as the main part of
the Thesis is mostly focused on a particular set of parameters or particular samples. These
plots are not necessary to follow the main part of the Thesis, but they might be of interest to
some Readers.

Whenever a new term is introduced for the first time, an explanation is given; however,
for the Reader’s convenience, all acronyms used with short descriptions are listed at the end
of the Thesis.

Some plots shown in the Thesis can be found only in T2K Technical Notes, but proper
references are made nonetheless to help distinguish what was done by the Author from what
was done by other members of the T2K collaboration.
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1
Neutrino Physics

In war, theory is all right so far as general principles are concerned; but in reduc-
ing general principles to practice there will always be danger. Theory and practice
are the axis about which the sphere of accomplishment revolves.

Napoléon Bonaparte

1.1 Historical Introduction

Neutrinos (νe, νµ, ντ) are lepton type elementary particles with spin 1/2. Contrary to other
lepton family members (e, µ, τ), they rarely interact, which makes them difficult to observe.
As a consequence, there are still many properties of neutrinos that are not well studied. One
such property is the neutrino mass, which for a long time was assumed to be 0. Now we
know that neutrinos do have a mass, but it is very small (∼ eV/c2) [5].

Although the first neutrinos were created a long time ago, shortly after the Big Bang, hu-
man studies of neutrino physics are relatively recent. Everything started in the city of Tübin-
gen [6]. On December 4th, 1930, Wolfgang Pauli proposed the existence of a neutral weakly
interacting fermion to solve the missing energy mystery in the β decay, as a “verzweifelten
Ausweg” (desperate remedy). Neutrinos were measured for the first time in June 1956 by
Reines and Cowan [7]. They used a nuclear reactor as a source of antineutrinos and observed
positrons emerging in a liquid scintillator from antineutrino interactions (inverse beta de-
cay process, ν̄e + p → n + e+), as well as delayed coincident gamma photons from neutron
capture.

The next mystery that arose around neutrinos was the so-called solar neutrino problem. It
was observed in the 1960s by the Homestake experiment, which measured the solar neutrino
flux of νe to be much lower than expected based on the model of thermonuclear processes
inside the Sun [8]. This conundrum remained unsolved for many decades, although a few
hypotheses tried to explain it, one of which was neutrino oscillations. Due to the oscillations,
νe (the only flavour created in the Sun core) could change into νµ or ντ, resulting in a decrease
of νe flux and an increase of νµ flux, but overall neutrino flux would be conserved. The
Homestake experiment was relying on the following reaction to measure neutrinos

νe +
36Cl→37Ar+ + e−, (1.1)

and since solar neutrinos have energy of a few MeV, the production of µ and τ is impossible,
so a measurement of νµ and ντ is inaccessible.

The concept of neutrino oscillations was first proposed in 1957 by Pontecorvo in analogy
to kaon oscillations K0 � K̄0 [9]. However, the vacuum oscillation hypothesis couldn’t fully
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explain the measured solar flux. The observation of neutrino oscillations came from studying
neutrinos from another source, i. e. Earth’s atmosphere.

The discovery was achieved by the Super-Kamiokande collaboration in 1998 [10]. Cosmic
rays interacting with Earth’s atmosphere produce mesons decaying into neutrinos. Super-
Kamiokande observed a deficit of νµ coming from below. Since the zenith angle is related
to the distance travelled by neutrino in Earth, we can observe the angular dependence of
incoming νµ flux.

In the case of the solar neutrino puzzle, it is necessary to include yet another effect, called
Mikheyev–Smirnov–Wolfenstein (MSW) [11], to the oscillation framework. A neutrino trav-
elling through matter can interact, introducing additional potential to the Hamiltonian, af-
fecting oscillation probabilities. That’s why the MSW effect is often referred to as “matter
effects”. Neutrinos produced in the solar core are affected by the matter effect; hence, the
experimental results didn’t agree with the vacuum oscillation hypothesis. The solar neutrino
mystery was finally solved in 2003 by SNO [12], which used 1 kt of ultra-pure heavy water to
measure the total flux of all neutrinos φ(νe) + φ(νµ) + φ(ντ) coming from the Sun.

Neutrino physics is a very active field of study with many yet unresolved questions. One
of them is the CP violation in the lepton sector, and this topic will be tackled in this Thesis.

1.2 Neutrino Oscillations

Neutrino oscillations are a quantum effect when a neutrino of one flavour changes to an-
other flavour while propagating through time and space. They manifest themselves due to
neutrino flavour states (νµ, νe, ντ) being superpositions of neutrino mass states (ν1, ν2, ν3).

In general, the oscillations may be studied in two modes:

• Appearance - measured neutrino has a different flavour than in the initial state, for
example: νµ → νe;

• Disappearance - measured neutrino has the same flavour as in the initial state, for ex-
ample: νµ → νµ.

To better illustrate neutrino oscillations formalism, let’s consider for a moment that only
two neutrino flavours exist (νµ and νe). The superposition of states can be expressed using
a simple rotation matrix with mixing angle θ (for two flavour system there is only one mixing
angle). [

νµ

νe

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ν1
ν2

]
(1.2)

Knowing this, we can write the time-dependent equation for the flavour state:

νµ(t) = cos θ ν1(0)e−iE1t + sin θ ν2(0)e−iE2t = cos2 θ νµ(0)e−iE1t + sin2 θ νµ(0)e−iE2t. (1.3)

The oscillation probability amplitude has the following form:

Aµ =
νµ(t)

νµ
= cos2 θe−iE1t + sin2 θe−iE2t. (1.4)

In such a case, the neutrino disappearance probability is given by the following formula:

P(νµ → νµ) = Aµ A∗µ = 1− sin2(2θ) sin2

(
1.27∆m2[eV2]L[km]

E[GeV]

)
, (1.5)
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while the appearance probability is expressed as:

P(νµ → νe) = sin2(2θ) sin2

(
1.27∆m2[eV2]L[km]

E[GeV]

)
, (1.6)

where ∆m2 = m2
2 − m2

1, L is the distance travelled by the neutrino (called the baseline), E is
neutrino energy and θ is the mixing angle. Factor 1.27 is a consequence of using units con-
venient for experiments. It is important to notice that the masses aren’t directly incorporated
into equations, but the squared differences of the masses are.

For neutrinos propagating in matter, we include the interaction term or self-energy V
related to coherent forward elastic scattering. All three neutrino flavours can interact via Z0

exchange in matter. However, only νe can interact with electrons via W± exchange resulting
in a ∆V potential difference between two mass eigenstates:

∆V = V1 −V2 = 2
√

2GFEρe, (1.7)

where GF is the Fermi constant, E is the neutrino energy, and ρe is the local electron density
in matter. By adding potential to relativistic energy momentum dependence we obtain:

E2 − p2 = m2
i =⇒ (E + V)2 − p2 ≈ m2

i + 2EV. (1.8)

Thus, we can define the effective mass m2
i → m2

i + 2EV. The full derivation of oscillation
probabilities can be found in [13]. Neutrino oscillation probability with matter effects in
a two-flavour approximation is given by:

Pm(νe → νµ) = sin2(2θm) sin2
(

1.27∆m2
mL

E

)
, (1.9)

where:

sin(2θm) =
sin(2θ)√

(∆V/∆m2 − cos(2θ))2 + sin2(2θ)
(1.10)

∆m2
m = ∆m2

√
(∆V/∆m2 − cos(2θ))2 + sin2(2θ). (1.11)

This shows that for the oscillations in matter, the same expression as in vacuum can be
used, but with effective PMNS matrix parameters.

Let’s consider edge cases to better understand the implications of this effect.
When ∆V → 0, we get the oscillations in vacuum. However, if ∆V → ∞, then sin2(2θm)→

0, implying that there are no oscillations in very dense matter. Last but not least, an important
effect is the so-called MSW resonance, when ∆V/∆m2 → cos2(2θ), resulting in sin(2θm)→ 1.
That means that even if the mixing angle in a vacuum is very small, due to resonance, we
may observe maximal mixing.

A crucial property of the MSW effect is that it allows for determining the sign of the mass
difference. If we replace ∆m2 → −∆m2 in Eq. 1.10, we get a different value of the effective
mixing angle, resulting in different oscillation probabilities, which we can use to compare to
experimental results and distinguish between hierarchies.

If we move from the two-flavour approximation to the three-flavour framework, we have
three mass eigenstates and two mass differences ∆m2

21 and ∆m2
32. Since we know from solar

and reactor neutrino measurements [14, 15] that m2 > m1, this leads to two possible neutrino
mass hierarchies: normal hierarchy (NH): m3 > m2 > m1, or inverted hierarchy (IH): m2 >
m1 > m3, as shown in Fig. 1.1. Mass hierarchy can be resolved thanks to matter effects
although there is also another approach by JUNO experiment [16].
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FIGURE 1.1: A schematic drawing showing both possible neutrino mass hierarchies, normal (left) and
inverted (right). Colours show the fraction of each flavour in each mass eigenstate [17].

Neutrino oscillations in the full three-flavour formalism are governed by the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, similarly as quark mixing is governed by the Ca-
bibbo-Kobayashi-Maskawa (CKM) matrix. The PMNS matrix is usually parametrised in the
following form:νe

νµ

ντ

 =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

ν1
ν2
ν3

 (1.12)

Since the PMNS matrix is a rotation matrix in three dimensions, it depends on three rota-
tion angles θ12, θ13, θ23 in contrary to only one mixing angle θ appearing in the two flavour
example (Eq. 1.2). By carefully choosing the baseline and energy range of the neutrinos, we
can perform an experiment sensitive to a particular set of oscillation parameters, as shown in
Tab. 1.1. This Thesis focuses solely on the accelerator neutrino experiment.

Type L E Sensitivity
Solar 1011 km 0.1-10 MeV ∆m2

21, θ12
Atmospheric 10–104 km 0.1-100 GeV θ23, ∆m2

32
Reactor short baseline 1 km 1 MeV ∆m2

21, θ13
Reactor long baseline 100 km 1 MeV ∆m2

21, θ12
Accelerator 100–1000 km 0.5-5 GeV θ23, θ13, ∆m2

32, δCP

TABLE 1.1: Types of neutrino experiments with typical baseline length (L), neutrino energy (E) and
oscillation parameters to which they are most sensitive.

Currently, it is unknown whether θ23 is greater or smaller than 45◦, often called upper
octant (UO) or lower octant (LO), respectively. Theories attempting to explain why very
small (θ13) and almost maximal (θ23) mixing angles exist for neutrinos tend to introduce some
underlying symmetries and possible common origin of the smallest mixing angle θ13 and the
deviation of θ23 from the maximal mixing [18]. Additionally, there are suggested beyond the
Standard Model extensions to neutrino oscillations framework, which are often linked to the
octant; however, such speculations are not further discussed in this Thesis. More information
can be found in ref [19].

By careful examination of the PMNS matrix, one might notice a parameter that has not yet
been mentioned, namely δCP. This parameter is responsible for the CP violation in the lepton
sector, and the next Section is dedicated to this subject. δCP, θ23 octant and mass hierarchy are
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open questions of neutrino physics by the time this Thesis is written, and are further studied
in experiments.

The best-fit values of oscillation parameters are listed in Tab. 1.2.

parameter Normal Hierarchy
(best fit) Inverted Hierarchy

∆m2
21[10−5 eV2] 7.42+0.21

−0.20 7.42+0.21
−0.20

∆m2
31 [10−3 eV2] +2.510+0.027

−0.027 −2.490+0.026
−0.028

sin2 θ12 0.304+0.012
−0.012 0.304+0.013

−0.012
sin2 θ23 0.450+0.019

−0.016 0.570+0.016
−0.022

sin2 θ13 0.02246+0.000062
−0.000062 0.02241+0.000074

−0.000062
δcp 230+36

−25 278+22
−30

TABLE 1.2: Three-flavor oscillation parameters from fit to global data with the inclusion of atmo-
spheric neutrino data provided by Super-Kamiokande [20].

1.3 CP Violation

Studying symmetries is the goal of many physics experiments. In particle physics, one such
symmetry is a combination of Parity (P) and Charge (C) conjugate, which will be denoted as
CP. It was discovered that weak interactions violate CP symmetry in the quark sector [21].
The violation manifested itself in different oscillations of neutral kaons. An obvious question
may then arise: what about the lepton sector? If CP is violated in the lepton sector, neutrinos
and antineutrinos have different amplitudes for the oscillations, as will be discussed in this
Section.

The Jarlskog invariant [22] tells us about the strength of CP violation. The general formula
is as follows:

JCP,l =
1
8

Im
[
Uµ3Ue2U∗µ2U∗e3

]
. (1.13)

The same formula can be used for the CKM matrix. To calculate the Jarlskog invariant,
we can first multiply matrices appearing in Eq. 1.12 and obtain:Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12s23s13eiδCP c23c13

 . (1.14)

By substituting PMNS matrix elements into the Jarlskog invariant equation, we obtain:

JCP,l =
1
8

cos (θ13) sin (2θ12) sin (2θ23) sin (2θ13) sin (δCP) . (1.15)

Using known values of PMNS mixing angles (see Tab. 1.2) we can further simplify it to:

JCP,l ≈ 0.033 sin (δCP) . (1.16)

Since δCP is an argument of sine function, its values are often presented in the range of
δCP ∈ [−π, π]. For δCP = ±π/2, the JCP,l takes maximal value, i. e. JCP,l = ±3 × 10−2.
Sakharov [1] stated that violation of CP is one of the conditions to resolve the surplus of
matter over antimatter in the observed Universe. The Jarlskog invariant in the quark sector
is equal to JCP,q = 3× 10−5 [23], thus CP violation in the lepton sector has the potential to
be three orders of magnitude larger, which could help to explain the imbalance. That is the
reason why studying CP violation in the lepton sector is so important and interesting.



10 Chapter 1. Neutrino Physics

Neutrino experiments looking for CP violation use νµ(ν̄µ) beam for measuring oscilla-
tions. Therefore, let’s concentrate on the formula describing the oscillations in νµ(ν̄µ) appear-
ance modes1:

P(νµ(ν̄µ)→ νe(ν̄e)) ≈ sin2(2θ13) sin2(2θ23) sin2
(

1.27∆m2
32L

E

)
∓∓∓JCP,l

1.27m2
21L

E
8 sin2

(
1.27∆m2

32L
E

)
.

(1.17)

It is important to notice that this equation consists of two parts: the former is identical
for neutrinos and antineutrinos, while the latter has the opposite sign for neutrinos and an-
tineutrinos. Furthermore, there is JCP,l dependence in the latter term. If JCP,l is non-zero or, to
be more precise, if sin(δCP) is non-zero, neutrinos and antineutrinos oscillate with different
probabilities.

On the other hand, if we take a look at Eq. 1.18, showing the neutrino oscillations proba-
bility for the νµ(ν̄µ) disappearance mode, we may notice that the formula doesn’t include the
JCP,l term:

P(νµ(ν̄µ)→ νµ(ν̄µ)) ≈1− 4 cos2(θ13) sin2(θ23)

×
(
1− cos2(θ13) sin2(θ23)

)
sin2

(
1.27∆m2

32L
E

)
.

(1.18)

In other words, we may observe CP violation only in the appearance mode. However,
studying disappearance mode is still important due to possible constraints on other oscilla-
tion parameters in the appearance probability formula.

1.4 Weak Interactions

Neutrino interactions play an important role in this Thesis and since neutrinos interact only
via weak interactions, it is worth reminding some basic information in this regard.

Weak interactions are described using Lagrangian and SU(2) gauge symmetry, which in
many ways resembles QED. However, there are crucial differences, such as Parity (P) viola-
tion. As a consequence, it is easy to explain the weak interactions using knowledge of QED
formalism as a foundation.

In QED, the current has a vector form jµ = ψ̄γµφ. Due to parity violation in weak interac-
tions, we can have an axial vector form given by ψ̄γµγ5φ. The most general Lorentz-invariant
form for the interaction takes the following form:

jµ ∝ ū(p′)(gVγµ + gAγµγ5)u(p), (1.19)

where gV and gA are vector and axial vector coupling constants, respectively, and u(p) is
a four-component spinor [24].

It is known from experiments [25] that the weak charged current has a form of V-A (“vec-
tor minus axial”). The full leptonic four-current is then equal to:

jµ =
gW√

2
ū(p′)

1
2

γµ(1− γ5)u(p), (1.20)

where gW is the W boson coupling constant.

1We only show an approximation here; the complete equation can be found in Appendix B.1
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Weak interactions are mediated by W± and Z0 bosons, which do have a mass, contrary
to photons in QED. These masses are approximately equal to mW = 80 GeV/c2 and mZ =
91 GeV/c2 [23]. This fact is reflected in the formula for the weak boson propagator, which
includes the boson mass and for the W boson takes the form:

−1
q2 −m2

W

(
gµν − qµqν

m2
W

)
, (1.21)

where q is four-momentum of the exchanged virtual particle and gµν is Minkowski metric
element. To obtain the propagator for Z0, one needs to replace m2

W with m2
Z.

In accelerator neutrino experiments, we measure mostly neutrino interactions on nucle-
ons inside a nucleus, not on a point-like object. This makes the reasoning presented here even
more complex, and we have to include form factors into the interaction formalism.

1.5 Form Factors

The first measurement of the lepton scattering on a nucleus was performed by Rutherford in
his famous experiment [26] when he discovered the existence of the nucleus. He calculated
the cross-section for this process assuming a lepton interacted with a point-like object. Mott
then expanded the formalism by including the spin effect into Rutherford’s formula [27].
However, the Mott cross-section agrees with experiments only for three-momentum transfer
|~q3| → 0. For higher values of |~q3| experimental data give lower values of the cross-section
than the theoretical predictions. The problem lies in the spatial extension of nuclei. For higher
|~q3|, the virtual photon “can see” only part of the nucleus charge, in other words, we are
probing the inner structure of a nucleus, not the nucleus as a whole. This inner structure can
be described using form factors, which can be defined as:

F(~q2
3) =

∫
ei~q3x/} f (x)d3x. (1.22)

After including the form factor in the Mott cross-section formula, we obtain:(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott
|F(~q2

3)|
2. (1.23)

For scattering on nucleons, the problem gets even more complicated. We need to include
information about the charge but also the magnetic moment of a nucleon. The equation that
takes that into account is called the Rosenbluth formula and has the following form:(

dσ

dΩ

)
=

(
dσ

dΩ

)
Mott
·
(

G2
E(Q

2) + τG2
M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2
(

θ

2

))
, (1.24)

where Q2 is four-momentum transfer, G2
E(Q

2) and G2
M(Q2) are the electric and magnetic form

factor, respectively, while τ = Q2

4M2c2 with M being nucleon mass [28].
The limiting values for proton and neutron are [27]:

Gp
E(Q

2 = 0) = 1 Gn
E(Q

2 = 0) = 0

Gp
M(Q2 = 0) = 2.793 Gn

M(Q2 = 0) = −1.913
(1.25)

It is assumed that the target nucleon charge distribution has an exponential shape as the
extent of not being point-like, and the charge distribution is the Fourier transform of the form
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factor, thus this equation has the following form:

F(Q2) ∝
1(

1 + Q2

m2

)2 , (1.26)

where m2 is in the units of Q2. The charge of neutrino is consistent with zero; however, it may
have a charge distribution like a neutron. Therefore, this dipole form of form factor will be
important for neutrino interactions physics [29].

1.6 Neutrino Interactions

Neutrinos undergo only weak interactions, but that doesn’t make interaction description sim-
ple; on the contrary, it is quite complex. Firstly, we can divide neutrino interactions depend-
ing on which boson is the force carrier. If the interaction was mediated by W± we call it
Charged Current (CC), while the cases with Z0 are known as Neutral Current (NC). CC are
crucial for studying oscillations, as the lepton created in such a process allows to identify the
flavour of the interacting neutrino, and therefore it is possible to check if the flux of a partic-
ular neutrino flavour has changed. NC are very often the background for studied oscillation
channels.

Furthermore, we can also classify interactions based on neutrino energy, Q2 and the final
state. The cross-section as a function of muon (anti)neutrino energy, with contributions from
different reaction modes, is shown in Fig. 1.2. It is clear that there is a dependence between the
interaction type and neutrino energy. In the following Sections, all reaction modes presented
in the plots are described in a more detailed manner.

FIGURE 1.2: Muon neutrino (left) and antineutrino (right) cross-sections for an isoscalar target as
a function of the (anti)neutrino energy. The curves are averaged over protons and neutrons. The lines

mark interaction modes [17].

Quasi-Elastic-like

The type of neutrino interactions most important for this Thesis is Charge Current Quasi-
Elastic Scattering (CCQE) for which the Feynman diagram is shown in Fig. 1.3. The cross-
section of the CCQE interaction on a single nucleon is parameterized in terms of four nucleon
form factors: electric, magnetic, pseudoscalar and axial form factors. The axial form factor is
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FIGURE 1.3: Feynman diagram for a CCQE interaction of νµ [30].

the main source of error in the microscopic description of neutrino interactions at the nucleon
level [31]. In analogy to Eq. 1.26 it takes form:

FA(Q2) =
gA(

1 + Q2

(MQE
A )

2

)2 , (1.27)

where gA = FA(Q2 = 0) = 1.2670 ± 0.0035 [32] is a normalisation factor and MQE
E is ax-

ial mass [33]. Axial form factor describes the weak charge distribution and MQE
E resembles

a mass term, hence such a name is commonly used. There are alternative descriptions reach-
ing beyond simple exponential form, like the 2-component model [34] or the Z-expansion
model [35].

For nucleons inside a nucleus, many correlations may exist between them, which can
affect the final outcome of an interaction. One type of such correlations is Meson-Exchange-
Current (MEC), sometimes also called Long-Range Correlations (LRC). In MEC, there is a me-
son exchange between a pair of correlated nucleons. Most often, a pion is assumed in the
calculations, but more advanced models take ρ mesons into account as well. One can inter-
pret that a nucleon not interacting with neutrino via boson propagator can still participate
in the interaction via meson propagator. In such interactions, two nucleons are ejected from
the nucleus in the final state; therefore, it is also often called Two Particles Two Holes (2p2h).
An example of 2p2h for muon neutrino is depicted in Fig. 1.4.

A neutrino can interact with a neutron which can be correlated with either a proton or
a neutron; therefore, we have two possible pairs: neutron-proton (np) or neutron-neutron
(nn). For antineutrino, the isospin symmetry is assumed, in consequence nn is replaced by
pp and np by pn.

FIGURE 1.4: Pseudo-Feynman diagram showing 2p2h interaction with two possible pairs.

Nothing is preventing correlations between more than two particles; thus, there are mod-
els proposing even 3p3h. Since this is still a new concept, it will not be discussed further,
as 3p3p is not implemented in the simulation used in this Thesis. However, if the reader is
interested, more information can be found in [36].
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Concerning the meson propagators, we can have two types of diagrams: ∆-like and non
∆-like. In the first case, a virtual ∆ resonance decays to π and a nucleon. Examples of Feyn-
man diagrams with non ∆-like and ∆-like cases are shown in Fig. 1.5.

FIGURE 1.5: ∆-like and non ∆-like diagrams of 2p2h interactions [37].

There are experiments that cannot detect the outgoing proton due to the reconstruction
threshold. Hence, a clever method of reconstructing neutrino energy is required. For a two-
body process like CCQE, there is a possibility to reconstruct the neutrino energy using the
following formula2:

Erec
ν =

m2
p −

(
mn − E2

b

)2 −m2
l + 2 (mn − Eb) El

2 (mn − Eb − El + pl cos(θl))
. (1.28)

It is crucial that this equation depends only on the charged lepton kinematics, i.e. lepton
momentum (pl), lepton direction with respect to the beam direction (cos θl) and lepton energy
(El), while the other parameters, such as neutron mass mn and binding energy Eb, are of
known value.

However, Eq. 1.28 assumes the interaction with a stationary nucleon. It is s well-establi-
shed fact, that nucleons bound in nuclei are not stationary due to Fermi motion. In conse-
quence, it is important to have a proper formalism describing nucleons in a nucleus.

One such model is the Spectral Function (SF). SF is an advanced model that takes into
account the shell structure of the nucleus and is tuned to electron scattering data (e, e′p) [38,
39]. SF describes the probability of ejecting a nucleon with momentum ~p and leaving the
nucleus in an excited state of energy E. It can be described using the following formula [37]:

P(~p, E) = ∑
n

∣∣∣〈ψA−1
n

∣∣∣ ap

∣∣∣ψA
0

〉∣∣∣2 δ(E + E0 − En), (1.29)

where ψA
0 is the initial state with A nucleons with energy E0, and ap is the annihilation opera-

tor with momentum ~p. We sum over all possible energy final states ψA−1
n with A− 1 nucleons

and energy En.
SF can be divided into Mean Field (MF) and Short-Range-Correlations (SRC) components.

The former involves the nucleon interaction with the mean potential of the nucleus only, in

2The formula can also be used for resonant scattering, which is described later. In such a case, the mass of
∆(1232) is assumed instead of a proton.
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the latter, we take into account the nucleon-nucleon correlations:

P(~p, E) = PMF(~p, E) + PSRC(~p, E). (1.30)

The P(~p, E) distributions for carbon and oxygen can be seen in Fig. 1.6, with the white line
separating MF and SRC regions. Since there is a big repulse of nucleons in SRC, they appear
at higher momentum p, also referred to as missing momentum pm, and energy E (also known
as missing energy Em). The spectral function is based on electron scattering data, and from
those measurements, we extract pm and Em, hence those terms are used interchangeably.
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FIGURE 1.6: Two-dimensional distribution of missing energy (Em) and missing momentum (pm) for
Carbon (left) and Oxygen (right) in NEUT generator [40] used by the T2K experiment. The white lines
indicate the cuts used to separate the MF region (low Em, pm) from the SRC region (high Em, pm) [41].

Although SRC are considered a type of 2p2h interactions, they are treated in the neu-
trino interaction generator used in the Thesis as CCQE. This is due to the fact that SRC are
described using the SF formalism, which is currently only implemented for CCQE.

Due to the Pauli principle, two fermions cannot occupy the same state, so the interaction
in which a final nucleon would be in an already occupied state is forbidden (such an effect is
called Pauli blocking). One method to include Pauli Blocking in SF is to multiply P(~p, E) by
the Heaviside step function, as suggested in [42], this way we receive:

P(~p, E)→ P(~p, E)Θ (|~p + ~q3| − p̄F) , (1.31)

where p̄F is average Fermi momentum, and ~q3 is three-momentum transfer.

Pion Production

High-energy neutrinos can undergo Single Pion Production (SPP). Very often in such inter-
actions, a short-lived resonance is created; we call them Resonant interactions (RES). The
resonances are mostly Delta baryons (∆+, ∆−, ∆++), which immediately decay to a pion and
a nucleon, as can be seen in Eq. 1.32 and Fig. 1.7:

∆++ → π+ + p
∆± → π± + n

∆+ → π0 + p

∆0 → π− + p

∆0 → π0 + n

(1.32)
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FIGURE 1.7: Feynman diagram for a resonant interaction of νµ [30].

Several models describing resonant interactions have been proposed, such as the Sato-Lee
model [43] or the Rein-Sehgal model [44]. However, only the latter one is considered further
due to being used by NEUT. Because the interaction can occur with the creation of different
resonances, we have interference terms between different resonances when calculating the
cross-section in a quantum mechanical manner. Therefore, the pion production modelling
is complicated, but there are still similarities to the CCQE model. The cross-section can be
factorised into two parts as in Eq. 1.33, the first one being associated with the resonance
production and depending on form factors (Q2 and W dependent), and the second one de-
scribing the pion kinematics using Adler angles affecting only the outgoing hadronic system:

d2σ

dQ2dW
dσ

dΩ
=

d2σ

dQ2dW
dσ

d cos θdφ
. (1.33)

The form factor for resonant interaction is presented in Eq. 1.34, where MRES
A is the res-

onant axial mass and CA
5 (Q

2 = 0) is the normalisation of the axial form factor proposed by
Graczyk and Sobczyk [45]. CA

5 (Q
2 = 0) plays similar role as gA in CCQE, however, CA

5 is not
precisely measured as only a few measurements were performed [46]. More information on
RES form factors can be found in [45, 47].

FRES
A (Q2) =

CA
5 (0)(

1 + Q2

(MRES
A )

2

)2 . (1.34)

It is also possible to produce a single pion without going through a resonant intermediate
state (commonly called a non-resonant background). There are different channels for isospins
I1/2 and I3/2. Based on bubble chamber data, the effects of isospin I3/2 are small [48, 49]; as
a consequence, most generators only model I1/2 channel. For low four-momentum transfer,
there is also the possibility of pion production from so-called Coherent Scattering (COH),
where neutrinos scatter on a nucleus as a whole, as can be seen in Fig. 1.8, leaving the nucleus
in the same state.

FIGURE 1.8: Feynman diagram for coherent scattering of νµ [30].

For neutrino energies of the order of a few GeV, it is possible to produce more than one
π, which is often called Multi-π interaction. However, different neutrino MC generators
implement this process very differently, which is related to the transition region, discussed
next.
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For very high-energy neutrinos, the intermediate boson may probe the quark structure of
a nucleon, leading to Deep Inelastic Scattering (DIS), as can be seen in Fig. 1.9. To describe
such a process, two scaling variables are used: Bjorken x denotes the fraction of nucleon
momentum carried by the struck quark, and y is the fraction of neutrino energy transferred
to the hadronic system.

FIGURE 1.9: Feynman diagram for DIS of νµ(ν̄µ) [50].

In general, we can divide high energy neutrino interactions into low and high invariant
mass W regions, as shown in Fig. 1.10. Since the transition is not well known, some generators
perform an arbitrary split depending on the value of hadronic mass W. This is needed to
avoid double counting of the same effect/interaction. The region limits for the generator
used in this Thesis are as follows:

• W < 2 GeV/c2 - Multi-π mode

• W > 2 GeV/c2 - DIS (PYTHIA) mode

FIGURE 1.10: W distribution for neutrino interactions in the GENIE generator. The W distribution
can be split into three regions: the KNO scaling-based model region, the PYTHIA region, and the

transition region [51].

There are several models describing the effects important at low W:

• Andreopoulos-Gallagher-Kehayias-Yang (AGKY) [52] is a hadronization model that
provides information about the multiplicities and kinematics of the outgoing hadrons

• Koba-Nielsen-Olesen scaling law (KNO) [53, 54] states that the cross-section for pro-
ducing n charged particles is independent of energy and is function of n/〈n〉.

• Bodek and Yang (BY) introduced a correction [55] to inclusive DIS cross-section to better
fit the data, as QCD becomes non-perturbative at low Q2.

The high W region is often generated by PYTHIA. More information can be found in [56].
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1.7 Final State Interactions

Neutrino interactions described up to this point (except COH) occur on nucleons bound in-
side a nucleus. This means that the products of the interaction also appear inside the nucleus.
As a consequence, they need to propagate through the nucleus and leave it, so we could de-
tect them in an experiment. During this propagation, the particles can undergo different
reactions, like scattering or absorption, called Final State Interactions (FSI).

FIGURE 1.11: Schematic view of possible final state interactions for a RES event. In the given exam-
ple, the proton scattered on another nucleon ejecting additional nucleon from the nucleus, while π+

underwent the absorption process.

Due to FSI, a pion can undergo the following interactions inside a nucleus:

• Absorption,

• Quasi-Elastic scattering,

• Single charge exchange,

• Hadron (N+nπ) production.

As for a nucleon, it can undergo the following interactions:

• Quasi-Elastic scattering,

• Inelastic scattering,

• π production.

Precise measurements of neutrino interaction are a relatively new branch of physics, with
quick development in recent years. If the Reader is interested, more information can be
found in [29, 57–59]. There are several generators available, like Genie [60], NuWro [61]
and NEUT [40], which differ in used models and implementation. In the Thesis, the NEUT
generator is used, and details about model parametrisation shall be discussed in Chapter 4.
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2
Tokai-to-Kamioka Experiment

No plan survives contact with the enemy.

Helmuth von Moltke

2.1 T2K Introduction

The Tokai-to-Kamioka (T2K) is an international experiment located in Japan, dedicated to
study of neutrino and antineutrino oscillations. T2K experiment measures the oscillations
in two modes: appearance (νµ → νe or ν̄µ → ν̄e) and disappearance (νµ → νµ or ν̄µ → ν̄µ).
The main scheme of the experiment is as follows: νµ(ν̄µ) beam is created at the Japan Proton
Accelerator Research Complex (J-PARC), then the neutrinos are measured at the near detector
station, which is located 280 m away from the beam production. At such a distance the
oscillation effects are negligible. Next, the neutrino beam is measured in the far detector
Super-Kamiokande (SK), which is placed at a distance of 295 km away from J-PARC where
the effects of neutrino oscillations are clearly visible. The overview of T2K experiment can be
seen in Fig. 2.1.

FIGURE 2.1: The overview of T2K experiment. J-PARC and the near detector station are placed on the
east coast of Japan, while Super-Kamiokande is located in western Japan.

T2K uses an off-axis neutrino beam, which means that the far detector (FD) is placed at the
angle of 2.5◦ with respect to the beam direction. This provides a few advantages, as illustrated
in Fig. 2.2. The bottom histogram shows the νµ flux as a function of neutrino energy Eν for
on-axis configuration (0◦) and two off-axis configurations (2◦ and 2.5◦), assuming L = 295 km
and no oscillations. One might notice that in the off-axis configuration the flux has narrower
distribution, which is also shifted to lower values of Eν. Thanks to that fact, Charged Current
Quasi-Elastic interactions are the dominant channel in the T2K. Since CCQE is a two-body
process, it allows to reconstruct neutrino energy using only lepton kinematics, as discussed
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in Section 1.6. The top and middle plots of the same Fig. 2.2 show neutrino oscillation prob-
abilities as functions of Eν for disappearance (νµ → νµ) and appearance (νµ → νe) channels,
respectively (also for the baseline L = 295 km). It can be seen that the flux for the 2.5◦ off-axis
angle is peaked at the energy where the probability of νe appearance (νµ survival) is at its
maximum (minimum).
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FIGURE 2.2: Probability of neutrino oscillations as a function of neutrino energy for the νµ disappear-
ance channel (top) and νe appearance channel (middle). The bottom plot shows T2K flux at on-axis

and two off-axis configurations (plot taken from [62]).

By further investigation of the middle plot, one might observe that even at the oscillation
peak the appearance probability for νe is low (∼0.05), and as consequence the number of νe
(ν̄e) observed at FD is low. Most of νµ oscillate into ντ, but SK cannot detect oscillated ντ, as
their energy is mostly below τ production threshold and they can only interact via NC. In
consequence, T2K can measure only the νµ → νe and ν̄µ → ν̄e appearance channels.

2.2 Beam Production

The T2K beam starts at J-PARC, where protons are accelerated to 30 GeV. They are grouped in
∼ 50µs long spills, with each spill containing 8 very short (58 ns) bunches. This characteristic
time structure is very important as it is used for the selection of proper events. In other words,
thanks to cutting on the expected bunch time, we can reject most of events that which do not
originate from the T2K beam, like cosmic rays or atmospheric neutrinos.

The T2K beamline is depicted in Fig. 2.3. Starting from the left side, we can notice protons
accelerated in the J-PARC accelerator chain hitting the graphite target. Proton interactions
with carbon nuclei produce many secondary particles, mostly pions and kaons. After escap-
ing the target, the secondary particles enter three magnetic horns, which can operate in two
configurations: Forward Horn Current (FHC) where positively charged particles are focused
and negatively charged are defocused, or Reverse Horn Current (RHC) which focuses neg-
atively charged particles and positively charged are defocused. Eqs. 2.1 and 2.2 show the
dominant decay modes of positively and negatively charged pions and kaons, respectively.
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Since positively charged secondary particles decay to neutrinos, FHC corresponds to the neu-
trino beam mode, while RHC to the antineutrino beam mode.

π+ → µ+ + νµ, K+ → µ+ + νµ (2.1)
π− → µ− + ν̄µ, K− → µ− + ν̄µ (2.2)

Due to the conductor shape, there is no magnetic field in the centre of the magnetic horns,
as can be seen in Fig. 2.4. Therefore, particles travelling forward through the horns are not
affected by the magnetic field, and as a consequence, there is contamination of the commonly
named “wrong sign” component in the T2K beam (ν̄µ for FHC mode, νµ for RHC). Moreover,
one needs to remember that the initial interaction of the proton and carbon nucleus has an
excess of positive charge, which leads to more positively charged secondary particles being
produced. Due to those two facts, the contamination of the wrong sign component in RHC
is much higher than in FHC. This effect is presented in Fig. 2.5, where the left plot shows the
flux composition for FHC and the right for RHC.

FIGURE 2.3: Overview of the νµ(ν̄µ) beamline in the T2K experiment [63].

FIGURE 2.4: Cross-section of a magnetic horn with current and magnetic field directions marked [64].

Moving to the right in Fig. 2.3, one can see a decay tunnel which is ∼96 m long, to allow
most secondary particles to decay in flight. The detailed breakdown of decay channels for
the most common secondary particles is summarized in Tab. 2.1. As can be seen, K can decay
into νe which constitute the background (so-called intrinsic νe) in the search for neutrino os-
cillations in νµ → νe channel. Additionally, some tertiary muons can decay into νe producing
a low energy contribution to intrinsic νe flux.

At the end of the decay tunnel, the beam dump is placed, made of 75 tons of graphite.
Since neutrinos hardly interact, most of them leave the beam dump in an unchanged state,
while other particles stop, except for highly energetic muons. Those muons are measured
on a spill-by-spill basis in the last part of the beamline, which is the muon monitor. It con-
sists of ionization chambers and allows for better control of the direction and intensity of the
(anti)neutrino beam.
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Decay Channel Branching Ratio (%)
π+ → µ+νµ 99.9877
π+ → e+νe 1.23·10−4

K+ → µ+νµ 63.55
K+ → π0µ+νµ 3.353
K+ → π0e+νe 5.07
K0

L → π−µ+νµ 27.04
K0

L → π−e+νe 40.55
µ+ → e+ν̄µνe 100

TABLE 2.1: Neutrino parents decay modes with branching ratios [65].
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FIGURE 2.5: T2K flux at ND280 for neutrino mode (FHC) and antineutrino mode (RHC). Colours
represent different (anti)neutrino flavours.

2.3 On-axis Near Detector - INGRID

The use of the off-axis method introduces the need for measuring the beam direction and
stability, as change in the off-axis angle affects the neutrino energy distribution. Hence, T2K
uses an on-axis near detector Interactive Neutrino GRID known as INGRID.

INGRID is placed 280 m from the target. The detector consists of 14 identical scintillation
modules arranged in the shape of a cross (see Fig. 2.6) and 2 additional modules. The overall
size of the detector is 10 m × 10 m. The beam is aimed at the centre of INGRID.

The main purpose of INGRID is to measure neutrino (antineutrino) interactions with
enough statistics to allow a daily diagnosis of the beam direction and intensity. The role of the
two additional modules is to check the axial symmetry of the neutrino beam. Furthermore,
INGRID is used to tune T2K flux predictions.

2.4 Off-axis Near Detector - ND280

Neutrinos from the beam are also measured by ND280, which is located 2.5◦ off-axis with
respect to the beam direction. ND280 is a multi-purpose detector consisting of several sub-
systems. ND280 is essential for T2K analysis as well as for this Thesis.

The main part of ND280 is the tracker, which consists of two Fine Grained Detectors (FGD,
marked by green colour in Fig. 2.8) and three Time Projection Chambers (TPC, marked in
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FIGURE 2.6: Schematic view of the on-axis near detector INGRID [66].
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orange in Fig. 2.8). Upstream of the tracker (with respect to the beam direction), the Pi-zero-
detector (P0D) is placed. P0D’s primary task is to measure the production of neutral pions
in neutral current interactions νµ + N → νµ + N′ + π0 + X on water which is an important
background in the far detector.

P0D and tracker are surrounded by the electromagnetic calorimeter (ECal) and UA1 mag-
net, used previously in the famous CERN UA1 experiment, which discovered W and Z
bosons [67]. The magnet generates a magnetic field of 0.2 T, and the magnet yoke is in-
strumented with scintillator slabs forming the Side Muon Range Detector (SMRD). The main
functions of SMRD are the reconstruction of high-angle muons and the triggering on cosmic-
ray muons, both of which are irrelevant to this Thesis.

FIGURE 2.8: Schematic view of the ND280 detector [66].

ND280 tracker is used in many T2K analyses, both cross-section measurements and the
input to the oscillation analysis. Therefore, all parts of the tracker are described in the next
Sections with an emphasis on parts relevant for this Thesis.

2.4.1 Fine Grained Detector - FGD

FGDs [68] are constructed of bars of extruded polystyrene scintillator, which are oriented in
either the horizontal (x) or vertical (y) direction, perpendicularly to the beam direction (see
Fig. 2.8). Each scintillator bar has a wavelength shifting fibre going through its centre. One
end of each fibre is attached to a solid-state Multi-Pixel Photon Counter (MPPC).

The upstream FGD (FGD1) consists of 5,760 scintillator bars, arranged into 15 XY modules
of 192 bars each. The downstream FGD (FGD2) is a water-rich detector consisting of seven
XY modules of plastic scintillator alternating with six 2.5 cm thick layers of water. FGD2
contains in total 2,688 active scintillator bars. Each FGD has outer dimensions of 2300 ×
2400× 365 mm3.

The main purpose of FGDs is to be the target for neutrino interactions. In FGD1, neutrinos
interact mostly with carbon nuclei, whereas in FGD2 with both carbon and water (oxygen
nuclei). Water is the target in the far detector, so using the FGD2 water target allows for
better understanding of predictions for the far detector.

FGDs can be used for the identification (PID) of stopping particles by studying the energy
deposits as a function of track length. Fig. 2.9 shows measured energy deposits as a function
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of track length in FGD1 and theoretical predictions for the proton, muon and pion hypothe-
ses. What is important for later parts of the Thesis, that it is relatively easy to distinguish pro-
tons from muons and pions, which is a consequence of much higher proton mass. Because
FGD2 has fewer scintillation bars (active material), the particle reconstruction is in general
less efficient than in FGD1. PID for tracks that leave FGD is performed by TPC, since it has
superior capabilities in this regard.

FIGURE 2.9: Deposited energy as a function of range for particles stopping in FGD1 [68].

FGD can also measure particle momentum by range. Knowing the distance a particle has
travelled and its mass (after PID) we can easily calculate momentum.

2.4.2 Time Projection Chamber - TPC

TPCs are gaseous argon-based Time Projection Chambers. Charged particles passing through
TPC produce electrons that drift in the electric field towards the MicroMegas detectors [69],
where the electrons are multiplied and sampled by the readout pads with dimensions of
7.0 mm× 9.8 mm (vertical× horizontal) each. Thanks to the high granularity of MicroMegas
the TPCs have much better reconstruction capabilities than FGDs.

ND280 tracker is placed in the magnetic field, which causes curvature of the tracks of
charged particles. By fitting a helix to a track, it is possible to measure particle momentum
and charge. Particle Identification (PID) in TPC is based on measured ionisation loss per unit
length (dE/dx). Fig. 2.10 shows the Bethe-Bloch curve [23] and measured dE/dx in TPC for
selected particles.

(A) Negatively charged particles (B) Positively charged particles

FIGURE 2.10: Energy loss per unit length as a function of particle momentum, with theoretical curves
for different particles [70].
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TPC1 is placed upstream of FGD1 (with respect to beam direction), and therefore it is used
as a veto detector for muons that didn’t originate from neutrino interactions in FGD1. TPC2
plays a similar role for interactions in FGD2.

2.4.3 Global Reconstruction

Since ND280 consists of several sub-detectors, each with its own reconstruction algorithm,
there is a need to use the global reconstruction (GR) which combines the information from
at least two detectors. Due to the fact, that TPC has the best reconstruction capabilities, GR
looks for tracks in TPC first, and then tries to combine a TPC track with hits in a neighbouring
FGD to create a TPC-FGD matched object. If both FGDs have hits, it is possible to create an
FGD1-TPC2-FGD2 object or even an FGD1-TPC2-FGD2-TPC3 one. An example of an event
with tracks passing through several sub-detectors is shown in Fig. 2.11.

FIGURE 2.11: Example of a neutrino interaction happening in FGD1 sub-detector and producing
a muon and a proton travelling through several sub-detectors.

2.5 Far Detector - Super-Kamiokande

Super-Kamiokande (SK) is a famous Cherenkov detector known for the discovery of neutrino
oscillations [10]. SK is a cylinder of 39 m in diameter and 42 m in height, as can be seen
in Fig. 2.12. It is filled with ultrapure water (now doped with salts of gadolinium [71]) of
a total mass of 50 kt. SK is equipped with roughly 13,000 photo-multiplier tubes (PMTs). It
is divided into Inner Detector (ID) and Outer Detector (OD). OD serves mostly as a veto for
events originating outside of SK.

FIGURE 2.12: Schematic view of the Super-Kamiokande detector [66].
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Particles travelling faster than light in a given medium (β > 1/n, where n = 1.33 for
water) produce Cherenkov radiation. Therefore, the Cherenkov threshold is 0.569 MeV/c for
electrons, 115.7 MeV/c for muons and 1.04 GeV/c for protons. For T2K beam energy, most
protons are below the Cherenkov threshold. In consequence, SK cannot perform a calori-
metric measurement to estimate the energy of neutrinos. However, for a two-body process
like quasi-elastic interaction, it is possible to reconstruct neutrino energy by measuring only
lepton kinematics (see Eq. 1.28).

The main lepton signatures SK is looking for are muons and electrons appearing inside
the detector. Such signatures are µ-like and e-like Cherenkov rings. The edge of a µ-like ring
is sharp, while that of an e-like one is fuzzy, as electrons have lower mass and are more likely
to scatter. Examples of e-like and µ-like rings and the discrimination parameter are shown
in Fig. 2.13. SK is not equipped with magnetic field, so it is unable to differentiate between
a lepton and its antiparticle counterpart. Recently, salts of gadolinium were added to water,
which allows for efficient neutron detection. Since neutrons are statistically more likely to be
emitted from antineutrino interactions, the signal of neutron capture can be used to identify
ν and ν̄. However, this is not yet used in the analysis.

FIGURE 2.13: Distribution of SK PID parameter separating µ-like and e-like rings, with colours indi-
cating the true origin of the rings. The top left and right pictures show examples of e-like and µ-like

rings, respectively [72].

SK detector cannot detect oscillated ντ from the T2K beam, as with Eν ∼ 1 GeV τ leptons
are below the production threshold (∼3.5 GeV). Furthermore, due to their relatively high
mass (1776.82 MeV/c2) and very short lifetime (290.6·10−15 s) τ leptons are quite difficult to
detect and identify. Such measurements are performed by SK using atmospheric neutrinos
data [73].

The interactions of neutrinos from the T2K beam are divided into six samples. First, the
events are divided into FHC or RHC beam data. As the dominant interaction channel at T2K
energies is CCQE, the most numerous samples contain events with one visible ring produced
by the charged lepton. Then, the main criterion is the identification of e-like or µ-like rings as
such event topologies are the main signature of oscillated and unoscillated neutrinos. More-
over, there are two samples enriched in resonant interactions and containing events with an
additional π-like ring or delayed signal coming from Michel electron (from π → µ → e
decay). An example of an event with more than one ring can be seen in Fig. 2.14.

The overall summary of FD samples used in this Thesis is as follows:
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• FHC 1Rµ - one muon-like ring in FHC mode;

• RHC 1Rµ - one muon-like ring in RHC mode;

• FHC νµCC1π - one muon-like ring with additional ring coming from π or a delayed
Michel electron signal in FHC mode;

• FHC 1Re - one electron-like ring in FHC mode;

• RHC 1Re - one electron-like ring in RHC mode;

• FHC 1Re1de - one electron-like ring and one Michel electron signature in FHC mode.

The event rates for each SK sample are summarised in Tab. 2.2.

FIGURE 2.14: Sketch of FHC νµCC1π sample.

Sample Events in Data
FHC 1Rµ 318

FHC νµCC1π 135
FHC 1Re 94

FHC 1Re1d.e 14
RHC 1Rµ 137
RHC 1Re 16
Total FHC 467
Total RHC 153

Total 620

TABLE 2.2: The total number of data events for each FD sample.

2.6 Collected Data and Results

T2K has been collecting data since 2010. The amount of accumulated data is expressed using
Protons on Target (POT), which is a common unit used in accelerator neutrino physics, indi-
cating how many neutrino interactions we can expect. The data-taking periods are denoted
as runs with increasing numbers. Since the start of T2K, J-PARC has undergone many up-
dates that resulted in an increase of beam intensity. The number of accumulated POTs in T2K
for both FHC and RHC runs is shown in Fig. 2.15 as a function of time.

Tab. 2.3 summarizes the collected POTs for each T2K run that was used in the ND280 ana-
lysis described in this Thesis. ND and FD were exposed to the same number of POT, however,
it can happen that one detector stops collecting data due to maintenance, DAQ problems, etc.,
therefore the data POT is different for ND and FD: Run 1 is not included in the current ND280
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FIGURE 2.15: Accumulated number of POT as a function of time. The blue line shows the total accu-
mulated POT, while the red and purple lines denote FHC and RHC, respectively. The dots correspond
to beam power in kW, red for FHC and purple for RHC. The analysis described here doesn’t include

Run 11.

analysis because at that time ECAL was not complete (different geometry of ND280) and
a different calibration was used for this run, while Run 10 is excluded due to a malfunction
of the detector. Run 11 is the first one collected with SK doped with gadolinium, however,
these data and neutron tagging are not used in this analysis yet.

Monte Carlo simulations (MC) are generated with around ten times more POT than actu-
ally collected data to reduce statistical fluctuations in MC. The ratio of data and MC POT is
used as a scaling factor to be applied to MC.

For ND280 an additional type of MC is generated, namely Sand MC [74]. The beam neu-
trinos can interact both with the sand surrounding the ND280 pit and all walls and structures
inside the pit. So-called sand muons (but in general also protons, pions or neutrons) pro-
duced in such interactions can enter ND280 and pass the selection cuts. Generating Sand MC
requires different geometry (whole pit and surroundings, not just ND280), and as a conse-
quence, it is generated as a separate set of MC.

With data collected so far, T2K managed to discover the electron neutrino appearance in
muon neutrino beam [75] and to deliver the most precise measurement of θ23 [4]. Moreover,
T2K has provided the first hints for CP violation in the lepton sector [72].

2.7 T2K Phase II

T2K is preparing for the second phase of the experiment. One of the elements is the upgrade
of the beamline and horn focusing (more details can be found in [76]). The most relevant
informations are shown in Fig. 2.16, where one can see that the beam power will increase
from∼515 kW to∼750 kW, allowing for faster data collection. Additionally, the horn current
will increase from 250 kA to 320 kA, allowing for better focusing and a 10% increase in the
neutrino flux.

When it comes to the ND280 upgrade, P0D is being replaced with a new tracking detector
consisting of a Super-FGD (SFGD) scintillator detector sandwiched between two horizontal



30 Chapter 2. Tokai-to-Kamioka Experiment

Run Data (1019) MC (1019) Sand (1019)
2 FHC 7.94 288.4 214.6
3 FHC 15.93 307.80 107.30
4 FHC 34.84 722.45 214.6
5 RHC 4.45 221.10 120.25
6 RHC 34.22 346.98 120.25
7 RHC 24.39 333.20 120.25
8 FHC 57.31 717.01 214.6
9 RHC 23.03 266.07 120.25

Total FHC 116.02 2035.63 751.08
Total RHC 86.1 1167.24 480.98

Total 202.12 3202.87 1232.06

TABLE 2.3: Size of collected and simulated event samples expressed in protons-on-target (POT) for
ND280 data and MC used in this Thesis.

FIGURE 2.16: Current and expected POT and beam power after the J-PARC facility upgrade.

High Angle TPCs (HA-TPC), and a time-of-flight system surrounding these detectors, as can
be seen in Fig. 2.17.

Super-FGD [77] will be the main part of the ND280 upgrade. What makes it exceptional
is the use of small (1× 1× 1 cm3) scintillator cubes rather than bars. Three fibres, connected
to MPPCs, pass through each cube, allowing 3D track reconstruction and much better res-
olution at higher emission angles in comparison to the currently used FGDs. An example
of a scintillator cube can be seen in Fig. 2.18. The cubes are covered with a reflecting layer
(a white polystyrene micropore deposit) to reduce cross-talk effect.

Thanks to the high granularity, the new sub-detector will have a significantly better thresh-
old and efficiency of proton reconstruction, while the cubes structure and HA-TPC ensure
much higher angular acceptance. The comparison to current FGDs performance can be seen
in Fig. 2.19.

SFGD was also proven to be able to tag neutrons with high efficiency, and to use neutron
time of flight (ToF) to measure their energy [78].

For the purpose of oscillation analysis, it is crucial to stress that the currently used tracker
will not be changed. Since SFGD has a mass approximately twice as large as the single FGD
detector, after the upgrade we will double the overall target mass.
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FIGURE 2.17: Schematic view of the upgraded ND280.

FIGURE 2.18: SFGD cube (1 cm × 1 cm × 1 cm) with cat’s pawn for a scale.

FIGURE 2.19: Proton reconstruction efficiency as a function of the momentum and muon angular
acceptance for the current ND280 detector and after the upgrade.
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3
ND280 Analysis

Never interrupt your enemy when he is making a mistake.

Napoléon Bonaparte

ND280 selections are an important part of T2K analysis, as more sophisticated selection (more
event samples enriched in particular interactions) can allow to better probe cross-section and
flux models. This Section describes the event selections used in the main ND280 analysis,
emphasis is placed on selections included in the analysis by the Author of this Thesis.

3.1 General Description of ND280 Event Samples

In the analysis, CC events are used and their signature is a µ track which is in most cases the
Highest Momentum Negative Track (HMNT) for νµ or Highest Momentum Positive Track
(HMPT) for ν̄µ. Therefore, the primary criteria used in ND280 are designed to select “good”
events with a µ track starting in either FGD and crossing a TPC. The µ candidate kinematic
properties are used directly in the analysis; hence, it is necessary to extract them from TPC
rather than FGD. ND280 has two FGD targets, therefore there are two sets of event samples.
The main difference between the sets is the condition to have the interaction vertex in either
FGD1 or FGD2.

Each event has to pass a sequence of general cuts to be included in so-called CC inclusive
selection. Those cuts are as follows:

• Event quality: The event has to appear during a bunch time period, and all sub-detectors
should be fully operational.

• Total multiplicity: The event contains at least one track crossing a TPC.

• Quality and fiducial volume: The interaction has to start in an FGD, moreover, the vertex
has to be distant at least 5 scintillation bars from the edge of the FGD. Additionally, in
order to reject very short tracks, for which the reconstruction in TPC is less reliable, only
tracks with more than 18 clusters are selected.

• Upstream background veto: This cut excludes events where the second-highest momen-
tum track (if any) starts 150 mm upstream of the muon candidate track. This allows to
reject events in which a muon undergoing a large scattering could be reconstructed as
two tracks.

• Broken track cut: The starting position of the muon candidate track is less than 425 mm
away from the FGD upstream edge if the same event has at least one reconstructed
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FGD-only track. The cut rejects events in which the reconstruction has broken a track
into two, creating one track fully contained in an FGD (isoFGD track) and one with
TPC-matching starting at the FGD edge.

• Muon PID: HMNT/HMPT has to be identified as the muon as described below.

The TPC particle identification is based on energy loss. For each particle hypothesis i
(i = µ, π, p, e), the likelihood Li is defined as:

Li =
e−Pull2

i

∑l e−Pull2
l
, (3.1)

where Pulli is defined as:

PullTPC
i =

dE/dxmeasured − dE/dxexpected,i

σ
(
dE/dxmeasured − dE/dxexpected,i

) . (3.2)

Muons are selected by requiring:

Lµ > 0.05. (3.3)

Additionally, we reject low energy electrons using the following condition:

LMIP =
Lµ + Lπ

1− Lp
> 0.8 if p < 500MeV/c. (3.4)

Events that passed the CC inclusive selection are split based on the presence of photons
into CC Photon and CC NoPhoton (0γ). Photon tagging is very recent and was used for the
first time in the analysis described further in the Thesis. The description of its development
and technical details can be found in [79], but some basic information will be provided below.

Photons can originate from the following decay channels:

• π0 → γ + γ

• η → π0 + X → γ + γ + X

• η → γ + γ

• Λ→ π0 + X → γ + γ + X

• K → π0 + X → γ + γ + X

where X can be a variety of particles depending on the specific decay mode. The enlisted par-
ticles are mostly created in DIS or RES reactions; therefore, the CC Photon sample is enriched
in these interactions.

A photon candidate is an isolated object in the ECal (not associated with any TPC or FGD
tracks) with the log-likelihood ratio of the proton and electron hypotheses PIDEmHip < 0 [79].

The events classified as CC-0γ are further divided into samples using a π multiplicity
cut. Pion candidates have to start in the same FGD as the muon candidate and come from
the same bunch. Depending on their momenta and directions, pions can be tagged in three
ways: using TPC-FGD matched track, FGD-only track, or by observing a Michel electron in
FGD, created in the following decay chain:

π+ →µ+ + νµ

→ e+d + νe + ν̄µ,
(3.5)
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where the Michel electron is denoted as e±d . Since Michel electrons are delayed with respect to
the time of interaction by ∼2.19 µs, we can tag them by looking for a delayed signal in FGD.

For the pions that crossed the TPC, we apply the following cuts:

LMIP =
Lµ+Lπ

1−Lp
> 0.8 if p < 500 MeV/c, (3.6)

Lπ > 0.3. (3.7)

If a pion was contained in FGD (isoFGD track), FGD PID may be used for tagging. The
FGD pulls are defined as:

PullFGD
i =

Emeasured − Ei(Lmeasured)

σEi(Lmeasured)
, (3.8)

where Emeasured is the measured energy deposit and Ei(Lmeasured) is the expected energy de-
posit for a track of length Lmeasured and particle type i. For isoFGD π to be accepted, the
following condition has to be met:

−2 < PullFGD
π < 2.5. (3.9)

For pions that did not leave a track in FGD because of low energy or high emission angle,
the only tagging method is with the signal from the Michel electron.

CC-0γ is split into the following samples, depending on the number of tagged pions:

• CC0π-0γ - 0 reconstructed pions and 0 Michel electrons.

• CC1π-0γ - 1 reconstructed π+ or 1 Michel electron.

• CC-Other-0γ - other combinations of pions and Michel electrons.

Since SK is now doped with gadolinium and can much more effectively detect neutrons,
ND280 needs to constrain more complex physical phenomena (see Section 1.6). Thanks to the
accumulated data statistics (see Section 2.6), the brand new samples using proton multiplicity
cut were introduced. Even though neutron tagging in SK is not ready yet, it is supposed to
be used in the next T2K analysis, so the development on the ND280 side is an important step
forward.

Events belonging to CC0π-0γ samples are further divided into:

• CC0π-0p-0γ - 0 reconstructed protons.

• CC0π-Np-0γ - at least one reconstructed proton.

The proton-tagged samples are described extensively in the next Section.
Fig. 3.1 displays the distributions of reconstructed muon momenta for all FHC FGD1

event samples. CC1π-0γ sample is enhanced in RES scattering, CC-Other-0γ is dominated
by DIS, and CC Photon consists mostly of RES and DIS, being the most diverse sample. Those
results are expected and mean that each sample is suited for probing different effects.

So far, the FHC selections have been discussed. For RHC, the situation is more compli-
cated: as mentioned in Section 2.2, there is quite large contamination from the wrong sign
component. In consequence, there are samples that measure both signal (ν̄) and background
(ν) in RHC mode. In the following chapters, RHC ν̄µ samples will be referred to as RHC
samples, while RHC νµ ones as RHC BKG samples.

The cuts used in RHC selections are mostly analogous to those used in FHC, the details
can be found in [80]. Furthermore, the photon and proton tagging are not yet introduced in
RHC, only the pion multiplicity cuts are used. The potential effect of using proton tagging in
RHC and RHC BKG samples was studied and is presented in Appendix A.1.

A summary of all event samples used in the analysis can be seen in Tab. 3.1.
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FIGURE 3.1: Reconstructed pµ distributions for all FHC FGD1 samples with reactions indicated by
colours.
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All Reconstructed Events
↙ ↓ ↘

FHC νµ CC-Inclusive RHC ν̄µ CC-Inclusive RHC νµ CC-Inclusive
(FGD1 and FGD2) (FGD1 and FGD2) (FGD1 and FGD2)

↓ ↓ ↓
CC0π-0p-0γ CC0π CC0π
CC0π-Np-0γ CC1π− CC1π+

CC1π+-0γ CC-Other CC-Other
CC-Other-0γ
CC-Photon

TABLE 3.1: Event samples used in the ND280 analysis.

3.2 ND280 Proton-Tagged Samples

3.2.1 Selection Algorithm and Kinematical Properties

Proton candidates are searched among tracks that have not been classified as muon or pion
by previous cuts. They have to originate in the same FGD as the muon candidate and have:

Lp > 0.5. (3.10)

If the proton is contained in an FGD, the following condition has to be fulfilled:

PullFGD
p > −4. (3.11)

The distributions of TPC likelihoods and FGD pulls are shown in Fig. 3.21.
Fig. 3.3 shows the true identity of a proton candidate. Most of the proton candidates

are true protons, which is very encouraging. The misidentification occurs more often for
cos θµ ∼ 1 and is primarily caused by DIS events, as can be seen in Fig. 3.4, which shows
a similar distribution for misidentified proton candidates only, broken down by reaction. The
cos θµ distributions are different for FGD1 and FGD2 samples, which is the consequence of
the poorer reconstruction capabilities of FGD2 at higher angles.

Fig. 3.5 shows the numbers of reconstructed isoFGD and TPC-matched protons in CC0π-
0γ samples. Few conclusions can be drawn from this plot. Firstly, there are more TPC-
matched protons than isoFGD ones. Secondly, when looking at the reaction breakdown of
events with one isoFGD or one TPC-matched proton (the second bin of the histogram), it is
clear that events with one isoFGD proton have a higher fraction of CCQE interactions (60%)
with respect to the TPC-matched protons (45%).

The CC0π-0p-0γ sample consists of events with the reconstructed muon only, as can be
seen in Fig. 3.6 (A), whereas the situation is more complicated for CC0π-Np-0γ. A CC0π-
Np-0γ event can consist of a muon with a very short isoFGD proton, a more energetic TPC-
matched proton, or multiple protons.

The numbers of selected data events in proton-tagged samples are: 21329 (22935) for CC-
0π-0p-0γ and 9257 (7373) for CC-0π-Np-0γ FGD1 (FGD2). The comparison with MC expec-
tations will be discussed in the Chapter 6.

Fig. 3.7 shows the distributions of true momentum for the true highest momentum (HM)
proton and reconstructed momentum for the HM proton candidate in CC0π FGD1 sample.
By comparing those distributions, it can be observed that most protons are not reconstructed

1The Figure shows distributions for all particles, while in the selection the particles identified as muons will
not be considered as proton candidates. However, the cuts on the likelihood were designed to work for general
case.
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FIGURE 3.2: Proton pull for isoFGD tracks (left) and proton likelihood for tracks with a TPC segment
(right) for CC-0π-Np-0γ selection. The top plots present FGD1, while the bottom ones FGD2 samples.
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(A) TPC-FGD1 matched
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FIGURE 3.5: Number of reconstructed protons in CC0π-0γ samples. Most events have no recon-
structed protons.
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(A) CC0π-0p-0γ

 

(B) CC0π-Np-0γ with TPC-matched proton

(C) CC0π-Np-0γ with isoFGD proton (D) CC0π-Np-0γ with multiple protons

FIGURE 3.6: Examples of ND280 event displays for proton-tagged samples. Three green frames rep-
resent the TPCs, while two purple ones show FGDs.

(A) True HM proton (B) HM proton candidate

FIGURE 3.7: Distributions of true momenta of true HM protons (left) and reconstructed momenta of
HM proton candidates (right). Many events have a true proton that remains undetected; therefore,

those plots cannot be directly compared.
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because of their low momenta. Since most CCQE protons have rather low momenta (below
500 GeV/c), many observed protons originate from RES. That is the reason why the fraction
of CCQE is higher for isoFGD protons.

By looking at the reconstructed momenta of isoFGD protons and TPC-matched protons
separately (Fig. 3.8), we can see that TPC-matched protons have a much broader momentum
distribution. This is expected, as a proton with higher momentum is more likely to pass to
the TPC.
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FIGURE 3.8: Momentum distributions of TPC-matched proton candidates and isoFGD proton candi-
dates in CC0π-Np-0γ samples.

3.2.2 Physical Properties

For T2K analysis, the muon kinematics is very important, as the momentum and emission
angle are the inputs to the ND280 fit. Fig. 3.9 shows the two-dimensional distributions of
muon kinematics for CC0π-0p-0γ and CC0π-Np-0γ samples. Two notable differences can
be observed. Firstly, the CC0π-Np-0γ muon momentum distribution reaches higher values.
Secondly, CC0π-Np-0γ has much more muons emitted at high angles, whereas in CC0π-0p-
0γ muons mostly travel forward. This can be easily understood in terms of the conservation
of momentum in a two-body process. In a CC0π-Np-0γ event, there is at least one high
momentum proton that can be emitted at a high angle (see Fig 3.3), so the muon has also
to go at a higher angle to conserve the momentum. In a CC0π-0p-0γ event, there is usually
a low momentum proton and the muon has to go in the same direction as the neutrino beam.

Tab. 3.2 shows the reaction breakdown for different samples. It can be observed that
by splitting CC0π-0γ we can obtain a much higher fraction of CCQE in CC0π-0p-0γ, while
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FIGURE 3.9: Two-dimensional distributions of reconstructed muon momenta and emission angles, for
CC0π-0p-0γ (left) and CC0π-Np-0γ (right) FGD1 samples.

CC0π-Np-0γ contains a high fraction of non-CCQE modes. Since RES require higher energy
neutrinos, high momentum protons are more likely to be produced in such reactions.

CC0π-0γ CC0π-0p-0γ CC0π-Np-0γ

CCQE 51% 58% 38%
2p2h 11% 10% 11%
RES 23% 19% 30%

Other 15% 13% 21%

TABLE 3.2: Fractions of different reactions for three FGD1 FHC samples.

As can be seen in Fig. 3.10, proton-tagged samples have different distributions of four-
momentum transfer Q2. Events with low Q2 transferred to the hadron system will have
a proton with relatively low momentum and are very likely to be classified as CC0π-0p-0γ as
such a proton is often below the reconstruction threshold. There are many effects dependent
on Q2, like Pauli blocking; hence, the new samples can help us probe those effects better.
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FIGURE 3.10: Distributions of true Q2 for CCQE-only events for FGD1 proton-tagged samples.

Valencia model [81] is used by T2K to describe 2p2h interactions. The model has a very
characteristic two-peak structure in phase space of energy and momentum transfer (q0/|~q3|),
as shown in Fig. 3.11. Events from proton-tagged samples have different q0/|~q3| distributions:
CC0π-0p-0γ tends to occupy mostly the lower region, while CC0π-Np-0γ the upper one. It
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is worth mentioning that in general, 2p2h models predict unique distributions2 of q0/|~q3|;
hence, the proton-tagged samples can be used in model validation.
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FIGURE 3.11: True q0/|~q3| distributions for 2p2h channel for FGD1 proton-tagged samples.

Looking at Fig. 3.12, which depicts the true neutrino energy (Eν) of 2p2h events for proton-
tagged samples, we can see that the two samples have slightly different distributions, with
CC0π-Np-0γ having higher Eν values. This fact is important, as different models predict
different cross-sections for low (below 0.6 GeV) and higher (above 0.6 GeV) neutrino energies.

The comparison of sensitivities for samples with and without proton and photon tagging
is presented in Appendix A.2. We observe error reduction for many effects related to CCQE
and 2p2h interactions.

3.2.3 Binning Study

Selecting the binning for each sample is an art in itself, with many requirements. Firstly, it
is necessary to study the reconstruction accuracy and resolution of the detector. Fig. 3.13 top
plot shows a two-dimensional comparison of true and reconstructed µ momentum, known
as momentum reconstruction accuracy. The bottom left plot shows the mean and RMS of
reconstructed pµ projected onto true pµ axis, while the bottom right one displays the errors
from the left plot, corresponding to momentum resolution. We can observe that in the region
between 200 and 900 MeV/c, the accuracy is very good. The resolution is reasonable in this

2For example, the SUSAv2 model [82].
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FIGURE 3.12: True neutrino energy for 2p2h channel for FGD1 proton-tagged samples.

momentum range as well. Below 200 MeV/c, both accuracy and resolution tend to be much
worse, so it is better to include this region as one bin.

Fig. 3.14 shows an analogous study for cos θµ. In this case, we observe that the recon-
struction accuracy is very good in the forward-going region. Despite the fact that the plots
were prepared for CC0π-0p-0γ, the resolution is a general property of the detector, and very
similar results have been obtained for other samples.

Another criterion is to have at least 20 MC events in each bin. The number of MC events
in a bin follows the Poisson distribution, so for such a number, it is unlikely to get a statistical
fluctuation resulting in 0. We additionally require to have at least one data event.

After optimization, there are 650 bins for CC0π-0p-0γ and 352 for CC0π-Np-0γ. The same
binning is assumed for FGD1 samples and their FGD2 counterparts. Since CC0π-0p-0γ is the
most populated sample, it has the highest number of bins.

The final binning is presented in detail in Appendix B.2.
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FIGURE 3.13: Muon momentum reconstruction accuracy and resolution.
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4
Systematic Model

Men are always more inclined to pitch their estimate of the enemy’s strength too
high than too low, such is human nature.

Carl von Clausewitz

In experiments, except for the statistical error, one has to take into account the systematic error
as well. We can divide the sources of systematic uncertainties into three main categories:
related to the detector, the flux, and the cross-section models. This Chapter discusses the
systematic errors included in the ND280 analysis. The emphasis is placed on the systematic
parameters developed by the Author or those that are most important for proton-tagged
samples.

4.1 ND280 Detector Systematic Errors

ND280 is a complex detector with multiple sources of systematic uncertainties. The errors
may originate from physical phenomena like secondary interactions (SI) of particles, or from
the detection efficiency of each sub-detector used in the analysis, as well as from the matching
of reconstructed track segments from different sub-detectors.

When it comes to the treatment of the detector systematic uncertainties and the estimation
of their effect on the selected event samples, we can divide them into three categories [83, 84]:

• Observable Variation Systematics - The systematic error is applied as a smearing to
the reconstructed event variables, for example pµ. Therefore, it can change the recon-
structed topology and lead to the direct migration of events between samples or bins.

• Efficiency Systematics - Concerns all the variables corresponding to a reconstruction or
detection probability. In this case, the selection is run once, and a weight is computed
from the probability. The errors are computed based on data/MC differences using
studies with well-known control samples. Tracking and matching efficiencies can be
estimated using the redundancy between detectors. For example, the TPC2 tracking
efficiency can be computed using tracks with segments in FGD1 and FGD2.

• Normalisation Systematics - These are the systematic errors associated with the total
event normalisation. Similarly as for efficiency systematics, weights are calculated for
a whole category of events. A typical example is the uncertainty of an FGD mass.

Below, we list all sources of systematic uncertainties relevant to the analysis, along with
short descriptions. For detailed explanations, see [79, 85].
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• Magnetic field distortions uncertainty is caused by the lack of modelling of distortions
in the TPC magnetic field and leads to biases in momentum measurements. The distor-
tions are greater in TPC3, hence this systematic source affects FGD2 samples more. The
error is applied based on a special map of the magnetic field that has been produced.

• TPC momentum resolution error describes how well the momentum resolution is mod-
elled in MC. It was found that the resolution is underestimated as a function of the mo-
mentum, most probably due to the TPC electric field distortions. The uncertainty was
calculated based on the data and MC difference between the momentum component
transverse to the magnetic field.

• TPC momentum scale uncertainty is coming from the magnetic field map in ND280.
Based on the data and MC comparison of the cosmic muon sample, the error was esti-
mated to be 0.5%.

• TPC PID is based on pull distributions calculated from dE/dx. Dedicated control sam-
ples for muons, protons and electrons were created, and the uncertainties were esti-
mated from data/MC differences. Since pions have a very similar energy loss to muons,
the error for them is considered to be identical.

• FGD PID is calculated using particle pulls based on energy deposits in FGD. Pull dis-
tributions can be modelled by a Gaussian function and checked using control samples
of particles stopping in FGD and having a TPC segment to use the TPC particle identi-
fication. Similarly as for TPC PID uncertainty, the same error is assumed for pions and
muons.

• Charge ID uncertainty describes how effective the particle charge identification is, based
on its curvature in the TPCs. If tracks have segments in multiple TPCs, the charge is
computed for each segment individually and for the global track as a whole. If the
charges for segments differ, the relative weight between the local charges is used in the
determination of the global one.

• TPC cluster efficiency is the probability of finding a group of adjacent single TPC clus-
ters (collection of contiguous pads with energy deposits) at a given column of pads,
where charged particle crosses the gas volume of the TPC. It is evaluated separately
for horizontal and vertical clusters. The quality cut requires a track to have at least 18
clusters, making this error relevant.

• TPC tracking efficiency includes an evaluation of the TPC pattern recognition algo-
rithm and the likelihood fit. A reconstruction failure results in the misidentification of
event topology, which can lead to fewer events being selected. This efficiency does not
include the hardware efficiency, since the data quality checks guarantee that the TPCs
were fully operational. The uncertainty was estimated using a control sample of muons
going through two consecutive TPCs.

• TPC-FGD matching efficiency characterizes how well the reconstruction matches FGD
tracks to TPC tracks. The control sample is created by selecting through-going muons
passing through two consecutive TPCs. The efficiency is the ratio of events that also
have a track in the FGD in between to all selected events.

• FGD hybrid tracking efficiency of reconstructing tracks contained in FGD in the pres-
ence of a longer track exiting to a TPC. For this study, see Appendix A.3.
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• Michel electron efficiency describes how likely we are to identify such a delayed sig-
nal. Identification of the Michel electron will result in event classification as CC1π-0γ.
Cosmic muons stopping in an FGD were used as a control sample.

• ECal tracking efficiency is related to the reconstruction of objects in the ECal. The
control sample requires a good quality TPC track ending close to the edges of the ECal,
where the end of the track points towards the ECal.

• TPC-ECal matching efficiency of track components coming from TPC and ECal. This
systematic uncertainty is applied to any event that does not contain an isolated ECal ob-
ject, covering the case where an ECal photon has been wrongly matched to a TPC track.
TPC tracks entering the barrel and downstream ECals are used as control samples.

• ECal PID EmHip discriminates e±/γ from highly ionising particles like protons. ECal
PID EmHip uncertainty has the potential to shift objects close to cut values. This shift will
result in the event migration from CC Photon to another sample. Control samples of
electrons, protons and forward-going and comics muons were used in the systematics
evaluation.

• ECal Photon Pile-Up covers cases where any isolated ECal object is a product of a pile-
up interaction in the ECal. The number of POT per spill increased over time, leading to
more pile-up interactions, however, the data/MC agreement is comparable for all runs.
Events with ECal photons and without FGD activity were used as control samples.

• OOFV background uncertainty is a normalisation of events coming from out of FGD
fiducial volume, but selected as originating in it. OOFV rate for FGD1 (FGD2) has
been found to be 5 (7.5)%. The background is separated into 9 samples using true MC
information. The error is evaluated separately for each of these categories.

• Sand muon background is a special type of background events coming from the ND280
neighbourhood. A neutrino can interact in the pit containing ND280 or its surround-
ings, and some of the produced particles (usually called “sand muons”, but in general
any particle) can enter ND280. The error is estimated using charged particles entering
through the front wall of P0D.

• Pile-up effect considered here is due to sand muons that are in coincidence with events
originating in ND280. Similarly as for ECal Photon Pile-Up, the effect of increasing POT
per spill over time leads to more pile-up events.

• FGD mass is related to the interaction targets and affects the overall number of neutrino
interactions. MC overestimates the density of the FGD modules, and the uncertainty of
the FGD1 (FGD2) mass is 0.6% (0.4%). The water mass uncertainty is not correlated
with the scintillator mass uncertainty, hence the difference between FGD1 and FGD2
errors.

• Proton secondary interactions1 systematic uncertainty is due to the modelling of pro-
ton SI. Each true proton is propagated through the volume of interest in the detector
(corresponding mostly to FGD volume) in steps of 0.1 mm, and the interaction proba-
bilities are calculated at each step. The final probability of interactions is varied to get
the event weight. The inelastic cross-section is taken from the Wellisch-Axen parame-
terisation used by the GEANT4 Bertini cascade physics model.

1The Author adapted the existing SI proton implementation for proton-tagged samples. For events with more
than two reconstructed protons, the error is not taken into account because it is very unlikely that the proton SI
will cause a change in topology in such case.
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• Pion secondary interactions uncertainty is related to π interactions after they leave the
nucleus. Similarly as for proton SI, true pions are propagated through the volume of
interest in steps of 0.1 mm. The systematic errors were calculated by comparing the
GEANT4 cross-sections and external data for pion interactions.

The full set of systematic errors relevant for ND280 analysis is presented in Tab. 4.1 with
respective fractional errors for the proton-tagged samples. As expected, the highest error
comes from proton SI, with pion SI being the second most significant error source for CC0π-
Np-0γ due to the high fraction of RES and DIS events. For a table with other FHC samples,
see Appendix B.5. The fractional error for each ND280 detector systematic uncertainty as a
function on µ momentum is presented on plots in Appendix B.6.

Systematic error source Total error in [%]
CC0π-0p-0γ CC0π-Np-0γ

FGD1 FGD2 FGD1 FGD2
Observable-like systematics
Magnetic field distortions 0.0033 0.0074 0.0025 0.0087
TPC momentum resolution 0.0051 0.0036 0.0080 0.0082
TPC momentum scale 0.0147 0.0170 0.0109 0.0161
TPC PID 0.3145 0.4494 0.6191 0.7884
FGD PID 0.0890 0.0360 0.1801 0.0979
Efficiency-like systematics
Charge ID efficiency 0.0814 0.2002 0.2440 0.3681
TPC cluster efficiency 0.0095 0.0096 0.0162 0.0165
TPC tracking efficiency 0.3036 0.7394 0.7527 1.3844
TPC-FGD matching efficiency 0.0767 0.1592 0.1898 0.3297
FGD hybrid track efficiency 0.2600 0.0512 0.8183 0.1560
Michel electron efficiency 0.0489 0.0759 0.0768 0.1671
ECal tracking efficiency 0.3414 0.3784 0.5168 0.6917
TPC-ECal matching efficiency 0.6082 0.3178 1.0097 1.0251
ECal PID EmHip 0.0790 0.0648 0.0597 0.0561
ECal photon pile-up 0.0689 0.0490 0.0423 0.0424
Normalisation systematics
OOFV background 0.5425 0.7194 0.1389 0.1978
Pile-up 0.1782 0.1722 0.1789 0.1742
FGD mass 0.5651 0.3850 0.5757 0.3959
Pion secondary interactions 0.3605 0.3833 1.3837 1.3321
Proton secondary interactions 1.0580 1.2580 2.6137 3.0793
Sand muon background 0.0571 0.0280 0.0117 0.0113
All
Total uncertainty 1.6808 1.9692 3.6612 4.2466

TABLE 4.1: Systematic error from different sources for proton-tagged samples.

4.2 ND280 Detector Error Propagation

Varying each ND280 detector systematic uncertainty in the main analysis would demand
impossible computing resources; that’s why the effect of ND280 systematic errors is taken
into account as the covariance matrix. The number of the matrix row or column corresponds
to a bin in the pµ-cos θµ phase space for a given ND280 event sample. The ordering of the
bins for each sample is such that the region of lowest cos θµ is selected first, which contains
the bins of increasing pµ (from 0 to 30 GeV), then comes the next region of cos θµ containing
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again the bins in pµ starting from 0 GeV, an so on. Since the matrix is represented by a two-
dimensional histogram, the diagonal elements are usually called bins. In the analysis, each
bin is treated as a parameter that can be fitted.

The matrix is created by producing 2000 toy MCs with all the systematic uncertainties
varied at the same time. Due to the systematic effects, the events can migrate between differ-
ent bins and event samples, thus changing the number of events in a particular bin. Fig. 4.1
shows the example distributions of the number of events in given pµ-cos θµ bins for selected
ND280 samples. For each matrix element, the covariance is calculated based on the relative
number of events in two bins in all toy MCs.

FIGURE 4.1: Distributions of the number of events in selected bins of pµ and cos θµ from two ND280
event samples, for toy MCs built by varying the ND280 systematic parameters (marked with blue
lines). The red line presents a Gaussian fit to the event distribution. The green line includes MC sta-
tistical uncertainty, although this is not used in the analysis. The black dotted line marks the nominal

number of events in a bin.

The initial covariance matrix has identical binning as the one used in the fit (4952 bins,
see Appendix B.2). Obviously, using such a huge matrix can be problematic; therefore a tech-
nique called bin merging has to be used, in which neighbouring bins having similar distribu-
tions are merged together. This allows to reduce the number of bins to 552 and such smaller
matrix is used in the later part of the Thesis. An additional test was performed to confirm
this operation did not bias the results (see Appendix A.4). The final detector covariance ma-
trix used in the analysis can be seen in Fig. 4.2, while the details of its binning are given in
Appendix B.3.

When looking at the covariance matrix, one might observe high values of covariance be-
tween CC0π-0p-0γ and CC0π-Np-0γ, which are expected, as, for example, Proton SI can lead
to migration from one sample to the other.

Fig. 4.3 shows the diagonal element for each bin of the ND280 covariance matrix. The
largest error is observed for the CC1π-0γ and CC0π-Np-0γ samples for high momentum
bins and is primarily driven by pion and proton SI.

4.3 T2K Neutrino Flux

Production of the neutrino beam for T2K is a very complicated process and depends on many
factors, which result in many sources of uncertainties in flux prediction. The most important
ones are:

• hadron interactions in the target;

• proton beam profile and off-axis angle precision;
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FIGURE 4.2: ND280 covariance matrix used in the fit. The rows and columns correspond to pµ-cos θ
bins in the given ND280 samples.
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FIGURE 4.3: Diagonal elements for each bin of the ND280 covariance matrix.
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• horn current and magnetic field;

• horn and target alignment;

• material modelling;

• number of protons on target.

Among the sources listed above, the dominant one is the modelling of hadron interactions,
as can be seen in Fig. 4.4, showing the fractional error as a function of neutrino energy. To
reduce the flux errors, T2K is using external hadron production data, most notably the T2K
replica target measurements, performed in the NA61/SHINE experiment [86]. Compared to
previous replica target data [87], using newer measurements allowed to reduce the error from
8% (black dotted line, 13av7.1) to 5% (black solid line, 21vb2). Furthermore, in some regions,
hadron production is no longer the dominant source thanks to the NA61/SHINE tuning.
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Figure 100: Total flux uncertainty at ND280 with replica 2010 tuning.

FIGURE 4.4: Total flux uncertainty and its main contributions for ND280 [88] as a function of neutrino
energy. 21bv2 corresponds to the described analysis, while 13av7.1 to the previous one.

The flux systematic uncertainties are parametrized in true neutrino energy Etrue
ν (GeV)

and work as normalisation in a given bin of Etrue
ν . The parameterization is done separately for

each neutrino flavour (νµ, νe, ν̄µ, ν̄e), each beam mode (FHC, RHC) and each detector (ND280,
SK). In total, there are 100 flux parameters: 50 for ND280 and 50 for SK, as each detector
has a different acceptance. Since the flux parameters for ND280 and SK are highly correlated,
ND280 can indirectly constrain SK flux parameters. This can be seen in Fig. 4.5, which depicts
the flux covariance matrix. Detailed flux binning can be found in Appendix B.4.
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FIGURE 4.5: Prior flux covariance matrix. Each column and row corresponds to a neutrino energy bin
for a particular beam mode and detector (ND280, SK).
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4.4 Cross-section Systematic Model

Neutrinos can undergo various types of interactions, each described by a dedicated model. To
accommodate for that, 75 of the cross-section parameters2 are used in the Oscillation Analysis
described in this Thesis. We can split them into two categories:

• Normalisation parameters - increase/decrease cross-section for a particular interaction
channel or neutrino flavour. For example, there is separate normalisation for neutrino
2p2h and antineutrino 2p2h, as we know that both have different cross-sections.

• Shape parameters - those are meant to change kinematic distributions. An example is
a dial that changes the ratio of events between the low and high Q2, while preserving
the total cross-section.

Dials are introduced by cross-section models describing particular interaction channels,
initial nucleus state or nuclear effects (most of them were already mentioned in Section 1.6).
Fig. 4.6 shows the neutrino cross-section for several reaction channels and T2K flux. We can
see that for T2K flux, CCQE is the dominant reaction mode, and as a consequence a lot of the
dials describe this channel.

T2K uses NEUT [40] event generator, which uses a particular model set and implementa-
tion, resulting in the choice of dials used in the analysis. All parameters are listed in Tab. 4.2,
while the summary of them and some implementation details are presented below. We as-
sign a Gaussian prior distribution for parameters for which we have measurements or several
models with predictions, otherwise, we set a flat prior. The impact of this fact on the analysis
is outlined in Section 5.2. Additionally, some parameters are fixed in ND280-only analysis as
ND280 is not sensitive to those effects; however, they are not fixed in ND+FD joint analysis.

FIGURE 4.6: Cross-section for neutrino interactions in different channels and T2K flux.

CCQE - Since CCQE is the dominant T2K channel, the largest number of dials is related to
this reaction mode. It includes parameters related to the CCQE dipole model and a number
of dials describing the initial nucleus. The main CCQE dial is quasi-elastic axial mass MQE

A ,
which modifies the form factor for quasi-elastic interaction (see Eq. 1.27) and has a huge
impact on CCQE cross-section, as shown in Fig. 4.7 left.

It is known that for Q2 > 0.25 GeV2, the axial form factor parametrisation is not able to
adequately describe the current data. Due to this fact, three normalisation parameters were
introduced, each affecting different Q2 regions (see Tab. 4.2). Two alternative models exist,
namely the 3-component model and Z-expansion, but they cannot be used in the actual T2K

2Systematic parameters are often called “dials”, because by changing parameter value we adjust the spectra
of ND280 samples similarly to tuning a radio dial.
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Parameter Prefit Type Description
CCQE
MQE

A 1.03±0.06 Shape Axial mass for CCQE
High Q2 norm 1 1±0.11 Norm for 0.25 < Q2 < 0.5
High Q2 norm 2 1±0.18 Norm for 0.5 < Q2 < 1.0
High Q2 norm 3 1±0.40 Norm for 1.0 < Q2

S-shell MF norm 12C 0±0.45 Norm
P-shell MF norm 12C 0±0.2 Norm
S shell MF norm 16O 0±0.75 Norm
P1/2 shell MF norm 16O 0±0.2 Norm
P3/2 shell MF norm 16O 0±0.45 Norm
SRC norm 12C 1±2 Norm
SRC norm 16O 1±2 Norm
S-shell MF pmiss Shape 12C 0±1 Shape Fixed at ND
P-shell MF pmiss Shape 12C 0±1 Shape Fixed at ND
S shell MF pmiss Shape 16O 0±1 Shape Fixed at ND
P1/2 shell MF pmiss Shape 16O 0±1 Shape Fixed at ND
P3/2 shell MF pmiss Shape 16O 0±1 Shape Fixed at ND
Pauli blocking 12C ν 0±1 Shape
Pauli blocking 16O ν 0±1 Shape
Pauli blocking 12C ν̄ 0±1 Shape
Pauli blocking 16O ν̄ 0±1 Shape
Optical Potential 12C 0±1 Shape Flat prior
Optical Potential 16O 0±1 Shape Flat prior
CCQE Binding Energy
CCQE Eb

12C ν 2±6 Shape
CCQE Eb

12C ν̄ 0±6 Shape
CCQE Eb

16O ν 4±6 Shape
CCQE Eb

16O ν̄ 0±6 Shape
α correction (q3) 0±1 Shape Flat prior
2p2h
2p2h norm ν 1±1 Norm Flat prior
2p2h norm ν̄ 1±1 Norm Flat prior
2p2h norm 12C to 16O 1±0.2 Norm
PNNN shape 0±0.33 Shape
2p2h shape 12C nn 0±3 Shape
2p2h shape 12C np 0±3 Shape
2p2h shape 16O nn 0±3 Shape
2p2h shape 16O np 0±3 Shape
2p2h Edep low Eν 1±1 Shape Fixed at ND
2p2h Edep high Eν 1±1 Shape Fixed at ND
2p2h Edep low Eν̄ 1±1 Shape Fixed at ND
2p2h Edep high Eν̄ 1±1 Shape Fixed at ND
SPP
C5

A 1.06±0.1 Shape Form factor norm.
MRES

A 0.91±0.1 Shape Axial mass for RES
Non-Res I1/2 1.21±0.27 Shape
Non-Res I1/2 Low pπ 1.3±1.3 Shape Fixed at ND
RS ∆ Decay 1±1 Shape Flat prior
SPP π0 norm νµ 1±0.3 Norm
SPP π0 norm ν̄µ 1±0.3 Norm
RES Eb

12C νµ 25±25 Shape
RES Eb

16O νµ 25±25 Shape
RES Eb

12C ν̄µ 25±25 Shape
RES Eb

16O ν̄µ 25±25 Shape
MPi and DIS
Mπ Multi TotXSec 0±1 Shape
Mπ BY Vector 0±1 Shape
Mπ BY Axial 0±1 Shape
Mπ Multi Shape 0±1 Shape
CC BY DIS 0±1 Shape
CC DIS Multπ Norm ν 1±0.035 Norm
CC DIS Multπ Norm ν̄ 1±0.065 Norm
CC Misc 1±1 Norm
FSI
π FSI QE low E 1.069±0.313 Shape For pπ < 500
π FSI QE high E 1.824±0.859 Shape For pπ > 500
π FSI Prod. 1.002±1.101 Shape
π FSI Abs. 1.404±0.432 Shape
π FSI Cex low E 0.697±0.305 Shape For pπ < 500
π FSI Cex high E 1.8±0.288 Shape For pπ > 500
Nucleon FSI 0±0.3 Shape
Other
CC Coh 12C 1±0.3 Norm.
CC Coh 16O 1±0.3 Norm.
NC Coh 1±0.3 Norm. Fixed at ND
NC 1γ 1±1 Norm. Fixed at ND
NC other near 1±0.3 Norm.
NC other far 1±0.3 Norm.
CC norm ν 1±0.2 Norm.
CC norm ν̄ 1±0.1 Norm.
νe/νµ 1±0.0282843 Norm.
ν̄e/ν̄µ 1±0.0282843 Norm.

TABLE 4.2: Summary of all cross-section parameters used in the analysis.
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analysis due to technical difficulties, as explained in Appendix A.5, which contains studies
with alternative parametrisation. Fig. 4.7 right shows the impact of alternative parametrisa-
tion. Three normalisation parameters are meant to mimic this effect.
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FIGURE 4.7: Left: The CCQE cross-section for two different values of MQE
A . Right: The ratio to the

dipole model for the alternative form factor fake data sets as a function of true Q2. In each case, the
solid line shows the effect of weighting to central value prediction of the alternative model, the upper
dashed line represents the “+1σ” prediction, and the lower (fine) dashed line represents the “-1σ”

prediction [89].

Ideally, the initial nucleus state model should be common for all interactions, however,
each interaction mode is described with a different ground state model. For CCQE, it is a
Spectral Function (SF, already described in Chapter 1.6), which can be divided into Mean
Field (MF) and Short Range Correlations (SRC) regions. There are separate SF dials for 12C
and 16O. Five parameters are used to normalise each nuclear shell in the MF region, and two
others normalise the SRC region. Finally, five dials affect the shape of pmiss distribution for
each shell; however, they are fixed in ND280-only analysis as they have negligible impact.

Pauli blocking dials modify the Fermi surface (see Eq. 1.31). When their values increase,
the Fermi surface rises, which results in more events being rejected, while decreasing the
values has the opposite effect. Changing the dial value by ±1 corresponds to a 30 MeV shift
of the Fermi surface. Events with low Q2 are close to the Fermi surface, hence only those
will be affected by this dial. CC0π-0p-0γ is very sensitive to those parameters, see the Q2

distribution in Fig. 3.10.
To account for FSI causing the outgoing wave function to be a distorted wave and not

a plane wave, a dial called optical potential is introduced, as such an effect is not included in
SF. It only modifies the outgoing lepton momentum for low Q2 events.

Since FD uses reconstructed ν energy, the binding energy is important as it can bias this
quantity. Based on a study using electron scattering data [41], it was decided to use a correc-
tion to binding energy which is momentum transfer (|~q3|) dependent and given by

∆Eν,T = δν,T + α(a|~q3|+ b), (4.1)

where δν,T are binding energy parameters depending on neutrino (ν or ν̄) and target nucleus T
(12C or 16O), α is a correction factor with values ranging from 0 to 1, and a and b are constants
obtained from a linear fit to external data. The higher is ∆Eν,T, the lower pµ is. The imple-
mentation of binding energy is unique, as a momentum shift (negative or positive) is applied
to each event and can lead to the event being migrated to another histogram bin. It’s worth
noting that values of δν,T are relative to NEUT nominal values of 25 (27) MeV for 12C (16O).

Those are the only systematic parameters that lead to actual event migration, while all
others use the reweighing method, explained later in Section 4.5.
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2p2h - There are two 2p2h normalisation parameters, separately for ν and ν̄, and addi-
tional third normalisation of 12C to 16O.

Because of the introduction of proton-tagged samples, it was necessary to add a dial af-
fecting the ratio of pn and nn pairs (see Fig. 1.4) in the target nucleus, namely PNNN Shape.
This parameter is described in more detail in Section 4.7.

Other shape dials are related to the 2p2h Valencia model [81] used in T2K. They change
the event ratio between two regions of q0/|~q3| phase space, as can be seen in Fig. 4.8. There
are separate dials for pn and nn pairs, as well as 12C or 16O, giving in total four parameters.
The proton-tagged samples are sensitive to these dials because of different event distributions
in the phase space; see Fig. 3.11.

FIGURE 4.8: Impact of 2p2h shape dial on q0/|~q3| distribution [90].

To account for the shape differences between 2p2h models (shown in Fig. 4.9), there are
four dials affecting the cross-section below and above the arbitrarily set 600 MeV threshold.
Those are also the dials, to which the proton-tagged samples are sensitive, as they have a dif-
ferent distribution of neutrino energy, see Fig. 3.12. Although, because of the T2K narrow
band beam, the overall sensitivity is rather poor.

FIGURE 4.9: Energy dependence of the 2p2h cross-section for neutrinos for the 3 most advanced mod-
els. The grey bands show the oscillated (dark) and unoscillated (light) T2K µν flux. The cross-section

has been normalised such that it has the same value at 600 MeV in all three models [90].

SPP - Single Pion Production (SPP) consists of resonant and non-resonant reactions. The
main dials affecting resonant interactions are MRES

A and C5
A, which are directly related to the

form factor (Eq. 1.34).
Since in resonant interaction, there is a possibility to produce π0, which decays to two

photons, there are two normalisation dials for this process, one for νµ and one for ν̄µ, intro-
duced due to the photon tagging.

The kinematics of outgoing hadrons can be described using either a simplistic isotropic
(back-to-back in the center-of-mass frame) ∆ decay, or a more sophisticated method calcu-
lating matrix elements for the N → ∆ transition. RS ∆ Decay dial is used to switch from
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one model to the other, impacting pion and nucleon kinematic variables but not those of the
muon. Fig. 4.10 shows how momenta predictions change as we go from the isotropic model
(pink line) to the more sophisticated model (blue line). RS ∆ Decay dial modifies only part
of the resonant cross-section that is Adler angle-dependent (see Eq. 1.33). The main reason
behind this dial was the introduction of the FHC νµCC1π sample in FD, but it is also relevant
for proton-tagged samples in ND280 samples.
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FIGURE 4.10: Changes of the cross-section for a carbon-hydrogen target without nuclear effects, show-
ing the impact of the ∆ decay model in resonant scattering. Colours represent different decay models

(see text) [41].

Last but not least, four parameters are related to the binding energy for the resonant chan-
nel. When the binding energy is higher, the incoming neutrino has to transfer more energy
to the hadron system for a kinematically allowed interaction. Therefore, at fixed Eν, the av-
erage energy transfer q0 is larger, which results in the Q2 spectrum being shifted to lower
values. This reduces the interaction cross-section and changes the shape of the lepton (and
also hadron) kinematics spectra. NEUT generator doesn’t simulate the binding energy for
RES; hence, templates were prepared in another generator, NuWro [61]. The templates allow
for altering NEUT-produced distributions to mimic the effect of binding energy. For CCQE,
NEUT assumes Eb = 25 MeV, on the other hand the value of 0 MeV would correspond to no
binding energy. Therefore, in the analysis the prior value has been set to 25 MeV with 25 MeV
1σ error to cover also 0 MeV, nevertheless such a big error is a very conservative assumption.

Additionally, there are iso-scalar non-resonant background parameters. Non-Res I1/2
Low pπ covers anti-neutrino SPP events with a low momentum pion (pπ < 200) in the final
state, while Non-Res I1/2 all other cases. This division is mostly due to the desire to stabilise
the parameters in the FD fit, where no data constraint is expected. The NEUT generator mod-
els a non-resonant process only for I1/2 interaction channels, and the lack of the I3/2 channel
is still an outstanding issue. There is ongoing work to improve this [91], even though bubble
chamber data suggest that I3/2 channel effects are small [48, 49].

DIS, Multi-π production - There are four parameters related to Multi-π production for
W < 2 GeV/c2. Two dials are related to Bodek-Yang (BY) parametrisation (see discussion on
page 17), one describes the vector and the other the axial part, based on the formalism from
[92]. Fig. 4.11 shows the impact of this correction as a function of Q2 for T2K MC.

Additionally, there are Multi-π multiplicity dials that describe the probability of the num-
ber, charge and momenta of π being produced in an interaction. TotXsec dial increases or
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FIGURE 4.11: Comparison of the cross-sections with Bodek-Yang correction (black points, BY) and
without BY correction (blue points, NoBY). The main difference in the cross-sections occurs at low

Q2 [90].

decreases the multiplicity. Since Multi-π mode specifically requires at least two π produced
at the interaction vertex, a change to the multiplicity model will directly affect the fraction
of events with two pions and thus the Multi-π cross-section. The Multi π Shape dial varies
the invariant hadronic mass and π multiplicity between the NEUT default model and the
AGKY model predictions (see discussion on page 17), while preserving the cross-section as
a function of energy.

There are two normalisation parameters for Multi-π and DIS: one for ν and one for ν̄.
Furthermore, there is the BY correction dial for DIS.

Lastly, the normalisation of other considered channels (called CC Misc), including: CC1K,
CC1η and CC1γ, is introduced.

FSI - There are several pion FSI dials3, which affect the probability of occurrence of a given
FSI channel. For example, increasing the probability of pion absorption in the nucleus will
result in the migration of events from CC-1π-0γ to CC-0π-Np-0γ, as more pions will not exit
the nucleus, but protons produced in pion absorption might be reconstructed. The nucleon
FSI is also considered because of proton-tagged samples, and it will be discussed in detail in
Section 4.6.

Other - There are also several normalisation parameters related to the less important in-
teraction channels. Two affect CC Coherent scattering for 12C and 16O. Additionally, one
normalisation for the NC Coherent process and one for NC1γ are both fixed in ND280-only
analysis, as ND280 is not able to constrain them due to small event statistics. Two separate
parameters are related to the normalisation of NC interactions for near and far detectors, due
to different processes contributing to NC background. For example, in µ-like samples at SK,
NC reactions are dominated by NC1π±, but that is not the case at ND. Furthermore, there
are two more Coulomb Correction normalisation dials affecting only CC events between 300
and 600 MeV of true neutrino energy. Finally, there are relative normalisations of electron
(anti)neutrino cross-section.

Fig. 4.12 shows the prefit covariance matrix for cross-section parameters. As can be seen,
some dials have an initial correlation reflecting our current knowledge of the models. Prob-
ably most notable are the correlations between the CCQE Eb parameters, as here we can use
electron scattering data that help to correlate them. ND280 fit introduces many correlations,

3See discussion in Section 1.7.
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as numerous dials affect similar regions of the phase space. The so-called ND postfit correla-
tion matrix is an important output from ND280 analysis.
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FIGURE 4.12: Prefit covariance cross-section matrix with the prior correlation between parameters.

4.5 Reweighting

Generating MC with different values of cross-section parameters (re-generation) is very time-
consuming. There is an alternate method called reweighting, where we can assign a weight to
a particular event depending on the values of cross-section parameters. In such a way, we can
quickly modify existing MC without the need to generate it again. However, there are some
limitations to this method: if there is a really low number of events in a particular phase space
region (or even zero), then reweighting will not provide the same result as re-generation.
Except for such boundary cases, reweighting and re-generating produce practically identical
results. The biggest advantage of reweighting is the time scale, as reweighting of the full MC
sample takes less than 0.1 second4, while re-generating needs weeks or even months.

4The Author was involved in improving the code performance, and now this operation takes ∼0.03s.
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While filling a histogram, each MC event has an assigned weight, which is calculated
as a ratio of the cross-section for the new parameter value to the generated cross-section
(weight = σnew/σgen). Then, the number of events in each bin is a weighted sum. Events with
higher weights appear to be more frequent. Since weights may be different for each event,
this would result in a change of the shape of kinematic distributions.

Calculating the weights during the fit would be very time-consuming, thus the weights
are pre-calculated. In ND280 analysis, TSpline3 objects (defined in the ROOT framework [93])
are used to store the weights for several parameter values (knots). TSpline3 uses a 3rd-order
polynomial to interpolate between knots because the dependence might not be linear. Ex-
amples of such splines are shown in Fig. 4.13, together with the linear interpolation between
knots.
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FIGURE 4.13: Examples of splines used in the analysis compared to linear interpolation between knots
(marked as TGraph).

Since we are using one-dimensional splines, it is assumed that the weight calculation
for one dial is independent of the others; otherwise, multi-dimensional splines would be
required5.

Reweighting is used not only for the cross-section dials but also for flux or detector sys-
tematic parameters, as the weights are multiplicative. The total event weight in the ND280
analysis is a product of the following weights:

wi = wPOT
i · w f lux

i · wbeam
i · wNDdet

i · wNDcorr
i · wxsec

i , (4.2)

where:

• wPOT
i (POT weight) - Run-by-run correction, scaling generated MC to collected data

POTs: wPOT
i = NPOT

Data /NPOT
MC . This weight is applied once and not varied in the fit.

• wbeam
i (Beam weight) - Run-by-run correction between the generated and measured pri-

mary beam. It is calculated using measurements from proton beam monitors, MUMON
and INGRID. Not varied in the fit.

• w f lux
i (Flux weight) - Event-by-event weight as a function of Etrue

ν and neutrino flavour
(νµ, νe, ν̄µ, ν̄e). It is parameterised using the flux covariance matrix; see Section 4.3. The
prior value is always 1. Varied in the fit.

5This is the reason why there are High Q2 norm parameters rather than physically motivated ones, see Ap-
pendix A.5.
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• wNDcorr
i (ND280 correction weight) - This weight is a result of many corrections (i.e.

efficiency) applied to an ND280 event. This weight is applied once and not varied in
the fit.

• wNDdet
i (ND280 detector weight) - Event-by-event weight as a function of pµ, cos θµ and

the ND280 sample. This weight includes all ND280 systematic effects and is calculated
using the ND280 covariance matrix (described in Section 4.2). Varied in the fit.

• wxsec
i (Cross-section weight) - Event-by-event weight, related to cross-section and nu-

clear effects models. It is using the cross-section covariance matrix discussed in Sec-
tion 4.4. Varied in the fit.

For FD samples, the detector weights are different, and additionally, there is a weight coming
from the oscillation probability.

4.6 Nucleon FSI Systematic Uncertainty

For proton-tagged samples, it was important to introduce a new systematic error describing
the probability of nucleon FSI occurrence. After undergoing FSI, the nucleons have smaller
momenta and can leave the nuclei at the angles different from the original ones. This can
result in the migration of events between CC0π-0p-0γ and CC0π-Np-0γ sample.

Fig. 4.14 (A) shows the fraction of events in which a nucleon FSI occurred and in which it
did not. In roughly 60% of cases, there is no FSI. The prior error on this parameter has been
set to 30% (Tab. 4.2), based on nucleon transparency studies [94].
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FIGURE 4.14: Fraction of nucleons undergoing FSI.

Fig. 4.14 (B) shows a more detailed breakdown of nucleon FSI processes for CCQE as
an example. One can observe that FSI is dominated by inelastic scattering. Since elastic
scattering or π absorption are negligible fractions, they can be grouped together with inelastic
scattering for the purpose of the described analysis. It is quite possible that in the future,
nucleon FSI will be further divided, since in the current analysis we are simply interested in
the fact whether the proton was reconstructed or not.

The effect of variation of nucleon FSI dial on proton kinematics can be seen in Fig. 4.15.
It can be observed that increasing the probability of FSI reduces true proton momentum and
modifies the outgoing proton angle. This results in an increasing number of events in the
CC0π-Np-0γ sample and a decrease in CC0π-0p-0γ, and vice versa.
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FIGURE 4.15: The effect of variation of nucleon the FSI dial on proton kinematic variables.

4.7 2p2h pn and nn Ratio Systematics

Neutrino interactions in 2p2h channel can occur on pn or nn pair (for more details, see Sec-
tion 1.6). Currently, the ratio between those pairs is unknown, but different 2p2h models pro-
vide different predictions. After introducing proton-tagged samples, T2K may have enough
sensitivity to start probing this effect.

NEUT, like many other neutrino interaction generators, uses an isotropic ejection model
in a hadronic frame [95] to describe the kinematic properties of outgoing nucleons. Thus,
the p-cos θ distribution of the highest momentum proton coming from the pn pair will be
different than in the nn case, as can be seen in 4.16. An increasing fraction of pn pairs results
in the migration of events from CC0π-0p-0γ to CC0π-Np-0γ.
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FIGURE 4.16: Distribution of true momentum and emission angle for the true highest momentum
proton from a 2p2h interaction on a pn or nn pair.

The fraction of each pair for both ν and ν̄ predicted by NEUT is shown in Tab. 4.3. These
fractions, however, are highly model dependent; for example, in the SUSAv2 model [82], pn
pairs account for∼ 80%, due to the inclusion of exchange interference terms in the calculation
of the 2p2h cross-section [96]. Taking into account the model differences, the error on PNNN
Shape dial has been set conservatively to 33% (Tab. 4.2).

In terms of implementation, a value of 0 corresponds to the NEUT default setting with
the pn/nn ratio equal to 2/3, and a value +1 (−1) corresponds to the case of pn (nn) pairs
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Pair Fraction
Neutrino

pn 66%
nn 34%
Antineutrino
np 68%
pp 32%

TABLE 4.3: Fraction of different pairs in the Valencia model (NEUT) for neutrinos and antineutrinos.

only, as presented in Fig. 4.17. For the treatment of the ratio of 2p2h pairs in antineutrino
interactions, the isospin symmetry was assumed, which means that nn (np) is replaced by pp
(pn). Therefore, we have only one dial affecting both ν and ν̄.

4.8 Nominal MC Predictions

After applying all weights to MC events, we obtain the nominal MC predictions presented in
Fig. 4.18 for FHC samples (full set of plots for other samples can be found in Appendix B.8).
The nominal distributions are different from those shown in Fig. 3.1, which is mostly driven
by applying the cross-section weight, particularly the one related to MQE

A . MQE
A has a prior

value of 1.03 MeV/c2, while MC was generated with 1.21 MeV/c2 6; therefore, the reweight-
ing leads to a lower predicted number of CCQE events.

6The choice of prior value is mostly due to historical reasons, but as will be presented in the later part of the
Thesis, the value preferred by T2K data is in between the nominal and generated one.
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FIGURE 4.17: Distributions of muon momentum for νµ 2p2h interactions, split by pair type. Each plot
shows the relative contributions of both pairs for different values of the PNNN Shape dial.
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FIGURE 4.18: Nominal MC predictions for FHC samples after applying all weights, with overlayed
data points.
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5
Oscillation Analysis in the T2K

Everything in war is simple, but the simplest thing is difficult.

Karl von Clausewitz

5.1 Introduction

The main aim of oscillations analysis (OA) is to extract the PMNS matrix parameters by com-
paring MC-predicted event rates to the collected data. The expected number of events in SK
is given by:

N(Erec
ν ) = Φexp

SK (Etrue
ν ) · σ(Etrue

ν ) · Posc(Etrue
ν ) · εSK(Etrue

ν ) · f (Etrue
ν , Erec

ν ), (5.1)

where Φexp
SK is the expected unoscillated neutrino flux at SK, σ(Etrue

ν ) the neutrino cross-
section, Posc(Etrue

ν ) the oscillation probability, εSK(Etrue
ν ) the efficiency to detect a neutrino

at SK and f (Etrue
ν , Erec

ν ) is the energy response function. ND280 helps to constrain Φexp
SK and

σ(Etrue
ν ), as previously mentioned in Sections 4.3 and 4.4.
To obtain the best agreement between data and MC, we change the values of the sys-

tematic parameters described in Chapter 4 and the oscillation parameters. The agreement is
measured by using ∆χ2 (the definition will be given later), and the purpose of the fit is to find
the minimum value of ∆χ2.

There are two different approaches how to perform ND280 analysis in OA. The first one,
called BANFF [97], is a MINUIT-based [98] fitter and uses a frequentist approach. BANFF
performs the fit for ND280 MC and data only, and then the best-fit values of cross-section
and flux parameters, together with their uncertainties, are propagated to FD. Then another
fit is performed for SK data and corrected predictions, using another fitter, from which the
oscillation parameters are obtained. Furthermore, BANFF calculates the frequentist p-value
which determines whether the prefit model is sufficiently flexible to accommodate the ND280
data.

The second approach uses MaCh3 [99], a Bayesian framework based on the Markov chain
Monte Carlo, to find Posterior Distribution Functions (PDF) of cross-section, flux and detector
parameters. Using PDFs instead of best-fit values with errors allows us to not make any
assumptions of underlying distributions. MaCh3 is also capable of doing so-called joint-fit,
where the fit is performed simultaneously to ND280 and SK data. MaCh3 calculates the
Bayesian p-value which has a different interpretation than the BANFF p-value and will be
discussed further. Since the Author worked mostly with MaCh3, the following Sections will
describe the Markov chain Monte Carlo in detail.
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BANFF and MaCh3 ND280 analysis outcomes are cross-checked to give more robust re-
sults. The fitters’ validation is presented in Appendix A.6.

5.2 Likelihood Fit

The ND280 (and oscillation in extent) analysis is basically a counting experiment where event
rates in a particular bin are compared between data and MC prediction. The probability
distribution describing the counting experiment is given by a discrete Poisson distribution:

p(x) =
λxe−λ

x!
, (5.2)

where λ is the expected number of events, which in our case depends on a set of systematic
parameters ~θ: λ = λ(~θ). In general, we can describe the model by the prior probability distri-
bution p(~θ), often referred to just as “prior”. Most parameters have a Gaussian probability
distribution, but some have flat (in general, it can be any distribution).

The goal of experiments is to determine if (or which) model represents accumulated data
best. In the language of statistical analysis, this can be expressed by the posterior probability
distribution p(~θ|Z), also known as the likelihood (L) [100]. To relate p(~θ|Z) with p(~θ) let’s
remind Bayes’ theorem, which states:

p(~θ|Z) = p(Z|~θ)p(~θ)
p(Z)

, (5.3)

where p(Z|~θ) exhibits the probability of taking the measurement Z with the assumption that
the model with parameters ~θ is a correct description of our experiment, while p(Z) works as
a normalisation term and can be expressed alternatively as ∑i p(Z|~θi)p(~θi), which will later
cancel out.

In the ND280 analysis, we have almost 5000 bins, and each is described by its own Pois-
son probability distribution. Therefore, we can write the likelihood as a product of Poisson
distributions in each bin:

L(Z|~θ) = ∏
i

(
NMC

i (~θ)
)Ndata

i
e−NMC

i (~θ)

Ndata
i !

, (5.4)

where i enumerates bins of pµ and cosθµ, Ndata
i is the number of data events in i-th bin, while

NMC
i (θ) is the number of events predicted by MC, and ~θ is a vector of parameters describing

our model. For the sake of brevity we will replace L(Z|~θ) with L(~θ).
To perform the test of the hypothesis that our data is described by a set of parameters ~θ,

the likelihood ratio is used. According to Wilks’ theorem [101], the logarithm of the likelihood
ratio (−2LLH) approaches asymptotically1 ∆χ2:

∆χ2 = −2 ln

(
L(~θ)
L0(~θ0)

)
, (5.5)

where L0(~θ0) is the likelihood of a null hypothesis (in this case, an ideal situation in which
expected values are in perfect agreement with data, which can be written as NMC

i (~θ0) =

1For a number of bins approaching infinity.
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Ndata
i ). Using the likelihood definition from Eq. 5.4, we derive:

∆χ2 = −2 ln

(
∏

i

(
NMC

i (~θ)
)Ndata

i
e−NMC

i (~θ)

)
+ 2 ln

(
∏

i

(
NMC

i (~θ0)
)Ndata

i
e−NMC

i (θ0)

)
NMC

i (~θ0)=Ndata
i========⇒ 2 ∑

i

[
− ln

((
NMC

i (~θ)
)Ndata

i
e−NMC

i (~θ)

)
+ ln

((
Ndata

i

)Ndata
i

e−Ndata
i

)]
,

(5.6)

where terms with factorials cancel each other. Finally, we obtain:

∆χ2 = −2 logLStat = 2 ∑
i

[
NMC

i (~θ)− Ndata
i + Ndata

i ln

(
Ndata

i

NMC
i (~θ)

)]
. (5.7)

Since this term was derived from the Poisson distribution, it will be referred to as a statis-
tical term or simply −2 logLStat.

The quantity in Eq. 5.7 follows the χ2 distribution under assumption that all parameters
~θ are uncorrelated and have no prior uncertainties. This, in general, is not the case, and
one must consider prior uncertainties and correlations of parameters that are not included in
∆χ2. Model parameters are described by multivariate normal distributions with a covariance
matrix Vθ (the treatment of flat priors will be discussed later):

π(~θ) = ∏
ij

1
(2π)k/2|(Vθ)ij|1/2 e

− 1
2 ∆~θi(V−1

θ )ij
∆~θ T

j , (5.8)

where k is the dimension of parameter vector~θ and ∆~θ = ~θ−~θ0, with~θ0 being the prior value.
Knowing this, we can modify Eq. 5.5 to include a probability distribution describing the

systematic model. One important feature of −2LLH is that it is additive, so we can introduce
separate contributions from data/MC comparison (−2 logLStat) and systematic parameters
(−2 logLSys).

∆χ2 = −2 ln

(
π(~θ)L(~θ)

π0(~θ0)L0(~θ0)

)

= −2 ln

(
L(~θ)
L0(~θ0)

)
− 2 ln

(
π(~θ)

π0(~θ0)

)
= −2 logLStat − 2 logLSys.

(5.9)

It’s worth noting that we assumed all parameters to have Gaussian prior probability dis-
tributions. As was mentioned in Section 4.4, for some parameters we assume flat priors. In
this case, the corresponding part of−2 logLSys is 0, as the nominator and denominator cancel
out, yielding ≈ ln (1).

After substitution 5.8 into 5.9 and accounting for the systematic uncertainties from the
three sources described previously, our likelihood takes the following form:

∆χ2 = 2
Nbins

∑
i

NMC
i (~f ,~x, ~d)− Ndata

i + Ndata
i ln

(
Ndata

i

NMC
i (~f ,~x, ~d)

)
+ ∑Eνbins

i ∑Eνbins
j ∆~fi

(
V−1

f

)
i,j

∆~f j

+ ∑
xsecpars
i ∑

xsecpars
j ∆~xi

(
V−1

x
)

i,j ∆~xj

+ ∑ND280det
i ∑ND280det

j ∆ ~dND
i

(
V−1

d

)
i,j

∆ ~dND
j

−2 logLSys

(5.10)
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where ~f refers to neutrino flux, ~x to cross-section and ~dND to ND detector parameters. By
looking at −2 logLSys one can see, that if a parameter stays at the prior value (~θ = ~θ0) it will
not contribute to−2LLH and the further away a parameter is from the prior value, the greater
−2LLH will be. For example, parameters with tight prior are getting larger contributions than
parameters with loose prior. This part of −2LLH is often referred to as penalty term.

The generation of MC is a stochastic process, so even identical settings can lead to different
outputs2. This fact introduces uncertainty in the MC distributions, especially for phase space
regions with a low number of events. Because of that, the ND280 fit uses a correction to
Poissonian likelihood described by Barlow-Beeston [102] which accounts for MC statistical
uncertainty and is as follows:

−2 logLStat = −2 logLPoisson − 2 logLMCstat =

= 2 ∑
i

[
NMC

i (~θ)− Ndata
i + Ndata

i ln

(
Ndata

i

NMC
i (~θ)

)
+

(βi − 1)2

2σ2
βi

]
,

(5.11)

where βi is a scaling parameter between ideal (“true”) and generated MC in a bin (Ntrue
MC,i =

βiNMC
i ), and σ2

βi
=
√

∑ w2
i /NMC

i , ∑ w2
i being the sum of the squares of the weights in the bin

i. Additionally, NMC
i has been replaced by Ntrue

MC,i. Assuming βi has a Gaussian distribution,
we can find its mean value by solving following equation derived by Conway [103]:

β2
i + (NMC

i σ2
βi
− 1)βi − Ndata

i σ2
βi
= 0. (5.12)

An example of βi parameter can be seen in Fig. 5.1, which demonstrates that they are in
fact Gaussian.
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FIGURE 5.1: Example of the Barlow-Beeston β parameter for a bin with 41 data events. The red
line marks the mean value of β, the blue histogram shows the distribution obtained by varying ~θ

parameters, and the brown line is a Gaussian fit to the histogram.

There is an alternative likelihood proposed by the IceCube collaboration that works spec-
tacularly well for low-statistics cases. Because of it and to check if the choice of likelihood
doesn’t bias results, an additional test was done, presented in Appendix A.7.

As previously discussed, in the MaCh3 framework, we can perform a simultaneous fit of
ND280 and SK event samples. In such an analysis, we need to include −2LLH and penalty
terms for both ND280 and SK samples and systematic uncertainties. It is important to note

2Assuming that the seeds of the random number generator are different.
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that the Barlow-Beeston correction is only used for ND280 samples. Due to the small number
of data events at FD, the impact of MC statistics is small, if not negligible.

In the joint-fit, we have to account for oscillation probabilities. T2K is sensitive to sin2 θ23,
∆m2

32 and δCP, for which we assume flat priors. On the other hand, sin2 θ12, ∆m2
21 and sin2 θ13

3

have Gaussian priors based on the results of other experiments, and we need to include
a penalty term related to them.

Finally, we obtain the equation for −2LLH used in the oscillation fit:

−2 lnL =2
ND280bins

∑
i

NND,MC
i (~f ,~x, ~dND)− NND,data

i + NND,data
i ln

(
NND,data

i

NND,MC
i (~f ,~x, ~dND)

)
+

(βi − 1)2

2σ2
βi

+2
SKbins

∑
i

NSK,MC
i (~f ,~x, ~dSK)− NSK,data

i + NSK,data
i ln

(
NSK,data

i

NSK,MC
i (~f ,~x, ~dSK)

)

+
Eνbins

∑
i

Eνbins

∑
j

∆~fi

(
V−1

f

)
i,j

∆~f j

+
xsecpars

∑
i

xsecpars

∑
j

∆~xi

(
V−1

x

)
i,j

∆~xj

+
ND280det

∑
i

ND280det

∑
j

∆ ~dND
i

(
V−1

dND

)
i,j

∆ ~dND
j

+
SKdet

∑
i

SKdet

∑
j

∆ ~dSK
i

(
V−1

dSK

)
i,j

∆ ~dSK
j

+
oscpars

∑
i

oscpars

∑
j

∆~oi

(
V−1

o

)
i,j

∆~oj.

(5.13)

5.3 Markov Chain Monte Carlo - MCMC

Markov chain [104] is a type of stochastic process in which we consider a number of states
that the chain can enter, and the transition between states is possible with a given proba-
bility known as the transition probability. The most common example of a Markov chain is
a random walk. The transition between two states is called a step.

Markov chains have the property that the transition probability depends only on the cur-
rent state, in other words, it does not depend on what happened in the past steps. Such
a feature is called “memorylessness” or “Markovian property”. A Markov chain can con-
verge to a stationary state when the probabilities of occupying each state are constant in time
(do not change after a step). It is crucial to understand that the stationary chain can still transit
between its states; it is only the probability of occupying each state that stays constant. Intu-
itively, we can think that the stationary state is located near a minimum of ∆χ2 and the chain
is transitioning to different states X~θ corresponding to parameters~θ (details will be explained
later).

A Markov chain has to satisfy the following conditions to have a stationary state:

3T2K is sensitive to this parameter, although not as much as reactor neutrino experiments. Therefore, two
analyses are performed: one with the reactor constraint applied and another one without it. In the Thesis only
the former is presented.
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• Aperiodic - chain steps cannot be periodic. A very simple example of a periodic chain
is shown in Fig. 5.2 (A). In this example, we can move from a hot to a cold room, and
there is always 100% probability of changing room. In this case, the probabilities of
occupying each state are equal to

(
1 0

)
for even steps, and

(
0 1

)
for odd steps. As

was mentioned, in the stationary state, the probability of occupying a given state is
constant, which clearly is not fulfilled by a periodic chain.

• Irreducible - any state can be reached with non-zero probability from any other state
in a finite number of steps. Thus, the stationary state will not depend on the starting
position of the chain. An example of an irreducible as well as a non-irreducible chain is
shown in Fig. 5.2 (B).

(A) Example of a periodic chain. (B) Example of an irreducible and not irreducible chain.

FIGURE 5.2: Examples of Markov chain properties [105].

Additionally, there is the Detailed Balance principle, which states that:

π(~θ)p(~θ′|~θ) = π(~θ′)p(~θ|~θ′), (5.14)

where π(~θ) is the probability distribution (in the stationary state) of a state X~θ and p(~θ′|~θ) is
the probability of the transition from state X~θ to X~θ′ . One can notice that the probability dis-
tribution in the stationary state represents the posterior probability distribution from Bayes’
theorem (Eq. 5.3), therefore we will usually use the latter name. The Detailed Balance equa-
tion has an easy interpretation in the fluid theory: we can think of π(~θ) as the fluid density
and p(~θ′|~θ) as the probability of liquid flow from one reservoir to another.

Now let’s derive the basic equation for Markov chain Monte Carlo (MCMC). We are in-
terested in finding the posterior distribution, which describes the joint probability of all pa-
rameters used in the analysis. Therefore, our algorithm has to satisfy the aforementioned
conditions. Since it is simple to construct a chain that is irreducible and aperiodic, the deriva-
tion of MCMC begins with the Detailed Balance equation 5.14. The transition probability is
divided into the proposal (or auxiliary) distribution g(~θ′|~θ) and the acceptance probability
A(~θ′,~θ), being the probability of accepting a new state:

p(~θ′|~θ) = g(~θ′|~θ)A(~θ′,~θ). (5.15)

There is a large freedom in choice of the proposal distribution g(~θ′|~θ). The most popu-
lar choices are uniform or normal distributions. The proposed step leading to state X~θ′ can
be expressed as X~θ′ = X~θ + randproposal(~θ), where randproposal(~θ) used in MaCh3 is a vector
of random numbers drawn from Gaussian distributions with mean values equal to 0 and
standard deviations corresponding to prior errors of given parameters.

The acceptance probability simply tells whether the proposed step is accepted or not, as
MCMC is a directed random walk following the regions of low−2LLH. To increase the prob-
ability of accepting a step, MaCh3 uses correlated throws [106] (via the Cholesky decompo-
sition of the covariance matrix). When proposing a step, randproposal(~θ) is multiplied by the
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aforementioned Cholesky matrix. Thanks to including correlated throws, the proposed val-
ues for two correlated parameters should be more likely to change in the same way. If we
imagine the step as a vector in N-dimensional space, then taking into account the correla-
tions results in some directions being preferred. A chain without correlated throws will still
converge, but slower and demanding more computing resources.

After substituting Eq. 5.15 into the Detailed Balance equation 5.14 we obtain:

π(~θ)g(~θ′|~θ)A(~θ′,~θ) = A(~θ,~θ′)π(~θ′)g(~θ|~θ′). (5.16)

After minor operations, we obtain the main MCMC equation [107]:

A(~θ′,~θ)

A(~θ,~θ′)
=

π(~θ′)g(~θ|~θ′)
π(~θ)g(~θ′|~θ)

. (5.17)

The main scheme of MCMC is as follows: a chain explores the phase space in steps and
A(~θ′,~θ) tells whether or not to accept the next step. Each accepted state X~θ contributes to the
posterior distribution which is the main result of MCMC.

Up to this point, the derivation was common for all MCMC algorithms, and from now on
we will focus on a very popular algorithm known as the Metropolis-Hastings algorithm [108],
used in MaCh34. The basic assumption is that the acceptance probability of the next step
A(~θ′,~θ) takes the following form:

A(~θ′,~θ) = min

(
1,

π(~θ′)g(~θ|~θ′)
π(~θ)g(~θ′|~θ)

)
. (5.18)

As previously stated, π(~θ) is p(~θ|Z) from Bayes’ theorem (Eq. 5.3), so after substituting
we obtain:

A(~θ′,~θ) = min

(
1,

g(~θ|~θ′)p(Z|~θ′)p(~θ′)
g(~θ′|~θ)p(Z|~θ)p(~θ)

)
. (5.19)

Then we can replace p(Z|~θ′) = L(~θ′) and p(Z|~θ) = L(~θ). Since we know the other terms,
we can rewrite the equation as:

A(~θ′,~θ) = min

(
1,
L(~θ′)
L(~θ)

)
= min

(
1, elogL(~θ′)−logL(~θ)

)
. (5.20)

Here, L5 can be either Eq. 5.10 (with Barlow-Beeston correction from Eq. 5.11) for ND280-
only fit, or Eq. 5.13 for ND+FD joint-fit.

Eq. 5.20 can be understood as follows: if the likelihood after the proposed step L(~θ′)
is greater than the likelihood in the current state L(~θ), the acceptance probability A(~θ′,~θ)
is equal to 1. In other words, if MC would better represent data after the proposed step,
we always accept such a step. If A(~θ′,~θ) < 1, we draw a random number from the flat
distribution (0 6 u 6 1) and if A(~θ′,~θ) > u, we accept the proposed step. In the case of
A(~θ′,~θ) < u, the chain stays in the same state, and a new proposal is made that is evaluated
in the same manner. It is worth noting that if the chain remains in the same state, the state X~θ
contributes to the posterior distribution.

We allow the chain to accept steps that would result in a lower L, as this allows to sample
the parameter space instead of searching just for a single point. In other words, the goal of

4Other algorithms were also tested in the MaCh3 framework, including Hamilton MCMC [109].
5In the MaCh3 fitter, we use logL rather than L, in the form presented in the second part of the equation.
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MCMC is to find the posterior probability distributions, not just the maximum of the distri-
bution.

Fig. 5.3 shows the value of−LLH after each step of an example MCMC. It can be observed
that at first −LLH was decreasing, and after ∼400 steps −LLH started to oscillate around
some value, which can indicate that the chain achieved the stationary state.

FIGURE 5.3: Values of −LLH after each step of an example MCMC. One can see −LLH decreasing
until the stationary state is achieved.

5.4 MCMC Diagnosis and Analysis

Observing when a Markov chain achieves the stationary state is important in MCMC diag-
nosis. Since before reaching the stationary state the probabilities of transitions to different
states are not constant, it is a good practice to remove (not include in the analysis) the steps,
which were taken before reaching the stationary state. Such process is commonly referred to
as burn-in.

There are several studies we can perform to diagnose a chain. Examples of them are
shown in Fig. 5.4 for four independent chains which had different, randomly chosen, starting
parameter values. We want our steps to be more random and weakly correlated to quickly
converge, so firstly, we can study chain autocorrelations. Therefore, we introduce the vari-
able Lag(n)= corr(Xi, Xi−n) which tells us how much correlated are states that are n steps
apart, where i is the maximal considered distance (here i = 25000)6. Fig. 5.4 (A) shows the
autocorrelations for the MQE

A parameter. The rule of thumb for autocorrelations is that they
should fall below 0.2 for Lag(n = 10000), which in fact happens in our case. However, this
isn’t a strict criterion so if autocorrelations drop sometimes slightly slower than the blue line
in the presented plot, it is not a problem.

Fig. 5.4 (B) shows the trace which represents the value of a chosen parameter (here MQE
A )

in each subsequent state. It can be seen, that at first the chains have different traces, but
after ∼90 thousands steps they start to stabilise and oscillate around a very similar value,
indicating that the chain converged and the stationary state was achieved.

Finally, Fig. 5.4 (C) shows the mean value of acceptance probability A(~θ′,~θ) in the inter-
vals of 5 thousands steps (batched mean). In the beginning, before achieving the stationary

6The computation time of Lag(n) increases significantly as i increases; thus, we choose a value that produces
satisfactory results in a reasonable amount of time.
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state, the data/MC agreement is usually poor and the proposed step is more likely to im-
prove the agreement, resulting in a high acceptance rate. When the chain gets close to the
stationary state, the probability starts to stabilise. The acceptance probability for the chain
marked with orange falls the fastest, while those marked with blue and green are decreasing
gradually, but the one marked red has not converged yet.
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FIGURE 5.4: Examples of MCMC diagnostic tests for four chains (marked with different colours) that
had different randomly selected starting positions. Plot (A) shows how autocorrelations change for
states that are n-steps apart, plot (B) how the value of a selected parameter changes as a function of
step number, and plot (C) presents the batched mean of the probability of accepting step A(~θ′,~θ). All

chains used the same Metropolis-Hastings algorithm, set of parameters, and event samples.

Fig. 5.5 displays examples of posterior distributions for two parameters after 8,000,000
MCMC steps (including 1,600,000 steps burn-in period). The red line marks the prior value
of the parameter, and we can observe that the mean of the posterior distribution is shifted.
For comparison with BANFF and to estimate how the parameter error decreased after the fit,
it is important to choose the method used to extract the postfit parameter value. One option
is to take the mean of the distribution with RMS error (marked as PDF in the Figures) or
to fit a Gaussian function (orange line). Lastly, we can take the Highest Posterior Density
(marked as HPD, vertical black line) which is just the maximum of the distribution. In this
case, we calculate the error by integrating over the distribution, starting from the HPD point
and doing it symmetrically until the integral of 0.6827 is reached. If a physical boundary of
a parameter is reached on one side, then the integration continues only on the other side. For
the posterior distribution on the left plot, we can see that all three methods give the same
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result (µ = 1.13), which is expected, given the Gaussian-like shape of the distribution. On the
other hand, the posterior distribution on the right plot is definitely not Gaussian7 and here
the three methods give different results. In this case, the most reasonable way of extracting
the parameter postfit value and error is to use the HPD method.
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FIGURE 5.5: Posterior distributions for two dials used in T2K fit.

5.5 Fitter Validations - Asimov Fit and LLH Scan

OA is a complex analysis and one needs good validation methods, one of them being com-
monly known as Asimov fit. In this case, we use the full set of MC with prior values of param-
eters that mimic data, and we fit this fixed MC with the identical MC where the parameters
are allowed to vary. As a result, we obtain the parameters distributions with the HPDs which
should be close to the prior values. If they are not, this might indicate a problem with the
fitter, parameter implementation etc. An example of the Asimov MCMC fit result is shown
in Fig. 5.6 (A). For highly correlated parameters, it is better to examine joint two-dimensional
distributions rather than one-dimensional distributions separately for each parameter. Such
a two-dimensional distribution is presented in Fig. 5.6 (B) for two P and S shell normalisation
parameters. Since both parameters affect the normalisation of the CCQE interaction, they
should be strongly anticorrelated, and that’s exactly what we observe. By extracting the cor-
relation coefficient from such a distribution for any combination of parameters, we can create
the postfit correlation matrix.

Another important test is the LLH scan, which uses a similar idea to the Asimov fit. The
conceptual outline of this method is as follows: two identical sets of MC are prepared (Asi-
mov set). For such two sets, the −2LLH is 0. Then, in the scan process, we modify the value
of a dial in only one of the MCs. After changing the dial value, the MCs should not agree any-
more8, and this is observed as the change of−2LLH. In most cases, an LLH scan is performed
in the range of ±σ of a given parameter.

7Non-Gaussian shape is most often a consequence of degenerate solutions.
8If the particular dial has no impact on used MC samples, then −2LLH is still 0. An example would be an

FD-only dial in ND280-only analysis.
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The LLH scan allows to test how sensitive the analysis is to a particular dial. For example,
we include new samples to the fit and compare −2LLHs to check if the new samples provide
better constraints. In Fig. 5.6 (C) we can see an example of such a study: faster-rising −2LLH
indicate greater sensitivity and, in consequence, stronger constraints on a given parameter.
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FIGURE 5.6: Examples of posterior distributions from Asimov fit and an LLH scan, demonstrating
how stronger and weaker constraints can be studied.

Usually, the results of the fit are shown as an overlay of prefit and postfit parameter values
and uncertainties. An example is shown in Fig. 5.7, where the red band shows the prefit
values with 1σ errors (which can be found in Tab. 4.2), while the black dots with error bars
are the postfit values, or more precisely, the HPD values for posterior distributions, such as
that in Fig. 5.6 (A).

Such plots are only illustrative, as the MCMC fitter is not using the HPD values in the
actual analysis. In the next Section, we shall discuss how to produce predicted event spectra
using posterior distributions.
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obtained using the HPD method.

5.6 Prior and Posterior Predictive Distributions

In the other framework used in T2K (BANFF, see Section 5.1), one gets best-fit spectra simply
by reweighting MC to the best-fit values of the parameters, but in the Bayesian framework
we use prior and posterior predictive distributions. In this example, we will consider the
predictive distributions of the number of events Z. The prior predictive distribution of Z is
given by [110]:

p(Z) =
∫
~θ

p(~θ)p(Z|~θ)d~θ, (5.21)

where p(~θ) is the same prior probability as in Bayes’ theorem (see Eq. 5.3). We use the fol-
lowing procedure to obtain the prior predictive distribution:

1. Throw values of the parameters using their prior distributions.

2. Reweight MC to the selected parameters values. Reweighted MC is usually called a toy
MC.

3. From multiple toy MCs, we obtain the mean value of the number of events Z9.

After ND280 fit, we can predict the observable Zpred, which estimates the expected mea-
surement of the same physical process as Z. This is knows as posterior predictive distribution
p(Zpred|Z) and can be expressed as [110]:

p(Zpred|Z) =
∫
~θ

p(Zpred|~θ)p(~θ|Z)d~θ, (5.22)

where p(~θ|Z) is the posterior probability (see Eq. 5.3). We obtain the posterior predictive
distribution with the following steps:

9In the analysis, we also do checks with the median; both methods give consistent results.
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1. Sample the posterior probability distribution by randomly selecting steps, to get ~θ as-
sociated with the selected step.

2. Reweight MC to the selected parameters values.

3. From multiple toy MCs, we obtain the mean value of the number of events Zpred.

Fig. 5.8 shows the prior and posterior predictive distributions of the number of events
for CC0π-0p-0γ. The prior predictive distribution is very wide compared to the posterior
predictive distribution, and the relative error on the number of events for this sample has
been reduced from 14% to 0.7%, which confirms that the ND280 fit greatly constrains the
uncertainties in the analysis.
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FIGURE 5.8: Prior and posterior predictive distributions for the CC0π-0p-0γ sample, obtained using
5000 toy MCs. Note the different ranges on the horizontal axis.

The number of events is a good metric for the goodness of fit, but it is needed to compare
the distributions of muon kinematic variables used in the fit. Fig. 5.9 shows the posterior
predictive distributions of pµ and cos θµ for CC0π-0p-0γ, produced by repeating the afore-
mentioned steps for each kinematic bin.

FGD1_numuCC_0pi_0_protons_no_photon_nom_mean__n2LLH_0.652882

 (MeV)
µ

p
0 1000 2000 3000 4000 5000

µθ
co

s 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n

50

100

150

200

250

300

FGD1_numuCC_0pi_0_protons_no_photon_nom_mean__n2LLH_0.652882

FIGURE 5.9: Posterior predictive distribution of muon kinematic variables for the CC0π-0p-0γ sample,
obtained using 5000 toy MCs by sampling the posterior distribution obtained from the Asimov fit.



82 Chapter 5. Oscillation Analysis in the T2K

The presented methods are a great tool for studying fit stability etc. To evaluate the
goodness of fit, we can calculate the posterior predictive p-value, which is discussed in Ap-
pendix A.8. In the next Chapter, we will show the posterior predictive distributions obtained
from the actual fit to the data.
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6
Fit Results

If the tanks succeed, then victory follows.

Heinz Guderian

This Chapter summarises the results of the official T2K oscillation analysis which uses
in total 202.12× 1019 POT for ND280 and 360.1× 1019 POT for FD (see Section 2.6). Firstly,
validations with Asimov fits are discussed, followed by the official ND280 data fit. The em-
phasis is placed on the latter results and discussions, as the Author was responsible for this
part of the analysis. Even though the Author was not directly involved in the preparation
of the neutrino oscillation results, they will be discussed here shortly for completeness. The
official results have been presented at the Neutrino 2022 and ICHEP 2022 conferences [4] and
are prepared to be published in the Physical Review Letter in 2023.

6.1 ND280 Asimov Fit

The results of the Asimov fit based on only ND280 samples are presented in Fig. 6.1. It
shows the overlay of prior and postfit parameter values for CCQE and 2p2h-related dials. The
postfit values are extracted using the HPD method, as was explained in Section 5.5. Prior and
postfit values overlay very nicely, so we can conclude that the Asimov fit converged correctly.
Although, on the leftmost plot, we see that the Pauli blocking dials do not fully match their
prior values, as they have been shifted (or pulled, both terms will be used interchangeably)
to the negative values. We have to remember that those are one-dimensional projections
from an N-dimensional probability distribution. When looking at Fig. 6.2 which depicts the
posteriors for Pauli blocking and optical potential dials as well as their joint two-dimensional
distribution, we observe that they are strongly correlated. In addition, optical potential has
a prior value on the physical boundary, as it is only valid between 0 and 1. This leads to
the so-called marginalisation problem, which does not impact analysis in any way, only the
projection of an N-dimensional distribution is biased. We shall emphasize again that the
one-dimensional projections are only meant to help with the presentation of the results.

The results for other cross-section parameters are shown in Fig. 6.3. Here, we do not
observe any problems as in the case of Pauli blocking. We can see significantly reduced
errors. In general, the fitting framework has been validated successfully and is producing
sensible results, so we can proceed with the data fit.
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FIGURE 6.1: Overlay of parameter values from the Asimov fit for CCQE and 2p2h dials.
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FIGURE 6.3: Overlay of parameter values from the Asimov fit for non-CCQE and non-2p2h dials.
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6.2 ND280 Data Fit

After applying the selection outlined in Section 3, we obtain the event rates for each sample,
which are presented in Tab. 6.1. We can observe that there is a disagreement between the
initial model predictions and data, especially for FHC CC0π-0p-0γ. Because of that, we can
expect that some of the CCQE parameters will be significantly pulled away from their prior
values after the fit.

Sample Data Nominal MC
FGD1 FHC CC0π-0p-0γ 21329 18525.3
FGD1 FHC CC0π-Np-0γ 9257 9055.7
FGD1 FHC CC1π-0γ 6224 6493.6
FGD1 FHC CC-Other-0γ 1737 1621.3
FGD1 FHC CC-Photon 11156 10530.0
FGD2 FHC CC0π-0p-0γ 22935 19600.1
FGD2 FHC CC0π-Np-0γ 7373 7411.2
FGD2 FHC CC1π-0γ 5099 5312.4
FGD2 FHC CC-Other-0γ 1620 1560.6
FGD2 FHC CC-Photon 10460 9542.8
FGD1 RHC CC0π 8676 8283.3
FGD1 RHC CC1π 719 699.9
FGD1 RHC CC-Other 1533 1372.3
FGD2 RHC CC0π 8608 7910.3
FGD2 RHC CC1π 660 654.3
FGD2 RHC CC-Other 1396 1231.5
FGD1 RHC BKG CC0π 3714 3460.4
FGD1 RHC BKG CC1π 1147 1212.7
FGD1 RHC BKG CC-Other 1425 1164.4
FGD2 RHC BKG CC0π 3537 3375.3
FGD2 RHC BKG CC1π 955 974.9
FGD2 RHC BKG CC-Other 1334 1101.9
Total 130894 121094.0

TABLE 6.1: Data and nominal MC predictions for each ND280 sample used in the analysis.

Here, we only present the parameter overlays, while the full set of posterior distributions
for each dial can be found in Appendix B.10. ND detector systematic parameters have no
direct impact on FD predictions. However, as demonstrated in Appendix A.9, they affect
FD predictions indirectly via correlations with flux and cross-section parameters, though the
effect is negligible. Therefore, the overlay plots for ND detector dials are not presented here
and can be found in Appendix B.11. We shall only note that most postfit values of ND detector
parameters are within the prior 1σ error.

The results of the data fit for CCQE and 2p2h parameters are shown in Fig. 6.4. MQE
A is

pulled 2σ above its prior value, much closer to the generated value (equal to 1.21 GeV/c2),
which is consistent with the results from the previous ND280 fit [80]. The Q2 parameters are
also pulled away from their priors, with high Q2 norm 1 (relevant for the region of 0.25 <
Q2 < 0.5 GeV2) being pulled most significantly.

The S-shell MF Norm 12C parameter is pulled in the opposite direction to the P-shell MF
Norm 12C parameter, resulting in an increase of S-Shell contribution, while the P-Shell contri-
bution is weakened. However, both parameters are within their prior uncertainty bands. The
oxygen-related shell dials, P1/2 and P3/2 Shell MF Norm 16O, are very close to their priors;
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FIGURE 6.4: Postfit values for CCQE and 2p2h cross-section parameters from the data fit.

however, S-Shell MF Norm 16O is pulled 1σ away from the prior, increasing the contribution
from this shell. SRC Norm 12C is strongly pulled away from the prior, increasing the relative
strength of the SRC region in carbon, while SRC Norm 16O is pulled very gently in the opposite
direction, decreasing the number of SRC in oxygen.

Almost all of the Pauli blocking dials are pulled to higher values with respect to their
prior central values. This translates to an increased probability of events being Pauli blocked,
leading to suppression in the low Q2 CCQE region. Furthermore, the values of the optical
potential dials are increased, which corresponds to increased FSI for leptons, further sup-
pressing the low Q2 region. Additionally, Fig. 6.5 shows that the Pauli blocking dials do not
have Gaussian posterior distributions. Fig. 6.6 presents posterior distributions for the CCQE
binding energy parameters, which are also highly non-Gaussian. Since the frequentist ND280
fit (BANFF) assumes all parameters have Gaussian distributions, additional tests were per-
formed where the binding energy parameters were fixed, and a dependence between the
non-Gaussian structure of the binding energy and Pauli blocking parameters was observed.
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The tests are discussed in detail in Appendix A.10 and we conclude that non-Gaussian struc-
ture doesn’t impact FD analysis.
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FIGURE 6.5: Posterior distributions of the Pauli blocking parameters from the data fit.

Slightly different postfit values for ν and ν̄ 2p2h normalisations are observed, but these are
just within each others’ postfit uncertainties. All 2p2h shape parameters are shifted toward
value of−1, which corresponds to the lower lobe in the q0/|~q3| phase space of Valencia model
(see Fig. 4.8 on page 58). The PNNN Shape dial favours an increase of the number of nn pairs.
Apparently, 2p2h dials were shifted to such parameter values, which result in an increased
number of events in CC0π-0p-0γ and a decrease in CC0π-Np-0γ. One needs to remember
that the prior value of 0 corresponds to the ratio pn/nn equal to 2/3. The ratio value preferred
by the fitter is close to 1/2. Even though the impact of this dial is rather small, ND280 is
sensitive to the 2p2h pair ratio.

The non-CCQE, non-2p2h parameters are shown in Fig. 6.7. C5
A is pulled almost 2σ away

from the prior, whereas MRES
A remains at the prior value. RS ∆ Decay prefers delta-like decay,

meaning the data suggest physically motivated decay, contrary to simplistic isotropic one.
The π0 normalisation for ν is pulled by 1σ, whereas it remains at the prior value for ν̄. The
parameter for ν̄ is constrained weaker than the parameter for ν, which is not surprising given
that the new photon tagging is only applied in FHC.

The resonant binding energy parameters have been strongly pulled towards 0, which is
the generated value. As was already mentioned, the prior values for those dials have been
set very conservatively to 25 MeV, so a smaller binding energy is consistent with previous
results [80], where there was effectively no binding energy for resonant interactions. Most of
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FIGURE 6.6: Posterior distributions of the Eb parameters from the data fit.
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FIGURE 6.7: Non-CCQE, non-2p2h interaction parameters from the data fit.
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the pion FSI dials are not shifted, except for the absorption, which was pulled by 1σ, reduc-
ing the probability of absorption and resulting in fewer events in CC0π-Np-0γ, but more in
CC1π-0γ. However, the nucleon FSI parameter is pulled by almost 2σ, increasing the strength
of nucleon FSI. This may come from the poor agreement with the data before the fit seen in
the CC0π-0p-0γ sample but very good agreement in the CC0π-Np-0γ sample.

There is some tension between the Multiπ dials, as BY Vector parameter prefers a stronger
correction compared to BY Axial, which is pulled to the value giving a smaller correction. CC
BY DIS is also strongly pulled but is still in the range of the prior error. Multiplicity Shape
dial is closer to the prior value, meaning the data suggest the nominal NEUT model rather
than AGKY. The CC Misc parameter is also pushed by 1σ, but this parameter has a large prior
uncertainty.

The postfit ND280 flux parameters are shown in Fig. 6.8. Due to strong prefit correlations
between the ND280 and SK flux parameters, both sets of dials behave very similarly; thus,
we present only the ND280 flux parameters. For FHC νµ, ν̄µ and RHC νµ there is a pull of
about 10% for neutrino energies below 1 GeV. This effect decreases as the energy increases.
For energies above Eν = 4 GeV, the postfit values fall below the priors. A similarly high pull
is observed for FHC νe and RHC ν̄µ parameters. The RHC ν̄e parameters are 6% above the
priors for energies below 1.5 GeV, but they go closer to the priors at higher energies. For FHC
ν̄e and RHC νe the pull is 5% for the low energy parameter, but the high energy parameter is
close to its prior value.
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FIGURE 6.8: Prefit and postfit values for flux parameters from the data fit.

Although many of the flux parameters are pulled away from their prior values and be-
yond the prefit ±1σ ranges (without accounting for the strong correlations between the pa-
rameters), they do not contribute significantly to the penalty term in the likelihood. As the
flux parameters are strongly correlated, a pull in one can lead to many of them moving in
a similar way. The flux penalty contribution to the −LLH at each step in the Markov chain is
shown in Fig. 6.9. The stationary state corresponds to − logL f lux = 50–60, which for 100 flux
parameters can be translated to O(1) χ2 per parameter. To better understand the impact of
correlations between flux parameters, an additional study using Principal Component Anal-
ysis was performed and is presented in Appendix A.11.
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FIGURE 6.9: Flux penalty term in the MCMC data fit as a function of the step number. There are 100
flux parameters and −LLH≈ 50–60, so χ2 ≈ 100–200 / 100 degrees of freedom.

Fig. 6.10 shows the postfit flux+cross-section correlation matrix. It is worth reminding that
many of the cross-section parameters did not have initial correlations, but now correlations
can be clearly seen. To better understand this outcome, let’s look at the correlations between
S and P-Shell Norm parameters. Both of them significantly affect the normalisation of CCQE
interactions. Since they affect it so strongly, if one increases, the other has to decrease; other-
wise the data-MC disagreement would be huge. Another good example is the anticorrelation
of Pauli blocking and optical potential, which is expected given that both sets of dials affect
low Q2 phenomena.

The next important point is the strong correlations between flux and cross-section param-
eters, especially for normalisation dials. Since we have no prior knowledge of how the flux
and cross-section parameters should be correlated, this demonstrates the importance of the
ND280 fit.

After showing that the results are qualitatively good, we will evaluate quantitatively the
goodness of fit using the posterior predictive distributions.

6.3 ND280 Posterior Predictive Distributions

Using the posterior distributions and the method described in Section 5.6, the prior and pos-
terior predictive distributions were obtained and are shown in Fig. 6.11 for the FGD1 proton-
tagged samples, and in Appendix B.9 for other ND280 samples. As expected, the posterior
predictive distributions agree much better with the data than the prior predictive distribu-
tions, particularly for the FGD1 FHC CC0π-0p-0γ sample. Furthermore, the systematic error
in each bin is significantly smaller. In the bottom plots of Fig. 6.11, we also show the reaction
breakdown. Since we do not observe any unexpected and significant changes in fractions of
interaction modes, we have further proof of the analysis’ robustness. Still, the postfit model
does not perfectly describe the data; for example, at high pµ there are regions with an under-
estimated number of events in MC.

The improvement of data and MC agreement is further confirmed by the reduction in
−2 logLStat for the posterior prediction compared to the prior prediction, as shown in Tab. 6.2.
The uncertainties on the event rates for all samples are also reduced significantly. The frac-
tional systematic errors in Tab. 6.31 show that the total ND280 event rate systematic uncer-
tainty has been reduced from 9.07% to 0.28% after the fit. The CC0π-0p-0γ sample has the

1A similar table showing the errors from different systematic sources can be found in Appendix B.7.
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FIGURE 6.10: Postfit cross-section and flux correlation matrix from the data fit.
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FIGURE 6.11: Prior and posterior predictive distributions for FGD1 proton-tagged samples. Top plots
include the comparison of the prior and posterior systematic errors and contain panels with the data

to MC ratios. Bottom plots show the reaction breakdown.

lowest postfit systematic uncertainty, while the CC-Other-0γ sample has the largest. This is
reassuring, as the CC0π-0p-0γ sample has the highest fraction of CCQE events, which are the
dominant signal at SK, while the CC-Other-0γ sample is much less important in the analysis,
and similar issues were noticed in the past analysis [80].

As it was shown, the ND280 fit significantly reduced the uncertainties of systematic pa-
rameters, which resulted in much more precise predictions for ND280 event samples. We
expect that a similar reduction should be observed for FD samples.
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Sample Data Event Rates −2 logLStat
Prior Post. Prior Post.

FGD1 FHC CC0π-0p-0γ 21329 18742.2 ± 2191.3 21123.5 ± 136.2 1506.84 707.32
FGD1 FHC CC0π-Np-0γ 9257 9280.5 ± 1074.2 9262.7 ± 85.3 536.63 387.59
FGD1 FHC CC1π-0γ 6224 6542.9 ± 651.2 6310.2 ± 62.7 338.70 316.62
FGD1 FHC CC-Other-0γ 1737 1640.9 ± 172.6 1727.2 ± 26.7 158.00 143.63
FGD1 FHC CC-Photon 11156 10751.9 ± 1083.9 11305.7 ± 94.4 533.50 487.71
FGD2 FHC CC0π-0p-0γ 22935 20144.9 ± 2183.8 22776.7 ± 139.7 1297.96 698.65
FGD2 FHC CC0π-Np-0γ 7373 7653.5 ± 847.0 7497.7 ± 76.0 553.7 339.9
FGD2 FHC CC1π-0γ 5099 5345.9 ± 527.1 5085.7 ± 48.4 312.5 286.6
FGD2 FHC CC-Other-0γ 1620 1571.3 ± 173.1 1592.7 ± 30.3 162.4 151.2
FGD2 FHC CC-Photon 10460 9765.6 ± 974.2 10235.8 ± 86.3 481.2 427.3
FGD1 RHC CC0π 8676 8493.9 ± 915.5 8671.1 ± 78.3 470.3 368.7
FGD1 RHC CC1π 719 712.4 ± 76.3 718.5 ± 13.6 72.0 68.6
FGD1 RHC CC-Other 1533 1408.3 ± 141.8 1479.7 ± 21.9 106.3 100.2
FGD2 RHC CC0π 8608 8187.0 ± 837.9 8505.4 ± 76.3 451.2 368.1
FGD2 RHC CC1π 660 668.0 ± 70.8 681.7 ± 12.9 56.6 56.7
FGD2 RHC CC-Other 1396 1263.3 ± 128.3 1331.0 ± 19.1 102.3 98.0
FGD1 RHC BKG CC0π 3714 3568.4 ± 370.7 3791.4 ± 40.7 167.4 143.2
FGD1 RHC BKG CC1π 1147 1235.9 ± 120.0 1227.4 ± 15.4 63.3 58.9
FGD1 RHC BKG CC-Other 1425 1189.3 ± 120.6 1293.0 ± 18.2 93.7 68.6
FGD2 RHC BKG CC0π 3537 3511.5 ± 350.1 3715.6 ± 40.0 141.36 144.1
FGD2 RHC BKG CC1π 955 987.6 ± 94.9 968.6 ± 12.3 61.30 60.2
FGD2 RHC BKG CC-Other 1334 1124.8 ± 113.6 1200.00 ± 16.5 81.11 61.4
Total 130894 125304.3 ± 11374.4 130502.1 ± 370.0 7748.1 5542.9

TABLE 6.2: Prior and posterior predictive event rates and −2 logLStat based on the data fit.

Sample δN/N(%) δN/N(%)
FGD1 FGD2

Prior Posterior Prior Posterior
FHC CC0π-0p-0γ 12.82 0.64 11.50 0.61
FHC CC0π-Np-0γ 12.94 0.92 12.21 1.01
FHC CC1π-0γ 10.62 0.99 10.50 0.95
FHC CC-Other-0γ 11.03 1.55 11.45 1.91
FHC CC-Photon 10.49 0.84 10.35 0.84
RHC CC0π 12.15 0.90 10.87 0.90
RHC CC1π 11.36 1.90 11.28 1.89
RHC CC-Other 10.51 1.48 10.60 1.44
RHC BKG CC0π 11.21 1.07 10.66 1.08
RHC BKG CC1π 10.13 1.25 10.02 1.27
RHC BKG CC-Other 10.42 1.41 10.55 1.37

TABLE 6.3: Fractional uncertainties on the prior and posterior predictive event rates. The total prior
uncertainty 9.07% is reduced to 0.28% after the fit.
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6.4 Constraining Far Detector Predictions

So far, the posterior predictive distributions for ND280 samples have been discussed, but an
identical procedure can be used to build distributions for FD samples, as introduced in Sec-
tion 2.5. Fig. 6.12 shows the FD spectra of reconstructed neutrino energy before and after
applying ND constraints. The error marked by colour bands represents 1σ uncertainty on
event rates, originating from ND constrainable systematic errors. However, it does not in-
clude the SK detector systematic uncertainties, as here we are interested only in the impact of
the ND280 fit. We can see that error reduction is significant. Moreover, we observe changes
in the shape of the distributions, in particular, the number of expected events increased in
most samples. This is mostly the consequence of the 2σ pull from the prior value for MQE
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FIGURE 6.12: FD prior predictive (before the ND280 fit, pink) and posterior predictive distributions
(after using results from the ND280-only fit, blue). The presented errors come only from ND con-

strainable parameters.

In Fig. 6.13 we show also the FD spectra but with the SK detector error included. One can
notice that there are kinematic regions where the SK systematic error is dominant, such as
the low energy region of the 1Rµ samples, while the ND constrainable errors dominate in the
tail of those distributions. In other words, in the region where the oscillation effects are most
apparent, the ND constraints play a crucial role. Different behaviour is observed for the FHC
1Re1de and νµCC1π samples, for which pion secondary interactions in SK become important.

In addition, Tab. 6.4 summarises the errors on predicted event numbers before and after
applying ND280 constraints. For example, thanks to ND280 constraints it was possible to
reduce the 1Rµ FHC sample uncertainty from 16.7% to 3.4%.

Some cross-section parameters are fixed in the ND280-only fit (like 2p2h Edep) or have no
effect on the ND280 samples, and such are labelled in the Table as ND unconstr (unconstrain-
able by ND280). Among them, the largest uncertainty comes from the νe/νµ and ν̄e/ν̄µ param-
eters (relative normalisations of electron (anti)neutrino cross-section), since ND280 doesn’t
have dedicated νe(ν̄e) samples.
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FIGURE 6.13: FD posterior predictive distributions after using results from the ND280-only fit. The
green boxes mark the distributions with SK detector errors included additionally.

6.5 Results of ND and FD Joint-Fit

Standalone ND280 fit was validated, and it was shown that it can greatly constrain FD pre-
dictions. Now we shall discuss the results of the ND+FD joint analysis.

Appendix A.12 compares the cross-section and flux parameters obtained from the ND280-
only and ND+FD fit. The primary conclusion is that including FD samples does not change
the results for the parameters to which ND280 is sensitive, so all ND280-based studies are
still valid for the ND+FD joint-fit.

Firstly, Fig. 6.14 shows the posterior predictive distributions with overlayed data, after
the joint-fit. The overall agreement is quite good; however, the small event statistics at FD is
currently the main problem.

Fig. 6.15 (A) shows the posterior probability distribution for δCP parameter with credible
intervals marked by shades of grey. Credible intervals in Bayesian statistics correspond to
the probability that the true value of the measured quantity lies within a given interval. We
calculate them similarly to HPD by integrating over the distribution until a given percentage
is obtained. The main conclusions are that T2K shows preference for maximal CP violation
with δCP close to −π/2 and excludes the CP conserving values of δCP = 0 and π with 90%
credible intervals.

An additional test was performed to determine the possible CP violation. There are sev-
eral parameterizations of the neutrino mixing matrix, which lead to different priors on the
oscillation parameters. On the other hand, the Jarlskog invariant JCP,l (see Eq. 1.15 on page 9)
is independent of the chosen parametrisation, therefore it can demonstrate that the results are
driven by the data and not the choice of the prior. We present the results for JCP,l in Fig. 6.15
(B). Two fits were performed, with a flat prior assumed for δCP or for sin δCP, as both choices
are equally valid. We observe that the choice of the prior impacts the sensitivity; however, it
does not change the physical conclusion, which is T2K preference for maximal CP violation
in the lepton sector.



6.5. Results of ND and FD Joint-Fit 97

Error source (%) 1Rµ νµCC1π 1Re 1R1de
FHC RHC FHC FHC RHC FHC

Before ND280
Flux 5.0 4.6 5.2 4.9 4.6 5.1

Cross-section (all) 15.8 13.6 10.6 16.3 13.1 14.7
SK detector 2.6 2.2 4.0 3.1 3.9 13.6

Total 16.7 14.6 12.5 17.3 14.4 20.9
After ND280

Flux 2.8 2.9 2.8 2.8 3.0 2.8
Xsec (ND constr) 3.7 3.5 3.0 3.8 3.5 4.1

Flux+Xsec (ND constr) 2.7 2.6 2.2 2.8 2.7 3.4
Xsec (ND unconstr) 0.7 2.4 1.4 2.9 3.3 2.8

SK detector 2.0 1.7 4.1 3.1 3.8 13.6
Total 3.4 3.9 4.9 5.2 5.8 14.3

TABLE 6.4: Uncertainty on the expected number of events in each SK sample broken down by error
source, before and after the ND280 fit.

Fig. 6.16 outlines credible regions for ∆m2
32 and sin2 θ23. As can be seen, T2K has a pref-

erence for the upper octant (UO, θ23 > 0.45◦), but the lower octant (LO) is still within 68%
credible intervals. This is currently the most precise measurement of sin2 θ23. In addition,
T2K results weakly prefer the normal mass hierarchy (NH).

To quantify T2K preferences, the Bayes factors were calculated. Bayes factors estimate
how one model or hypothesis is more probable with respect to another. In the case of MCMC
posterior distributions, one can easily obtain the Bayes factor by calculating the ratio of
the number of accepted steps for two hypotheses. The Bayes factors were calculated for
θ23 upper/lower octant and normal/inverted mass hierarchy hypotheses, and are equal to
B(UO/LO) = 3.00 and B(NH/IH) = 2.85, respectively. On Jeffrey’s scale of Bayes factor
interpretation, both would be classified as “barely worth mentioning” [112]. The posterior
probability for the normal mass hierarchy is 74%, and the probability of the upper octant is
75%, as can be seen in Tab. 6.5.

sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum
NH (∆m2

32 > 0) 0.20 0.54 0.74
IH (∆m2

32 < 0) 0.05 0.21 0.26
Sum 0.25 0.75 1.00

TABLE 6.5: Comparison of posterior probabilities for normal and inverted hierarchies, as well as upper
and lower octant hypotheses [111].

To summarize, T2K data indicate a strong preference for maximal CP violation. Also, the
results suggest the upper octant for the θ23 mixing angle and normal mass hierarchy.

T2K plans to collect more data till 2027; additionally, there is an ongoing development of
the NEUT generator. As it was mentioned in Chapter 2.7, the upgrade of the ND280 facility is
being conducted and will be completed in 2023. Those improvements will enable new studies
that were not possible before.
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FIGURE 6.14: FD posterior predictive distributions after the ND+FD joint-fit, with overlayed data
points. The bottom panels show the data to MC ratios [111].
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7
Future Sensitivity Studies for
Proton-Tagged Samples

At the beginning of a campaign, it is important to consider whether or not to move
forward, but when one has taken the offensive it is necessary to maintain it to the
last extremity.

Napoléon Bonaparte

T2K OA is currently focused on the lepton kinematics. As the neutrino field is moving into
the era of precise measurements, it is important to push our understanding of nucleons and
neutrino interactions. This Chapter presents the sensitivity studies using proton properties
as well as the first look at new event samples from the upgraded ND280. These studies are
not part of the official T2K oscillation analysis; however, they are interesting and may pave
the way forward for what will be used or performed to make OA more robust.

7.1 Proton Kinematics in ND280

7.1.1 Predictions of Proton Kinematic Variables

The studies presented here use the same event samples, cross-section model, etc. as in previ-
ous Chapters; however, the emphasis is placed on protons rather than muons.

Fig. 7.1 shows the posterior predictive distributions of proton momentum and cos θ1, ob-
tained by sampling the posterior distribution from the ND280-only data fit, as described in
the previous Chapter. Even though the proton kinematics was not used directly in the fit,
the posterior predictive distributions are much closer to the data than the prior predictive
ones. This indicates that by using the proton-tagged samples, we can probe the kinematical
properties of protons indirectly.

By looking at cos θproton distribution, we can observe a data/MC discrepancy, which sug-
gests either a problem with the reconstruction or modelling.

To check if the problem is due to the reconstruction, the posterior predictive distributions
for either TPC-matched or isoFGD protons were prepared and are shown in Fig. 7.2. As can
be seen, the discrepancy in angular distribution originates from TPC-matched protons. Since
TPCs have better granularity than FGDs, we do not expect any major issues with the recon-
struction. This might indicate that the problem lies in the modelling of outgoing protons.

Most models include proper theoretical description of outgoing lepton, but the proton
kinematics is poorly modelled for several reasons. For example, in the SF model, SRC are

1Hereafter, often referred to as proton kinematics.
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FIGURE 7.1: Prior and posterior predictive distributions of proton kinematics obtained by sampling
the posterior distribution from the ND280-only data fit that used only the muon kinematics.

simulated in a back-to-back manner, so correlated nucleons have the same momentum but
travel in opposite directions. There is ongoing work by many theorists to improve the state
of affairs [57]. Similarly, in 2p2h interactions, the nucleon kinematics is calculated using
an isotropic model, which is a good approximation but may not be good enough for high-
precision measurements. Finally, 3p3h interactions [36] are not simulated in NEUT at all. In
addition, current FSI are simulated using a cascade model. However, recent studies suggest
that it only provides reliable predictions for nucleons with momentum above 200 MeV/c and
the optical potential approach produces more sensible results [113]. Since the effect of optical
potential is only dominant for low momentum nucleons, current ND280 samples are not
affected significantly. When it comes to FSI relevant for higher energies, currently deuterons
and other heavier nuclear fragments are not included, although there is ongoing work to
improve this as well [58]. All the issues mentioned above should be resolved in the future;
however, they are not covered by the models used currently.

Nevertheless, we expect that the inclusion of proton kinematics information in the fit can
enhance sensitivity to effects like FSI, better probe the SF structure, or improve the under-
standing of 2p2h. Therefore, in spite of imperfect modelling, the next Section is devoted to
the prospects of using proton kinematics in the ND280 fit, as we expect that models will be
improved in the future.
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FIGURE 7.2: Prior and posterior predictive distributions of proton kinematics (of either isoFGD or
TPC-matched protons) obtained by sampling the posterior distribution from the ND280-only data fit

that used only the muon kinematics.

7.1.2 Binning, Transverse Kinematic Variables and Preliminary Sensitivity

Adding even a single variable to the fit requires significant framework changes as well as
demands the construction of a multidimensional binning. Thus, it was decided to use three-
dimensional binning for FGD1 (FGD2) CC0π-Np-0γ, with muon momentum, cos θµ, and
a third additional variable, while keeping the variables and the binning for the remaining
samples unchanged. By using the same muon-related variables, it is possible to make the
comparison with the official ND280 analysis.

The natural candidate for a proton-related variable is the proton momentum. However,
to produce a proper binning for this variable, it was necessary to study the momentum re-
construction accuracy, as it was performed for proton-tagged samples (see Section 3.2.3). The
comparison of true and reconstructed proton momentum can be seen in Fig. 7.3. As can be
observed, the reconstruction accuracy is quite stable, but only above 400 MeV/c; as below
this threshold, proton reconstruction is unreliable.

As a consequence, we decided to consider another variable. Based on the study presented
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FIGURE 7.3: Reconstruction accuracy of proton momentum in CC0π-Np-0γ FGD1 sample.

in [114], transverse kinematic variables, in particular the transverse kinematic imbalance δpT
(see Fig. 7.4 for definition), seemed promising. This variable is sensitive to FSI. If energy and
momentum are conserved, δpT should be close to 0 for CCQE, while FSI distort final proton
kinematics and pull this variable away from 0.

FIGURE 7.4: Schematic definition of transverse kinematic variables, most notably δpT (blue), in CCQE
neutrino interaction [115].

Fig. 7.5 shows the reconstruction accuracy for δpT, and it is very stable, without any sig-
nificant drop, only minor fluctuations can be seen above 1000 MeV/c, where we have much
smaller event statistics. Since there are no problems with δpT reconstruction accuracy, it can
be used in the analysis.

Fig. 7.6 presents the prior predictive distribution for δpT. We can see some data/MC
disagreement, although not as striking as for cos θproton. In addition, we can notice that the
highest fraction of CCQE events is close to δpT = 0, while other reactions become more
apparent at higher δpT values.

Since δpT has a characteristic stairs-like structure, only four bins (the last bin goes from
1200 to 20000 MeV/c) should be enough to describe its variation. Increasing the number of
δpT bins would result in decreasing the number of bins for pµ and cos θµ, as each bin must
contain at least 1 data and 20 MC events. Fig. 7.7 shows the one-dimensional projections from
the three-dimensional kinematic distribution for the FGD1 CC0π-Np-0γ sample for data. The
same binning is used for FGD1 and FGD2 samples.

Fig. 7.8 displays the LLH scan comparison and overlay of posterior distributions from
the Asimov fit using only muon kinematic variables and another one using additionally δpT



7.1. Proton Kinematics in ND280 105

0

20

40

60

80

100

120

140

 N protons π CC 0µνFGD1 

0 200 400 600 800 1000 1200

 (MeV/c)
T

pδTrue 

0

200

400

600

800

1000

1200
 (

M
eV

/c
)

Tpδ
R

ec
o 

 N protons π CC 0µνFGD1 

0 200 400 600 800 1000 1200

 (MeV/c)
T

pδTrue 

0

200

400

600

800

1000

1200

 (
M

eV
/c

)
Tpδ

M
ea

n 

 N protons π CC 0µνFGD1  N protons π CC 0µνFGD1 

FIGURE 7.5: Reconstruction accuracy of the δpT variable in FGD1 CC0π-Np-0γ sample.
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variable for N-proton samples. Here, as well as in the following studies, only selected pa-
rameters are shown, for which we expect a change or, for cross-check, which should remain
unaffected. Firstly, plots (A) and (D) show results for the Pauli blocking parameter, for which
we do not observe almost any improvements when using δpT, both in the LLH scan and
posterior distributions. As we don’t expect an increased sensitivity to that parameter, this
confirms the validity of the results. Plots (B) and (E) show analogous results for nucleon FSI.
It can be noticed that using δpT increases the sensitivity to the nucleon FSI parameter, which
is true both for LLH and Asimov fit results. As demonstrated by plots (C) and (F), using δpT
enhances slightly also the sensitivity to 2p2h-related parameters, as when calculating δpT we
include only the highest momentum proton, which can be interpreted as a distortion of this
variable distribution.
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FIGURE 7.8: Selected LLH scans and Asimov fit posterior distributions using the standard fit with
muon kinematics only and the improved one with additional δpT variable.

Since the LLH scans and Asimov fits are sensible and show an increase in sensitivity, we
can proceed with the data fit.

7.1.3 Data Fit Results and Impact of Proton Kinematic

Data fit results for selected parameters are presented in Fig. 7.9. When looking at (A), it
can be observed that for Pauli blocking, the results have not changed. Since Pauli blocking
affects mostly CC-0π-0p-0γ samples and an additional variable is used only in CC-0π-Np-0γ
samples, we would not expect a change in the posterior distribution of this parameter. On the
other hand, the posterior distributions for nucleon FSI, 2p2h norm or PNNN shape dials, which
affect proton kinematics, are shifted with respect to the official ND280 analysis. Moreover, we
observe the error reduction for these parameters, in case of nucleon FSI it is reduced further
from σ = 0.13 to σ = 0.08. The differences in posterior distributions are expected because
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of the inclusion of δpT information and the data/MC disagreement in the cos θproton (related
to δpT) distribution shown in Fig. 7.1, which the fitter is trying to reduce. Nevertheless, the
posterior distributions partially overlap in all cases, so we can conclude that the results are
still compatible.
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FIGURE 7.9: Selected posterior distributions from the standard data fit with muon kinematics only
and the improved one with additional δpT variable.

Fig. 7.10 presents the overlay of prior and posterior predictive distributions for FGD1
CC-0π-Np-0γ sample. We can see better agreement in most bins.

The posterior predictive distributions for the same sample from the official ND280 analy-
sis and from the fit using δpT are compared in Fig. 7.11. We can see that the pproton data/MC
agreement is comparable for the two fits. Since the agreement was satisfactory after the of-
ficial ND280 fit, we didn’t expect much improvement here. However, the agreement for
cos θproton is significantly better. This naively demonstrates that using proton kinematics can
help to constrain the nuclear effects; however, due to current poor modelling of proton kine-
matics and not available sufficient systematic model, it is not possible to fully exploit this
fact.

Better understanding and utilisation of nucleon information is important for the gadoli-
nium-doped SK detector, as the nucleon information will become an important input. Since
the upgraded ND280 with improved reconstruction capabilities will be able to detect protons
with much lower momentum, we can expect much more precise measurements of interac-
tions with proton production. In particular, there are already plans to perform dedicated
cross-section measurements using the upgraded ND280, which should aid theorists with
model development.
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FIGURE 7.10: Overlay of prior and posterior predictive distributions for FGD1 CC-0π-Np-0γ sample,
based on the fit with additional δpT variable.
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FIGURE 7.11: Posterior predictive distributions of proton kinematics for FGD1 CC-0π-Np-0γ sample
from official ND280 analysis and the fit with additional δpT variable.
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7.2 Sensitivity Study Using Preliminary Simulation of Upgraded
ND280

7.2.1 SFGD Samples

As discussed in Section 2.7 on page 29, there is an ongoing upgrade of the beam and, more
importantly, of the ND280 detector. Here we will discuss the expected sensitivity of the up-
graded ND280. By the time the Thesis was complete, the full detector simulation was not
yet available. A GEANT4-based simulation of the new detector already exists, and, thanks to
various measurements of the new detector components at test beams at CERN [77, 116] and
DESY [117], the preliminary expected detector response can be assumed. The main recon-
struction effects, such as momentum smearing and resolution, have been parameterised and
applied to NEUT simulated true variables used in the following analysis2.

For the beginning, we will consider only two samples of events originating from the SFGD
sub-detector, namely CC0π-0p and CC0π-Np, as due to the incomplete reconstruction algo-
rithm, they are most reliable. Later, we will discuss other samples as well. In the previous
Sections, it was shown that the current cross-section models are not able to reliably predict
proton kinematics; hence, in the presented SFGD study, we use only muon kinematics for all
samples.

Fig. 7.12 shows the expected spectra for two SFGD samples. If we compare them with
analogous distributions for FGD1 and FGD2 samples (see Fig. 6.11), we can see that the
breakdown of interactions is similar and the momentum distributions look sensible. Thus,
using a simplified reconstruction should be sufficient for such studies.
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FIGURE 7.12: Expected momentum distributions for SFGD samples as a function of pµ. Colours
denote different reaction modes.

Tab. 7.1 presents the expected event rates depending on accumulated POT. As can be ob-
served, the upgraded ND280 will significantly increase ND280 data statistics (compare to
Tab. 6.2), as SFGD FHC CC0π-0p is expected to collect ∼50112 events, whereas its FGD1
counterpart, FHC CC0π-0p-0γ, currently contains 21329 data events. Such event rates are
the consequence of the SFGD mass being twice as big as that of one FGD. Additionally, SFGD
has better acceptance for particles travelling at high and backward angles with respect to
the neutrino beam; thus, we expect more than doubling of data statistics with a comparable
number of POT. Another important conclusion is that the event rates for the SFGD CC0π-
0p and CC0π-Np samples are much more alike, while in the case of FGD1 and FGD2, there

2The simulated events are exactly the same as used and described in [114].
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are roughly two times more events in CC0π-0p samples than in CC0π-Np. This is the con-
sequence of the lower threshold for proton reconstruction in SFGD with respect to FGD1(2)
(see Fig. 2.19 on page 31).

POT
Sample 1.08×1021 2.4×1021

SFGD FHC CC0π-0p 50111.8 94655.7
SFGD FHC CC0π-Np 47337.2 89414.7

TABLE 7.1: Expected event rates for SFGD proton-tagged samples with different assumed POT num-
bers.

7.2.2 Angular Acceptance and Binning for Upgraded ND280 Samples

Since we are going to use new samples with improved acceptance, it is necessary to repeat
the study of momentum and angular reconstruction accuracy. Fig. 7.13 presents the recon-
struction accuracy for the SFGD sample. As already mentioned, the final reconstruction is
not ready yet (when the Thesis was written), so the reconstruction accuracy might be over-
optimistic in some regions. Nevertheless, it should be sufficient for the study presented here
and give an idea of the improvement we can expect from the new sub-detectors. For compar-
ison, the reconstruction accuracies for the FGD1 sample are presented in Fig. 3.13 on page 45.
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FIGURE 7.13: Reconstruction accuracy of SFGD for muon momentum and emission angle.

The upgraded ND280 will have much better capability to reconstruct particles travelling
at high scattering angles. Therefore, it is necessary to use different binning than for the FGD
samples. Fig. 7.14 compares the standard FGD binning with uniform and coarse bins in
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backward region (A) and the improved binning designed for the SFGD samples3 with non-
uniform bins (B). Backward going muons tend to have in general much lower momentum, as
can be seen in Fig. 7.15, showing muon kinematics distributions for the SFGD samples using
non-uniform binning. In the same Figure, we can see Q2 lines visually marking the value
of true Q2 and demonstrating that in the region of backward going muons, we have mostly
events with higher Q2, therefore we could expect enhanced sensitivity to high Q2 physics.
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FIGURE 7.14: Examples of uniform and non-uniform binning, the latter giving much more freedom
in the backward going muon region.
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FIGURE 7.15: Event rate distribution for SFGD samples using non-uniform binning. The colour scale
represents the number of events in one bin. The effect of the discontinuity in the low momentum

region at cosθ ≈ −0.2–0 is related to the change in bin size.

To better understand the impact of events with muons scattered at high angles, a special
test was performed, in which we extracted the event kinematic distribution for prior values of
parameters and another distribution with one parameter moved by 3σ from the prior value,
and calculated the ratio of both distributions. Examples of such plots can be seen in Fig. 7.16.
Two top plots show the impact of the same dial (High Q2 norm 2): the left one for events in
FGD1 and the right one for events in SFGD. At least two conclusions can be drawn. Firstly,
in the backward going muon region, the shape is much smoother for SFGD, so it should be
possible to probe not only the normalisation changes but also the shape changes, which is

3Using TH2Poly implementation from the ROOT package [93].
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much more difficult with FGD samples. Secondly, on the top right plot, in the case of SFGD
there are barely any changes, while for the FGD1 sample there are visible differences. This
is because the High Q2 norm 2 parameter affects the event rates based on the true Q2 of an
event, whereas the plots show the effect as a function of reconstructed variables. Since SFGD
has much better reconstruction accuracy, the affected region is much more condensed.
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FIGURE 7.16: Impact of +3σ variation for selected FGD1 and SFGD samples for two dials benefitting
from the enhanced acceptance for backward going muons.

Furthermore, the bottom plot on Fig. 7.16 demonstrates the impact of the CCQE Eb dial.
This dial is shifting events from the region of higher momentum to that of lower momentum;
hence, we observe the reduction of events above 600 MeV/c and the increase below it. For the
SFGD sample, thanks to finer binning and resolution, more distinct separation is observed,
manifesting as a white band. It clearly demonstrates visually what sensitivity enhancements
we can expect from the upgraded ND280.

7.2.3 Evaluating Upgraded ND280 Sensitivity

In this Section, we further demonstrate the improvements from the upgraded ND280. The as-
sumption in these studies is that the FGD samples remain the same (as in Chapter 6, and only
the SFGD samples are added with different POT values, corresponding to those in Tab. 7.1.

LLH scans for selected parameters are presented in Fig. 7.17. Here, as well as in the
following studies, only selected parameters are shown, for which we expect a change or, for
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cross-check, which should remain unaffected. Thanks to better reconstruction accuracy, the
region affected by Pauli blocking is more condensed, resulting in better constraints. We can
see a significant improvement for the High Q2 norm 2 dial, which is an expected result given
the discussion of sigma variation in Fig. 7.16. No improvement is observed for the Mπ Multi
TotXSecFor dial, which is also expected given the DIS-enriched samples are not used so far.
Lastly, for the SRC Norm 16O parameter, there is no difference, since SFGD is a purely carbon-
based detector and we do not foresee any constraints on parameters related to 16O, which is
an important result from the validation point of view.
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FIGURE 7.17: LLH scans comparing the sensitivities obtained using samples the from official ND280
analysis and after including SFGD samples with two POT assumptions.

A question arises, how much of the improved sensitivity comes from bigger event statis-
tics and how much from better capabilities of SFGD. To answer that, the following study was
conducted: an LLH scan was performed using only FHC samples for FGD1 and FGD2, while
in the second one only SFGD samples were used, with the same POT number as that of FGD
samples. The results are presented in Fig. 7.18. For CCQE parameters (in this case, Pauli
blocking and High Q2 norm 2), the SFGD samples show better performance, which is a con-
sequence of better acceptance and resolution. However, the results for RES and FSI-related
parameters (C5

A, π FSI QE low E) demonstrate that the FGD samples give better results. As
previously stated, only the CC0π SFGD samples are used in this study; hence, the lower sen-
sitivity is expected, in addition confirming the validity of the analysis. Nevertheless, the final
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sensitivity should not be judged negatively based on those results.
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FIGURE 7.18: LLH scans comparing the sensitivities obtained using only FGD1 and FGD2 FHC sam-
ples and using only SFGD samples with the same POT number as in the official ND280 analysis.

LLH scans in Fig. 7.18 show significant improvement; however, as always, the best way to
have a complete picture is to run a fit. Based on the Asimov fit results, the FD predicted spec-
tra were produced, which can be seen in Fig. 7.19. The effect may look slightly disappointing
at first. To better understand it, one has to look at individual posterior distributions from the
Asimov fit, which are shown in Fig. 7.20. It can be seen that the Pauli blocking parameter for
12C is significantly constrained, while the analogous parameter for 16O is not. As was already
mentioned, SFGD is carbon-based; hence, it does not constrain dials related to 16O. Since SK
is a water-based detector, it is no surprise that we do not see such great improvement in the
spectra in Fig. 7.19. On the other hand, Fig. 7.20 presents also the posterior distributions for
CCQE Eb parameters, and the dial for 16O is better constrained in the Asimov fit, which used
the SFGD samples. As discussed in Section 4.44, CCQE Eb parameters have high initial corre-
lations. In consequence, the increase in the sensitivity for CCQE Eb

16O ν is driven purely by
strong 12C/16O correlations.

Since the results suggest that the correlations can help better utilise the upgraded ND280
for oscillation analysis, it is worth considering that more thoroughly.

4See Fig. 4.12 on page 61.
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FIGURE 7.19: Selected FD posterior predictive distributions before and after adding SFGD constraints
from the Asimov fit.

7.2.4 Carbon-Oxygen Correlation Study

First, let’s discuss how the correlations are obtained. They come from external measurements;
for example, the correlations for SPP dials like C5

A and MRES
A are extracted from a fit to ANL

and BNL data [46], while for CCQE Eb parameters electron scattering data are used [118].
In the first instance, let’s consider if it is a viable option to use the postfit correlations from

the ND280-only analysis in the upgraded ND280 Asimov fit. Fig. 7.21 shows the correlations
for blocks of cross-section parameters that are split into those related to 12C and 16O, from
the data fit discussed in Chapter 6. The ND280 fit is clearly able to find correlations, but the
12C to 16O ones are mostly weak, with the exception of the last plot, showing the correlations
for CCQE Eb parameters, which are mostly driven by the initial correlations. This shows that
current FGD2 samples are not able to strongly correlate those parameters. As a consequence,
using the postfit correlations will not be enough to better demonstrate the impact of the SFGD
samples.

Currently, there is a lot of ongoing work on new detectors or experiments using the same
J-PARC neutrino beam. Therefore, it is quite likely that our knowledge of the initial state will
improve. To name a few:

1. WAter-Grid-And-SCIntillator (WAGASCI) - the detector consists of a three-dimensional
grid structured plastic scintillator target filled with water [119]. It is located in the same
pit as ND280, but at 1.5◦ off-axis angle. The motivation of the WAGASCI experiment



116 Chapter 7. Future Sensitivity Studies for Proton-Tagged Samples

Pauli_Blocking_C_nu
1.5− 1− 0.5− 0 0.5

S
te

ps

0

0.5

1

1.5

2

2.5

3

 = 1.00σx = 0.00 , 
Asimov

 = 0.29σ = -0.27, µ
Neutrino2022

 = 0.14σ = -0.09, µ
+SFGD

(A) Pauli blocking 12C ν

Pauli_Blocking_O_nu
2− 1.5− 1− 0.5− 0 0.5 1

S
te

ps

0

0.2

0.4

0.6

0.8

1

1.2  = 1.00σx = 0.00 , 
Asimov

 = 0.42σ = -0.30, µ
Neutrino2022

 = 0.45σ = -0.32, µ
+SFGD

(B) Pauli blocking 16O ν

EB_dial_C_nu
4− 2− 0 2 4 6 8 10 12 14

S
te

ps

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4  = 6.00σx = 2.00 , 
Asimov

 = 1.94σ = 3.85, µ
Neutrino2022

 = 1.36σ = 3.28, µ
+SFGD

(C) CCQE Eb
12C ν

EB_dial_O_nu
4− 2− 0 2 4 6 8 10 12 14

S
te

ps

0

0.05

0.1

0.15

0.2

0.25  = 6.00σx = 4.00 , 
Asimov

 = 2.61σ = 5.66, µ
Neutrino2022

 = 2.33σ = 5.00, µ
+SFGD

(D) CCQE Eb
16O ν

FIGURE 7.20: Posterior distributions for several parameters from the ND280-only fit (marked as Neu-
trino2022, black) and the fit including SFGD samples (red).

is to reduce the systematic uncertainty on the neutrino cross-section with the same tar-
get and acceptance as SK. There is potential for joint ND280-WAGASCI cross-section
measurement.

2. Intermediate Water Cherenkov Detector (IWCD) - a planned water detector in between
ND280 and FD (in this case, a successor of SK) at a distance of ≈1-2 km [120]. In the
future, a joint-fit using ND, FD and IWCD samples will help to better understand 12C
and 16O correlations.

Thanks to those projects, in the future we will be able to better correlate 12C and 16O
parameters.

In the next short study, we assume that the correlations for the Pauli blocking parameters
are identical as for CCQE Eb. Since both effects are related to low Q2 physics, we can naively
expect the correlation to be to some extent similar, although this assumption is made only for
the purpose of this study. In Fig. 7.22, we can see that the 12C-related parameter error did not
change significantly. Since 12C ν is the best constrained Pauli blocking dial, this is expected.
However, thanks to changing only the initial correlations for Pauli blocking 16O ν, we observe
the error reduced from σ = 0.45 to σ = 0.35, which is more than 20%. This demonstrates how
important it is to study the 12C and 16O correlations, using both internal and external data.
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FIGURE 7.21: Correlations after the ND280-only data fit for the cross-section parameters that are sep-
arated for carbon and oxygen.
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FIGURE 7.22: Posterior distributions for Pauli blocking parameters showing the impact of ad-hoc
carbon-oxygen correlations.

7.2.5 Fit with All SFGD FHC Samples

Until now, only the CC0π event samples from SFGD have been considered. Here, we add
the CC1π and CC-Other samples, both split based on proton presence (6 samples in total).
Tab. 7.2 shows the expected event rates. It can be observed that the inclusion of additional
samples increases overall event rates by one-third.

Sample POT = 1.08×1021

SFGD FHC CC0π-0p 50111.8
SFGD FHC CC0π-Np 47337.2
SFGD FHC CC1π-0p 14506.1
SFGD FHC CC1π-Np 8683.31
SFGD FHC CC Other-0p 16254.7
SFGD FHC CC Other-Np 9107.52

TABLE 7.2: Expected event rates for all SFGD samples.

As was mentioned in Section 7.2.1, those samples have not been included before because
they are not fully reliable. Fig. 7.23 shows the reaction breakdown for the SFGD CC1π and CC
Other samples and the RES and DIS fractions are improbably high, as there are barely any
CCQE/2p2h events. Nevertheless, due to the lack of better simulation, additional studies
were performed to evaluate the impact of those samples.

Another Asimov fit was performed, including all available SFGD samples as well as FGD1
and FGD2 samples, and without ad-hoc 12C/16O correlations. Fig. 7.24 summarizes the pos-
terior distributions for parameters that are strongly affected by adding the SFGD CC1π and
CC Other samples. That includes parameters related to SPP and DIS, clearly indicating that
SFGD samples have the potential to introduce additional constraints.

When looking at the impact for selected FD samples in Fig. 7.25, it may appear quite
surprising that for RHC 1Rµ (plot B) the largest effect is observed for lower energies. One
has to keep in mind that this is the distribution of reconstructed energy, and there is higher
contamination of DIS and π production in this region (see plot A). As for 1Re1de and νµCC1π
samples, the interpretation is simpler as both samples contain a high fraction of RES, thus the
greater constraints.
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FIGURE 7.23: Momentum distributions for SFGD CC1π and CC Other samples, with colours indicat-
ing different reactions.

Summarizing, the upgraded ND280 will be a great addition to future oscillation analysis.
Current sensitivity studies have shown that the errors for many parameters can be reduced
even by half. Still, a lot of work is required on the systematic model, related in particular to
predictions of nucleon kinematics.
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FIGURE 7.24: Posterior distributions from the SFGD+ND280 fit for selected parameters, showing the
impact of adding π-tagged samples.
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(A) Reaction breakdown for RHC 1Rµ
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FIGURE 7.25: Selected FD event spectra showing the impact of adding SFGD π-tagged samples.
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8
Summary and Outlook

From the heights of these pyramids, forty centuries look down on us.

Napoléon Bonaparte

In 2022, the Tokai to Kamioka (T2K) experiment presented new oscillation results at the Neu-
trino 2022 conference. The new analysis introduced several important improvements. New
flux predictions were introduced, based on recent T2K replica target data analysis published
by NA61/SHINE [86], which included, for example, measurements of kaons emerging from
the target. Thanks to NA61/SHINE, the flux systematic error at higher neutrino energies was
reduced, which is important as intrinsic νe, being the background to νe appearance, are mostly
produced in kaon decays. The neutrino interaction model also went through several changes,
most notably the CCQE-related part, which is the most significant channel for T2K OA. The
changes in CCQE modelling included, among others, improvements to spectral function and
Pauli blocking. Furthermore, new systematic parameters related to nucleon FSI and 2p2h pn
to nn pair ratio were added. The number of parameters describing the cross-section model
almost doubled in the analysis. Because of all the changes, previously used ND280 samples,
based on π multiplicity, were not sufficient anymore. New ND280 samples were introduced,
using photon and proton tagging. Photon samples allow for reducing the error related to π0

production, which is a significant source of uncertainty at FD. Proton-tagged samples help to
constrain the error on physical phenomena related to low Q2 reactions, FSI, or nucleon pair
ratio in 2p2h interactions. To accommodate for new samples, the ND detector systematics
had to be expanded, including new ECal systematic errors and updated tuning of proton SI.
Lastly, new FHC νµCC1π sample was introduced to FD analysis, increasing the available νµ

event statistic by 30% and serving as an important cross-check of the model at higher neutrino
energies.

To validate the analysis method, multiple studies were performed, for example: Asimov
fits, cross-validating with the frequentist framework (BANFF), estimating the impact of ex-
panded parametrisation of ND detector systematics, Principal Component Analysis (PCA) of
the flux covariance matrix, posterior predictive p-value estimation, or fits with an alternative
likelihood definition. Those tests demonstrated that the analysis method is robust and not
biased.

Thanks to the use of diverse samples and available data statistics, ND280 is able to sig-
nificantly reduce errors on flux and cross-section parameters. Using ND280 samples allowed
to reduce the uncertainty on the number of expected events at FD by a factor of five–six, for
example, the error for FHC 1Rµ sample decreased from 16.7% to 3.4%.

New T2K oscillation results prefer nearly maximal CP violation with the value of δCP
close to −π/2 and exclude CP conserving values of 0 and π within 90% credible intervals.
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This fact has significant consequences as, if true, it can explain why there is more matter than
antimatter in the observed Universe. Moreover, T2K has a weak preference for normal mass
hierarchy and the upper octant of θ23, which is most precisely measured by T2K. Despite all
the improvements, the new results are consistent with previous T2K results [80], showing the
robustness of the analysis.

The analysis is the work of several people, with the Author being the main Bayesian
Markov chain Monte Carlo ND280 analyser, whose work was essential to obtain new results.
The Author was involved in all the tasks mentioned above, except flux improvements and
FD sample development. In addition, the Author introduced many enhancements to the OA
framework used by T2K, like speed-up or increased flexibility improvements. Thanks to his
significant contributions, the Author was selected to present new T2K results at the ICHEP
2022 conference [4].

Another long-baseline neutrino experiment currently taking data is NOνA, located in the
USA, which has a much longer baseline than T2K (∼810 km). The comparison of T2K, NOνA
and SK atmospheric results for δCP and sin2 θ23 are shown in Fig. 8.1. There is no significant
tension between the results, as in many regions the contours overlap. To better understand
and produce more precise results, there are ongoing joint analyses, one for T2K and NOνA
data [3] and another for T2K and SK atmospheric samples [121]. T2K, NOνA and SK experi-
ments will also continue collecting data for several years.

FIGURE 8.1: Comparison of the results for δCP and sin2 θ23 from T2K, NOνA and SK, presented sepa-
rately for both mass hierarchies.

While waiting for new data, we can try to use the collected data in a new way. The Author
was involved in performing a sensitivity study with proton kinematics, which demonstrated
that using proton information can greatly help to constrain errors on the nuclear effects mod-
elling. However, it outlined that the current cross-section model is not sufficient to properly
describe nucleon kinematics. This analysis provided guidelines on what effects need to be
added in the future to neutrino interaction generators.

Currently, T2K is undergoing several improvements to its facilities. Thanks to J-PARC
accelerator enhancement, the beam power will increase from ∼515 kW to ∼750 kW, while
the horn current will increase from 250 kA to 320 kA, allowing for better focusing and a 10%
increase in flux. In 2020, the SK detector was doped with gadolinium salts, which allow for
efficient neutron tagging [71] by observation of photons from Gd nuclei deexcitation after
neutron capture. Although the main reason for adding gadolinium was the search for diffuse
supernova neutrino background [122], the neutron capture is also useful for T2K, as it helps
to distinguish between ν and ν̄ interactions in RHC mode. For this reason, constraining the
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uncertainties of nuclear effects and FSI will become crucial. Neutron tagging for T2K is in
preparation and is going to be used in the next analysis. Therefore, the work presented in the
Thesis will help to use the new feature at the FD.

The remaining part of the facility overhaul is the upgrade of the ND280 detector with
a new sub-detector complex. Part of the upgraded ND280 will be a novel SFGD detector con-
sisting of 1 cm3 scintillation cubes, with a much lower threshold for detecting protons. SFGD
will be sandwiched between two High Angle TPCs providing significantly better angular
acceptance. The Author performed the first sensitivity studies using simulated event sam-
ples from the upgraded ND280. They demonstrated that the upgraded detector can reduce
errors for many systematic parameters even by half. However, because the new interaction
target mostly consists of carbon, SFGD samples don’t constrain 16 O-related parameters im-
portant for FD. Hence, to fully utilise the upgraded ND280, it is necessary to work a on better
understanding of the 12C and 16O parameters correlations in the near future.

The successor to the T2K experiment, called Hyper-Kamiokande (HK) [123], is already
under construction and is expected to start taking data in 2027. With orders of magnitude
higher expected data statistics, mostly thanks to 8 times larger FD mass, it should be able
to resolve the CP violation mystery with ∼ 5σ for a large fraction of possible δCP values.
HK results will be dominated by systematic errors rather than statistical ones as in the case
of T2K. Therefore, the Intermediate Water Cherenkov Detector [120] is going to be built in
order to help constrain 16O-related uncertainties. ND280 will still serve as ND for the HK
experiment, and the tools and models are likely going to be inherited by HK, including the
work within this Thesis dedicated to reducing systematic errors.
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A
Additional Studies

New weapons require new tactics. Never put new wine into old bottles.

Heinz Guderian

A.1 Proton-Tagged Samples in RHC Mode

In the main part of the Thesis, the impact of proton-tagged samples in FHC was discussed
in detail. Here, we briefly present the properties and benefits of proton-tagged samples in
RHC mode, as they might be included in future T2K analysis. We shall remind that there is
no photon tagging for RHC yet, although there is ongoing work to introduce it.

Proton Tagging in ν̄µ samples in RHC

In the CCQE interaction of an antineutrino, there is no outgoing proton: ν̄l + p→ l+ + n.
Proton can only be ejected as a result of FSI or in more energetic processes like RES. Due
to that fact, we expect a much lower number of reconstructed protons compared to FHC
samples.

Fig. A.1 presents the number of reconstructed isoFGD or TPC-matched protons in the
CC0π RHC samples. One outstanding feature is that in RHC there is a comparable number
of isoFGD protons and TPC-matched protons, which is a consequence of lower energies.
Contrary to FHC samples, events with more than one reconstructed proton are almost non-
existent. This is an expected outcome worth emphasizing, as samples are obviously different
from their FHC counterparts.

Fig. A.2 shows the kinematic properties of µ+ candidate for RHC CC0π FGD1 sample and
after splitting it based on the proton tagging. It can be observed that CC0π-0p is very similar
to CC0π, whereas CC0π-Np is a significantly different sample, as expected dominated by
RES, the main source of protons in RHC mode. Furthermore, µ+ momenta are much higher
for CC0π-Np sample. However, problems with events statistics can be observed for CC0π-
Np samples.

Predicted event rates are summarized in Tab. A.1: we expect ∼ 600 events for CC0π-Np,
which is a very low number when compared to most of currently used samples, with the
RHC FGD2 CC1π sample having the lowest event rate of 660 events. Therefore, once T2K
collects more data in RHC mode, using proton-tagged samples in RHC will become much
more feasible.

For a better understanding of the properties of the proton-tagged samples in RHC mode,
Tab. A.2 outlines the reaction breakdown. We find that over 20% of events in CC0π-Np
come from CCQE, which could be the effect of FSI or particle misidentification. Tab A.3 is
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FIGURE A.1: Number of reconstructed protons in CC0π RHC samples. Most events have no recon-
structed protons.

RHC
CC0π CC0π-0p CC0π-Np

FGD1 8676 7992 684
FGD2 8608 8047 561

TABLE A.1: Data event rates in CC0π RHC samples before and after proton tagging cut.
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FIGURE A.2: Muon momentum and cos θµ distributions for FGD1 CC0π RHC samples before and
after proton tagging cut.
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summarizing PID performance for protons in RHC. PID for TPC-matched protons works
equally well as in FHC. However, isoFGD PID performs worse, with high contamination of
π−, which is the consequence of FGD reconstruction not distinguishing the sign of parti-
cle charge. Moreover, there are usually no Michel electrons coming from π− → µ− decays,
which could help to separate protons from pions. Overall PID for proton is performing well
(83% for FGD1 and 70% for FGD2), but not as good as for FHC, due to a higher fraction of
isoFGD protons to TPC-matched protons on top of the aforementioned problem with pions.
However, for true CCQE events, proton PID is around 97%, indicating that most of the recon-
structed protons in CCQE events originate from FSI. According to Tab. A.2, a large fraction
of reconstructed protons in RHC samples comes from RES or other processes such as DIS1.

RHC
CC0π CC0π-0p CC0π-Np

CCQE 61% 64% 22%
2p2h 9% 9% 11%
RES 14% 12% 38%

Other 16% 15% 29%

TABLE A.2: Reaction breakdown for CC0π RHC samples before and after proton tagging cut.

FGD1 FGD2
isoFGD (%) TPC-matched (%) isoFGD (%) TPC-matched (%)

proton 69.32 97.85 30.12 98.14
π+ 1.34 0.61 4.66 0.47
π− 24.43 0.03 22.36 0.11
µ− 0.82 0.15 4.66 0.31
µ+ 0.38 0.55 1.24 0.40

Other 3.79 0.81 36.96 0.57

TABLE A.3: True identity of proton candidate for CC0π RHC samples.

Fig. A.3 shows the reconstructed momentum of the proton candidate. In general, the
distributions are similar to those of FHC samples; however, the data/MC agreement is worse,
but also the statistical fluctuations due to small statistics are larger.

Fig. A.4 shows the true Q2 distributions. Similarly to FHC samples, we observe that
proton-tagged samples have different distributions of this variable. As a consequence, the
samples would help to constrain many cross-section parameters (like Pauli blocking).

Proton Tagging in νµ samples in RHC

CCQE interaction of the neutrino component of RHC produces a proton (before FSI), so we
expect behaviour more similar to that of FHC samples. On the other hand, the RHC νµ con-
tamination component2 tends, on average, to have higher energy than νµ in FHC; therefore,
the properties of the samples will be different.

Fig. A.5 shows the number of reconstructed isoFGD or TPC-matched protons in CC0π
RHC BKG samples. First of all, we can observe that there are plenty of reconstructed protons;
however, due to higher neutrino energies, we can expect differences in distributions with
respect to FHC.

1See Tab. 3.2 on page 42 for a comparison with FHC.
2Also called RHC BKG.
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FIGURE A.3: Momentum distributions of proton candidates in CC0π-Np RHC samples.

2True Q
0 100 200 300 400 500 600 700 800 900 1000

#e
ve

nt
s/

50
 

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Integral  7856.78

Data
CCQE
2p2h
RES
DIS
COH
NC

µνCC-

eν, CC-eνCC-
other
out FV

µsand 

-0p RHC FGD1πCC0
Integral       0

Data
CCQE
2p2h
RES
DIS
COH
NC

µνCC-

eν, CC-eνCC-
other
out FV

µsand 

(A) CC0π-0p

2True Q
0 100 200 300 400 500 600 700 800 900 1000

#e
ve

nt
s/

50
 

0

10

20

30

40

50

60

70

Integral  611.451
Data
CCQE
2p2h
RES
DIS
COH
NC

µνCC-

eν, CC-eνCC-
other
out FV

-Np RHC FGD1πCC0
Integral       0

Data
CCQE
2p2h
RES
DIS
COH
NC

µνCC-

eν, CC-eνCC-
other
out FV

(B) CC0π-Np

FIGURE A.4: True Q2 distributions for FGD1 proton-tagged samples in RHC.
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FIGURE A.5: Number of reconstructed protons in CC0π RHC BKG samples. Most events have no
reconstructed protons.

Fig. A.6 presents the muon kinematic variables for νµ CC0π and samples based on proton
tagging cut. We observe much higher µ− momentum than in FHC or for µ+ in RHC ν̄µ sam-
ples. Tab A.4 summarizes the expected event rates. Comparing this table with an analogous
table 6.1 for FHC samples, we can conclude that the overall fractions of CC0π-0p and CC0π-
Np are comparable between FHC and RHC BKG samples, although the relative number of
CC0π-Np is larger3 in RHC BKG samples because of higher neutrino energies.

RHC BKG
CC0π CC0π-0p CC0π-Np

FGD1 3714 2477 1237
FGD2 3537 2544 993

TABLE A.4: Data event rates in CC0π RHC BKG samples before and after proton tagging cut.

Tab. A.5 outlines the reaction breakdown for RHC BKG proton-tagged samples. The frac-
tions of interaction modes are similar to FHC samples, although due to higher neutrino en-
ergies, some effects are less impressive. We can see that the CC0π-0p sample has slightly
higher purity for CCQE than CC0π, though the difference is much smaller than in FHC sam-
ples. CC0π-Np has a higher fraction of all other interactions.

Fig. A.7 presents the distributions of proton candidate momentum, which are similar to
FHC samples, while the true Q2 distributions are shown in Fig. A.8. Similarly to FHC sam-
ples, the proton-tagged samples have different Q2 distributions, with CC0π-0p having on
average lower values than CC0π-Np.

343% vs. 49% (39% vs. 32%) for FHC and RHC BKG samples in FGD1 (FGD2), respectively.
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FIGURE A.6: Muon momentum and cos θµ distributions for FGD1 CC0π RHC BKG samples before
and after proton tagging cut.

RHC BKG
CC0π CC0π-0p CC0π-Np

CCQE 40% 42% 35%
2p2h 8% 7% 10%
RES 25% 21% 25%

Other 27% 30% 30%

TABLE A.5: Reaction breakdown for CC0π RHC BKG samples before and after proton tagging cut.
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FIGURE A.7: Momentum distributions of proton candidates in CC0π-Np RHC BKG samples.
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FIGURE A.8: True Q2 distributions for FGD1 proton-tagged samples in RHC BKG.
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Tab. A.6 summarizes the PID performance for protons coming from νµ interactions in
RHC mode. The performance of TPC PID is very similar as for both FHC and ν̄µ RHC sam-
ples, whereas the performance of isoFGD PID is much better than for ν̄µ RHC samples and
similar to that obtained in FHC selection. The main reason is a much smaller number of π−

produced in νµ interactions with regard to ν̄µ interactions, and π+ can be tagged and rejected
using a signal from Michel electron. The overall accuracy of proton PID is 95% for FGD1 and
89% for FGD2.

FGD1 FGD2
isoFGD (%) TPC-matched (%) isoFGD (%) TPC-matched (%)

proton 90.52 97.91 67.86 98.01
π+ 5.39 1.21 16.96 1.23
π− 1.67 0.02 3.87 0.03
µ− 0.07 0.00 0.92 0.00
µ+ 0.24 0.17 1.37 0.20

Other 2.10 0.69 9.02 0.52

TABLE A.6: True identity of proton candidate for CC0π RHC BKG samples.

Conclusions

In general, the inclusion of proton-tagged samples in RHC appears to be a valid point to
investigate; however, the events rates, particularly in RHC ν̄µ CC0π-Np, would be quite
low for the number of POT currently accumulated by T2K. Once this obstacle is gone, the
new samples could strengthen sensitivity to many effects, as FHC proton-tagged samples
demonstrated, but also explore new effects like indirectly probing neutrons interacting via
FSI. It is worth to remind of the upgrade to the T2K beamline (see Section 2.7) which will
result in T2K being able to collect data faster.
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A.2 Multi-π and Multi-π-Photon-Proton Selections

This Section is devoted to the estimation of the impact of new ND280 samples, especially
proton-tagged samples.

Fig. A.9 presents an overlay of selected posterior distributions from two Asimov fits, one
using multi-π samples and the other using multi-π-photon-proton samples. We see that the
addition of proton information increases sensitivity to SF parameters, for example, the nor-
malisation of SRC. Furthermore, we notice a smaller error for 2p2h norm, which mostly comes
from the better separation of 2p2h and CCQE interactions thanks to the proton-tagged sam-
ples. Error reduction for 2p2h shape dial is the consequence of different q0/|~q3| distributions
in both proton-tagged samples. The increase in sensitivity for nucleon FSI is most significant
as the error is decreased by 1/3. This outcome is expected, as this dial was introduced be-
cause of proton-tagged samples. SPP π0 parameter error decreased thanks to the inclusion
of photon information. The case of Res Eb

12C is particularly interesting, because reduced
uncertainty for this dial is the result of both photon and proton tagging.
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FIGURE A.9: Marginalised posterior distributions for selected parameters from Asimov fits using
multi-π and multi-π-photon-proton selections.

Lastly, predicted FD spectra are presented in Fig. A.10. Improvements can be observed for
some samples and kinematics bins. It is also worth reminding that FD does not currently use
nucleon information. However, there is ongoing work to include neutron-tagged samples at
FD and for those, the constraining of nucleon-related effects will become more important.
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FIGURE A.10: FD posterior predictive distributions obtained using ND280 constraints from two dif-
ferent Asimov fits: one using the multi-π selection and the other using the multi-π-photon-proton

selection. The uncertainties come only from ND-constrained parameters.
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A.3 ND280 Detector Uncertainty - Efficiency of isoFGD Tracks Re-
construction

FGD hybrid tracking efficiency describes how likely it is to reconstruct a track contained
within FGD (isoFGD track) in the presence of a longer track passing to a TPC (TPC-matched
track, usually the muon candidate). In such a case, it can happen that the global reconstruc-
tion algorithm may wrongly assign the hits left by the isoFGD track to the TPC-matched
track, which will result in not reconstructing the isoFGD track. Such a study was performed
in 2014 using an older reconstruction algorithm, and the efficiencies were only calculated for
FHC (identical efficiencies were assumed for RHC runs). Since this efficiency and the related
systematic error are important for short proton tracks, the Author has revisited them before
implementing proton-tagged samples.

To estimate the error, data or MC events with a muon candidate and without recon-
structed isoFGD tracks are selected. Proton, π+ or π− are then separately simulated using
GEANT4 Particle Gun, starting from the same vertices as the muon candidates in selected
data/MC events: 100 isotropically distributed Particle Gun tracks per each event. The hits
created by Particle Gun tracks in the detector are inserted into the corresponding data or MC
event (for each Particle Gun event separately), creating so-called hybrid events, and the re-
construction procedure is run again. Finally, the efficiency for each particle is obtained as the
ratio of the number of events with reconstructed isoFGD track to the number of events with
true isoFGD track, separately for data and MC.

Fig. A.11 shows the proton reconstruction efficiency as a function of Particle Gun proton
momentum, cos θ relative to the detector axis, and cos θ relative to the muon candidate track
marked as cos (θ HMNT, Stub), for two binning schemes. The values obtained for coarse
binning are used in the T2K framework for systematic errors propagation. One interesting
feature is that the efficiency drops at cos (θ HMNT, Stub) ∼ 1, which is due to the Particle
Gun proton travelling very close to the muon candidate when the FGD hits produced by the
proton are often associated to the muon track. This effect is well reproduced by the detector
Monte Carlo and the overall data/MC agreement is very good.

Fig. A.12 depicts the fractional error as a function of muon momentum for FGD1 CC0π
samples in FHC and RHC, using the efficiencies calculated for pions previously and in this
study. The validations were performed for ND280 samples before the inclusion of proton-
and photon-tagged samples to make the comparison with older analysis easier. In the left
plot, made for FHC, we can see that the updated values result in an overall smaller error,
which is the consequence of improved reconstruction. The right plot shows the analogous
errors for RHC. Since the previous study assumed the same efficiencies for RHC as for FHC,
we show also the error for old and new FHC efficiencies on RHC for comparison, marked
by the blue and red lines. The green line shows the impact of using RHC hybrid events
(prepared by the Author) instead of FHC (as in the old analysis) for error calculation, and
we can see that error decreased significantly. Furthermore, in the previous study, the same
efficiency was assumed for π− as for π+; thus, the purple line shows the impact of using
efficiencies obtained by the Author for π− Particle Gun tracks instead of π+. The last change
has a negligible effect; nevertheless, the confirmation of this fact was necessary, as it was not
checked in the old study.
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FIGURE A.11: Proton reconstruction efficiency for data and MC as a function of proton momentum,
cos θ relative to the detector axis and cos θ relative to the muon candidate direction (for two binning

schemes). All plots are produced for FHC data and MC.
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A.4 Fit Binning Matrix

As it was discussed in Section 4.2, the original ND280 covariance matrix has ∼5000 bins
(called fit binning), exactly the same number as for the −2 logLStat calculation (see Eq. 5.11).
Each diagonal element of the fit binning covariance matrix corresponds to one kinematic bin
for a particular sample used in the analysis.

There are several reasons why the fit binning matrix is not used in the official ND280
analysis. Firstly, the frequentist framework (BANFF) or, in general, the Minuit fitter struggles
with such a high number of parameters, while MCMC can cope with it. However, it requires
additional diagnosis of MCMC (see Section 5.4).

Furthermore, such an increase in the number of systematic parameters makes fit slower4,
but most importantly, it requires massive amounts of memory as we have to store the value of
each parameter for each step. For comparison, a chain with 4 million MCMC steps using a fit
binning matrix requires 50 GB memory, while a standard chain with 4 million steps around
4 GB. Therefore, we use the process of bin merging to reduce the number of bins to ∼500.
Such a smaller matrix will be called the standard covariance matrix throughout this Section.
The presented study aims to evaluate whether the process of bin merging biases the results.

Results of the ND280-only data fits with the standard covariance matrix and the fit bin-
ning matrix are compared in Fig. A.13. It is clearly visible that both fits give almost identical
results.

Fig. A.14 shows a comparison of the posterior distributions for the CCQE Eb parameters
from both fits. The results are also consistent, but we can see that the fitter has more freedom
to explore the phase space when using the fit binning matrix.

Fig. A.15 shows the predicted FD spectra after propagating the ND constraints from the
two fits. The uncertainties on the plots come only from ND-constrained parameters (FD
detector systematic errors are not included). The FD posterior predictive distributions are al-
most identical, confirming that the bin merging process used in the standard ND280 detector
covariance matrix doesn’t impact the results.

4A single MCMC step takes around 20% more time.



A.4. Fit Binning Matrix 141

Q
E

A
M

 n
or

m
 1

2
H

ig
h 

Q

 n
or

m
 2

2
H

ig
h 

Q

 n
or

m
 3

2
H

ig
h 

Q

C
12

P
 S

he
ll 

M
F

 N
or

m
 

C
12

S
 S

he
ll 

M
F

 N
or

m
 

C
12

S
R

C
 N

or
m

 

C
12  

M
is

s
P

 S
he

ll 
M

F
 P

C
12  

M
is

s
S

 S
he

ll 
M

F
 P

O
16

 S
he

ll 
M

F
 N

or
m

 
1/

2
P

O
16

 S
he

ll 
M

F
 N

or
m

 
3/

2
P

O
16

S
 S

he
ll 

M
F

 N
or

m
 

O
16

S
R

C
 N

or
m

 

O
16  

M
is

s
 S

he
ll 

M
F

 P
1/

2
P

O
16  

M
is

s
 S

he
ll 

M
F

 P
3/

2
P

O
16 M

is
s

S
 S

he
ll 

M
F

 P

ν
C

 
12

P
au

li 
B

lo
ck

in
g 

ν
O

 
16

P
au

li 
B

lo
ck

in
g 

ν
C

 
12

P
au

li 
B

lo
ck

in
g 

ν
O

 
16

P
au

li 
B

lo
ck

in
g 

C
12

O
pt

ic
al

 P
ot

en
tia

l 

O
16

O
pt

ic
al

 P
ot

en
tia

l 

P
ar

am
et

er
 V

al
ue

CCQE

0.5−

0

0.5

1

1.5

2

2.5

3

Q
E

A
M

 n
or

m
 1

2
H

ig
h 

Q

 n
or

m
 2

2
H

ig
h 

Q

 n
or

m
 3

2
H

ig
h 

Q

C
12

P
 S

he
ll 

M
F

 N
or

m
 

C
12

S
 S

he
ll 

M
F

 N
or

m
 

C
12

S
R

C
 N

or
m

 
C

12  
M

is
s

P
 S

he
ll 

M
F

 P

C
12  

M
is

s
S

 S
he

ll 
M

F
 P

O
16

 S
he

ll 
M

F
 N

or
m

 
1/

2
P

O
16

 S
he

ll 
M

F
 N

or
m

 
3/

2
P

O
16

S
 S

he
ll 

M
F

 N
or

m
 

O
16

S
R

C
 N

or
m

 
O

16  
M

is
s

 S
he

ll 
M

F
 P

1/
2

P

O
16  

M
is

s
 S

he
ll 

M
F

 P
3/

2
P

O
16 M

is
s

S
 S

he
ll 

M
F

 P

ν
C

 
12

P
au

li 
B

lo
ck

in
g 

ν
O

 
16

P
au

li 
B

lo
ck

in
g 

ν
C

 
12

P
au

li 
B

lo
ck

in
g 

ν
O

 
16

P
au

li 
B

lo
ck

in
g 

C
12

O
pt

ic
al

 P
ot

en
tia

l 

O
16

O
pt

ic
al

 P
ot

en
tia

l 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

P
N

N
N

 S
ha

pe

C
 n

p
12

2p
2h

 s
ha

pe
 

C
 n

n
12

2p
2h

 s
ha

pe
 

O
 n

p
16

2p
2h

 s
ha

pe
 

O
 n

n
16

2p
2h

 s
ha

pe
 

P
ar

am
et

er
 V

al
ue

2p2h

1−

0.5−

0

0.5

1

1.5

2

2.5

ν
2p

2h
 n

or
m

 ν
2p

2h
 n

or
m

 O
16

C
/

12
2p

2h
 n

or
m

 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

ν
2p

2h
 E

de
p 

Lo
w

 ν
2p

2h
 E

de
p 

H
ig

h 

P
N

N
N

 S
ha

pe

C
 n

p
12

2p
2h

 s
ha

pe
 

C
 n

n
12

2p
2h

 s
ha

pe
 

O
 n

p
16

2p
2h

 s
ha

pe
 

O
 n

n
16

2p
2h

 s
ha

pe
 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

 D
ec

ay
∆

R
S

 

µν
 N

or
m

 
0 π

S
P

P
 

µν
 N

or
m

 
0 π

S
P

P
 

P
ar

am
et

er
 V

al
ue

SPP

0

0.5

1

1.5

2

2.5

A 5
C R
E

S
A

M

π
 L

ow
 p

1/
2

N
on

-r
es

 I

1/
2

N
on

-r
es

 I

 D
ec

ay
∆

R
S

 

µν
 N

or
m

 
0 π

S
P

P
 

µν
 N

or
m

 
0 π

S
P

P
 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

µν
C

 
12

R
E

S
 E

b 

µν
O

 
16

R
E

S
 E

b 

µν
C

 
12

R
E

S
 E

b 

µν
O

 
16

R
E

S
 E

b 

P
ar

am
et

er
 V

al
ue

RES Binding Energy

0

10

20

30

40

50

60

µν
C

 
12

R
E

S
 E

b 

µν
O

 
16

R
E

S
 E

b 

µν
C

 
12

R
E

S
 E

b 

µν
O

 
16

R
E

S
 E

b 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

 F
S

I Q
E

 lo
w

 E
π  F

S
I Q

E
 h

ig
h 

E
π

 F
S

I P
ro

d.
π

 F
S

I A
bs

.
π

 F
S

I C
ex

 lo
w

 E
π  F

S
I C

ex
 h

ig
h 

E
π

N
uc

le
on

 F
S

I

P
ar

am
et

er
 V

al
ue

FSI

0

0.5

1

1.5

2

2.5

 F
S

I Q
E

 lo
w

 E
π  F

S
I Q

E
 h

ig
h 

E
π

 F
S

I P
ro

d.
π

 F
S

I A
bs

.
π

 F
S

I C
ex

 lo
w

 E
π  F

S
I C

ex
 h

ig
h 

E
π

N
uc

le
on

 F
S

I

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

  M
ul

ti 
T

ot
X

S
ec

π
M

  B
Y

 V
ec

to
r

π
M

 B
Y

 A
xi

al
π

M  M
ul

ti 
S

ha
pe

π
M

C
C

 B
Y

 D
IS ν

 n
or

m
 

π
C

C
 D

IS
/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
C

 M
is

c

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K ν

C
C

 N
or

m
 ν

C
C

 N
or

m
 µν/ eν

µν/ eν

P
ar

am
et

er
 V

al
ue

e
ν, CC coh, NC, πCC DIS, CC Multi 

1−

0.5−

0

0.5

1

1.5

2

2.5

C
12

C
C

 c
oh

. 

O
16

C
C

 c
oh

. 

  M
ul

ti 
T

ot
X

S
ec

π
M

  B
Y

 V
ec

to
r

π
M

 B
Y

 A
xi

al
π

M  M
ul

ti 
S

ha
pe

π
M

C
C

 B
Y

 D
IS ν

 n
or

m
 

π
C

C
 D

IS
/M

ν
 n

or
m

 
π

C
C

 D
IS

/M

C
C

 M
is

c

N
C

 c
oh

. γ
N

C
 1

N
C

 o
th

. N
D

28
0

N
C

 o
th

. S
K ν

C
C

 N
or

m
 ν

C
C

 N
or

m
 µν/ eν

µν/ eν

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

ν
C

 
12

C
C

Q
E

 E
b 

ν
C

 
12

C
C

Q
E

 E
b 

ν
O

 
16

C
C

Q
E

 E
b 

ν
O

 
16

C
C

Q
E

 E
b 

P
ar

am
et

er
 V

al
ue

CCQE Binding Energy

5−

0

5

10

15

ν
C

 
12

C
C

Q
E

 E
b 

ν
C

 
12

C
C

Q
E

 E
b 

ν
O

 
16

C
C

Q
E

 E
b 

ν
O

 
16

C
C

Q
E

 E
b 

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x

2−

0

2

Prior

Standard Matrix

Fit Binning Matrix

FIGURE A.13: Overlay of cross-section parameters from the fits using different ND280 covariance
matrices.
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FIGURE A.14: Overlay of posterior distributions for the CCQE Eb dials from the fits with different
ND280 covariance matrices.
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FIGURE A.15: FD posterior predictive distributions obtained using ND280 constraints from the fit
with the standard covariance matrix and with the fit binning matrix.
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A.5 Fake Data Studies

In the official ND280 fit, a particular set of neutrino interaction models is used. There are
many models available in the neutrino generators; however, generating MC with all possible
models would require huge computer resources, which are not available. However, what can
be done is to reweight MC to a different cross-section model and treat it as data (fake data).
Then, the fit of the official MC to the fake data is performed (Fake Data Study, FDS). This
allows to estimate the impact of using a different cross-section model but also whether the
current systematic parameters give enough freedom to account for such changes in predic-
tions.

In the official T2K analysis, the SF model is used, while in the past (before 2020), T2K
used the Local Fermi Gas (LFG) model [124]. As the first FDS, we will discuss changing SF
to LFG. In Fig. A.16 we can see that the nominal MC overestimates the fake data, so we can
expect some parameters to be strongly shifted after the fit. When looking at the exemplary
posterior predictive distribution, we see very good agreement with fake data, which means
the cross-section model offers enough freedom to the fitter to accommodate for the model
change.
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FIGURE A.16: Nominal MC and Posterior Predictive distribution for SF to LFG fake data fit.

In Fig. A.17 we compare the parameter values from Asimov fit and FDS. We observe that
Pauli blocking dials are pulled to higher values, resulting in the suppression of low Q2, which
is expected as nominal MC overestimates fake data.

In Section 4.4 it was mentioned that we use three high Q2 norm parameters rather than
3-component or Z-expansion models [35]. Both models cannot be used in the fit, as they
are described by a few parameters that are highly dependent on each other. This means
that a one-dimensional spline response will not work properly, as varying two parameters
simultaneously will not give the same response as varying them separately. In such a case,
one would need multi-dimensional splines, which are currently not implemented. However,
it is possible to use the alternative models in fake data studies, as we need to reweight MC
only once there.

Firstly, let’s consider the 3-component FDS results presented in Fig. A.18. Values of high
Q2 norm parameters are strongly pulled from their priors, as expected, because those pa-
rameters are supposed to mimic the effect of the 3-component model. Fig. A.19 shows an
exemplary posterior predictive distribution and fake data predictions, both of which are in
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FIGURE A.17: Comparison of postfit parameter values from Asimov fit and SF to LFG FDS.

very good agreement, demonstrating that the fit has converged, and thus we can conclude
that our model provides enough freedom.

As for Z-expansion FDS, the results are shown in Fig. A.20. Since Z-expansion has a much
smaller impact compared with 3-component, the parameters are in most cases very close to
their prior values. This conclusion is reinforced by studying the posterior predictive distri-
bution and fake data predictions in Fig. A.21.

In total, 14 FDS were performed. Those mentioned here are the most interesting, consider-
ing the presented results. Other fake data studies include reweighting to CRPA Constrained
Random Phase Approximation (CRPA) [125, 126], Martini 1π model [127] or changing the
resonant model by modifying density matrix elements in the Feynman-Kislinger-Ravndal
(FKR) model [47].
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FIGURE A.18: Comparison of postfit parameter values from Asimov fit and 3-component FDS.
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FIGURE A.20: Comparison of postfit parameter values from Asimov fit and Z-expansion FDS.
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FIGURE A.21: Nominal MC and Posterior Predictive distribution from Z-expansion fake data fit.
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A.6 Validating Against the BANFF Framework

In this Section, we show the selected results of the cross-validation of the BANFF and MaCh3
frameworks. For the sake of brevity, we only present examples of validation plots, while in
actual analysis such plots were prepared and analysed for each parameter and each sample.

Fig. A.22 presents the LLH scans for both fitters, showing perfect agreement. A similar
agreement was found for other parameters, which are not shown here. As was mentioned
before, both fitters use the same event samples and have the same set of systematic parame-
ters5.
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FIGURE A.22: Comparison of selected LLH scans for BANFF and MaCh3.

Results of ND280-only data fit for both fitters are shown in Fig. A.23 and A.24. Since
BANFF has two different implementations of Eb, results for both are presented in blue and

5Implementation of CCQE Eb is different, though.
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purple colours. Very good agreement is observed, which is even more compelling consid-
ering that MaCh3 shows HPD, while BANFF results present the best-fit point with the error
calculated using Hessian. On the top-left plot, one can see that the Pauli blocking and opti-
cal potential parameters are different. BANFF, contrary to MaCh3, assumes each parameter
distribution is Gaussian; however, BANFF’s best fit is overlapping with one of the peaks in
non-Gaussian MaCh3 posterior distribution. Furthermore, as shown in Appendix A.10, Pauli
blocking and optical potential parameters are strongly correlated with CCQE Eb parameters,
which are implemented differently in both fitters. In summary, those differences are expected
due to framework differences and are well understood. When it comes to 2p2h shape 12C np,
the difference is related to the spline mirroring being used at BANFF due to shortcomings of
MINUIT6. If we make a mirror reflection of the BANFF point with respect to −1, the results
are identical to MaCh3, hence the conclusion that both fitters agree.
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FIGURE A.23: Overlay of postfit cross-section parameters for BANFF and MaCh3.

6At boundary function is not differentiable, impacting Hessian matrix calculations.
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FIGURE A.24: Overlay of postfit flux parameters for BANFF and MaCh3.

Finally, we compare the ND spectra in Fig. A.25 for FGD1 proton-tagged samples. For
MaCh3 those are posterior predictive distributions, while for BANFF the spectra were reweighted
to the best-fit parameters values. Even though the methods differ, the results are consistent.
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FIGURE A.25: Overlay of data, BANFF spectra at best-fit values and MaCh3 posterior predictive dis-
tributions for proton-tagged samples in FGD1.
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A.7 Alternative Likelihood - IceCube

In the official ND280 analysis, the Poisson likelihood with the Barlow-Beeston correction was
used (Eq. 5.11 on page 72); however, there is an alternative likelihood definition described by
the IceCube collaboration in equation 3.16 in [128], which takes the form:

−2logL = −2 ∑
i

(
ai log(bi) + log[Γ(Ndata

i + a)]− (Ndata
i + a) log(bi + 1)− log[Γ(ai)]

)
,

(A.1)
where the auxiliary variables ai = Ngen

MC,ibi + 1 and bi = Ngen
MC,i/ ∑ w2

i .
An example of an LLH scan using IceCube likelihood is shown in Fig. A.26. What may

look odd is the fact that it is not equal to 0 at prior values, as in the case of Poisson+Barlow-
Beeston likelihood. As it will be shown later, this poses no threat to fitter convergence, as the
offset is constant and cancels out when we calculate ∆χ2.
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FIGURE A.26: Example of IceCube LLH scan.

Barlow-Beeston formalism neglects the variance of a sum of the square of the weight
(w2

i ) [128], hence it is only valid if the weight distribution for each process is narrow. As
a consequence, it was necessary to keep values of w2

i at their priors when calculating the
Barlow-Beeston correction in the official ND280 analysis. According to the authors of IceCube
LLH, their likelihood includes the variance of a sum of the square of the weight; thus, when
using IceCube LLH, it was possible to update w2

i values during the fit7. In this Section, we
compare fit results obtained with Poisson LLH, Poisson LLH with Barlow-Beeston correction,
and IceCube LLH. In IceCube LLH, w2

i were updated during each iteration of the fit, whereas
for Poisson LLH with Barlow-Beeston correction, w2

i were fixed at prior values. For Poisson
LLH, there is no term depending on w2

i .
The results of the ND280-only data fit are shown in Fig. A.27. As can be seen, the choice

of likelihood does not impact the results. The reason might be that T2K ensures to have
significantly more generated MC than data, resulting in a small MC statistical error.

As the final proof, Fig. A.28 shows the predicted FD spectra after the ND constraints
coming from the aforementioned fits. Since the differences at ND were minimal, they are also
negligible at FD.

In conclusion, the choice of LLH and fixing w2
i for the Barlow-Beeston correction calcu-

lation doesn’t bias the results. IceCube LLH is statistically more correct, though. However,
it was not used in the official ND280 analysis due to technical reasons, as the second fitter
(BANFF) did not have IceCube LLH implemented.

7According to the authors, IceCube LLH performs much better for a low amount of data, although this isn’t
tested here.
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FIGURE A.27: Cross-section parameters overlayed for fits with different LLH definitions.
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FIGURE A.28: FD posterior predictive distributions obtained using ND280 constraints from the fits
with different LLH definitions. The uncertainties come only from ND-constrained parameters.
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A.8 Posterior Predictive p-Value

Since this analysis was performed using Bayesian reasoning, in this Section the Bayesian p-
value, also known as the posterior predictive p-value, is discussed. The approach outlined
here is based on [129–131].

Firstly, an ensemble of parameter values explored by the MCMC, once the stationary state
has been reached, is used. We draw parameter values from a random MCMC step after burn-
in8 stage and build the ND280 predictions for each sample (by reweighting the nominal MC to
drawn parameters values). Then, we statistically fluctuate the drawn prediction by applying
Poissonian smearing to each bin. Afterwards, for each sample, we calculate −2 logLStat be-
tween the drawn prediction and its statistical fluctuation: −2LLH(Draw Fluc, Draw), and simi-
larly between the drawn prediction and the data distribution: −2LLH(Data, Draw). We repeat
this process a few thousand times. An example of −2LLH(Data, Draw) vs. −2LLH(Draw Fluc,
Draw) is shown in Fig. A.29. In this example, we only consider the p-value for one ND280
sample (FGD1 FHC CC-Other-0γ), but depending on chosen ensemble, a global p-value for
all samples can be calculated as well.

One can think of −2LLH(Data, Draw) as a term describing the systematic variance as each
draw has different values of systematic parameters. An increase in the number of dials would
result in a greater spread of this distribution. −2LLH(Draw Fluc, Draw) informs about the
vulnerability to statistical fluctuations.

To calculate the p-value, we count the draws with the −2LLH(Data, Draw) smaller than
−2LLH(Draw Fluc, Draw) (below the red line on the picture). In such a case, we can say the
draw is likely given the data distribution. The p-value is the ratio of number of draws below
the y = x line to all considered draws.
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FIGURE A.29: Example of−2LLH(Data, Draw) vs. −2LLH(Draw Fluc, Draw) for FGD1 FHC CC-Other-
0γ sample. Bayesian Posterior Predictive p-value is calculated as the ratio of points below the y = x

line to all considered draws and in this example is p-value = 0.6.

We identify two methods for calculating the p-value, statistically fluctuating two differ-
ent distributions. The first method uses the prediction from the draw −2LLH(Draw Fluc,
Draw), and the other uses the averaged prediction for all draws and its statistical fluctuation
−2LLH(Pred Fluc, Draw). On average, we expect the p-value from the second method to be
better.

Bayesian posterior predictive p-value is meant to estimate how likely we are to observe
the data described by our postfit model if we were to take the same amount of data again.
Therefore, it is a much more “demanding” p-value test than the frequentist p-value, which
uses the larger prior parameter phase space. Furthermore, since we are propagating the

8See Section 5.4 on page 76.
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ND280 fit result to a much lower statistics environment at SK, a poor p-value at ND280 does
not imply a poor p-value at SK, due to the much larger impact of the statistical uncertainty at
SK compared to ND280.

Tab. A.7 shows individual p-values for each ND280 sample, and many of those are low.
Interestingly, the FGD1 FHC CC-Photon sample has a p-value of 0, whereas the FGD1 FHC
CC-Other-0γ sample has a p-value of ∼0.6, which is very good. In previous analysis [80],
before the introduction of the photon tagging, CC-Other was the sample with p-value = 0.
One interpretation is that removing events with a photon from CC-Other improved the p-
value and this might hint at our limited knowledge regarding π0 production. However, it is
also important to recognise the relevance of the change in the event count of the CC-Other
sample in the two analyses; in the current analysis, the sample has shrunk by 80% (from
8000 events to 1700 events), which introduced much larger statistical uncertainty compared
to the systematic uncertainty. Furthermore, we can see that the p-values for respective FGD1
and FGD2 samples are not consistent, suggesting differences in how well the interactions in
the two are modelled. Finally, we can observe that, as expected, the fluctuation of averaged
prediction results in a higher or equal p-value than the fluctuation of the draw. This is ex-
pected, as the aim is to estimate the vulnerability to statistical fluctuations, and the averaged
prediction resembles data more than a single draw.

Sample p-value
Fluctuation of Draw Fluctuation of Prediction

FGD1 FHC CC0π-0p-0γ 0.008 0.015
FGD1 FHC CC0π-Np-0γ 0.022 0.032
FGD1 FHC CC1π-0γ 0.005 0.006
FGD1 FHC CC-Other-0γ 0.577 0.615
FGD1 FHC CC-Photon 0.000 0.000
FGD2 FHC CC0π-0p-0γ 0.015 0.029
FGD2 FHC CC0π-Np-0γ 0.379 0.435
FGD2 FHC CC1π-0γ 0.100 0.116
FGD2 FHC CC-Other-0γ 0.427 0.465
FGD2 FHC CC-Photon 0.033 0.048
FGD1 RHC CC0π 0.001 0.001
FGD1 RHC CC1π 0.013 0.018
FGD1 RHC CC-Other 0.022 0.025
FGD2 RHC CC0π 0.001 0.001
FGD2 RHC CC1π 0.106 0.118
FGD2 RHC CC-Other 0.034 0.045
FGD1 RHC BKG CC0π 0.022 0.028
FGD1 RHC BKG CC1π 0.010 0.013
FGD1 RHC BKG CC-Other 0.042 0.044
FGD2 RHC BKG CC0π 0.021 0.028
FGD2 RHC BKG CC1π 0.005 0.007
FGD2 RHC BKG CC-Other 0.132 0.151
Global 0.000 0.000

TABLE A.7: Posterior predictive p-values for each ND280 sample.

The global p-value is 0.00 using both described methods, as shown in Fig. A.30. While it
is very discouraging, an identical p-value was obtained in the previous analysis [80]. How-
ever, this doesn’t discredit T2K analysis. Firstly, we will discuss why such results do not
compromise the analyses and then what can be done to improve the p-value in the future.
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FIGURE A.30: Distribution of−2LLH(Data, Draw) vs. −2LLH(Draw Fluc, Draw) using the two methods
described in the text for all ND280 samples.

Since the main results of T2K analysis are the oscillation parameters and the ND280-only
fit is only an intermediate step, we should study more carefully the p-value for FD analy-
sis. Fig. A.31 presents the distribution of −2LLH(Data, Draw) vs −2LLH(Draw Fluc, Draw)
obtained in the same manner, but for all six FD samples from ND+FD joint-fit. In this case,
the global p-value is very good and equal to 0.86. Since FD has significantly fewer events,
it is no surprise that by collecting more data we would obtain better results, as this is the
interpretation of the posterior predictive p-value.
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FIGURE A.31: Distribution of −2LLH(Data, Draw) vs −2LLH(Draw Fluc, Draw) for all FD samples.

Additional tests were performed to validate and better understand the interpretation of
this p-value. In the first test, we sampled from the official ND280-only fit, while only a limited
number of POT was used for creating the predictions. This is done to mimic FD-like p-value:
as the systematic error is constrained in the same way, the spread of -2LLH(Draw Fluc, Draw)
is bigger with fewer data, because we become more vulnerable to statistical fluctuations.
In Fig. A.32 one can clearly observe that reducing the available data sets allows to obtain
better p-value at ND. The results may seem obvious; however, since ND and FD use different
frameworks for calculating p-value it was important to perform those checks as they haven’t
been done before.

An additional test was performed to finally confirm, that good FD p-value is driven by the
statistical fluctuations. −2LLH(Data, Draw) RMS divided by−2LLH(Draw Fluc, Draw) RMS is
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(A) 97.38×1019 POT, p-value = 0.0003 (B) 8.05×1019 POT, p-value = 0.17

FIGURE A.32: Distribution of −2LLH(Data, Draw) vs −2LLH(Draw Fluc, Draw) obtained by sampling
from fit with the full data set and calculating the test statistics using only part of collected data.

shown in Tab. A.8. As can be seen, FD and ND with a restricted number of POT have a small
relative spread of −2LLH(Data, Draw) compared to −2LLH(Draw Fluc, Draw), while the sit-
uation changes significantly for ND with the full statistics. Such a case might be interpreted
as ND280 having too much data given its systematic model, suggesting a shortcoming in the
T2K uncertainty model. The cross-section model is certainly not perfect, as was mentioned
several times in the Thesis (for example, in Section 7.1.1). However, what needs changes most
is the treatment of ND detector systematics.

ND280
8.05×1019 POT 202.12×1019 POT FD

11% 60% 20%

TABLE A.8: −2LLH(Data, Draw) RMS divided by −2LLH(Draw Fluc, Draw) RMS for p-value in three
different configurations.

In the official analysis, the ND280 covariance matrix after bin merging is used (see Ap-
pendix A.4). This can lead to a lower p-value as, naively thinking, the fit binning matrix
should result in a much higher variance of -2LLH(Draw Fluc, Draw). T2K collaboration is
working on introducing splines for detector systematic parameters in the same way that
cross-section dials are handled. This way, pion SI, for example, would be treated similarly
to cross-section dials.

Still, it was possible to calculate the p-value using the fit binning matrix. Tab. A.9 sum-
marizes the p-value for each sample using both ND280 covariance matrices. It is clear that,
when using fit binning, the p-value is better for the majority of samples. Unfortunately, the
global p-value is still 0.

To better understand why the analysis with the fit binning ND280 covariance matrix gives
better p-values, we checked the distributions of −2LLH(Data, Draw) presented in Fig. A.33.
When using the fit binning matrix, the spread is greater: 8.5 in comparison with 4.9 for
the standard covariance matrix. The fit binning matrix has more parameters, which trans-
lates to greater variation; hence the p-value is better. Furthermore, when the fit binning is
used, −2 logLStat = 366 compared to 387 for the standard covariance matrix, indicating
a marginally better fit.
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Sample p-value Fluctuation of Prediction
Standard Binning Fit Binning

FGD1 FHC CC0π-0p-0γ 0.015 0.040
FGD1 FHC CC0π-Np-0γ 0.032 0.014
FGD1 FHC CC1π-0γ 0.006 0.020
FGD1 FHC CC-Other-0γ 0.615 0.624
FGD1 FHC CC-Photon 0.000 0.000
FGD2 FHC CC0π-0p-0γ 0.029 0.056
FGD2 FHC CC0π-Np-0γ 0.435 0.638
FGD2 FHC CC1π-0γ 0.116 0.156
FGD2 FHC CC-Other-0γ 0.465 0.510
FGD2 FHC CC-Photon 0.048 0.061
FGD1 RHC CC0π 0.001 0.007
FGD1 RHC CC1π 0.018 0.018
FGD1 RHC CC-Other 0.025 0.058
FGD2 RHC CC0π 0.001 0.024
FGD2 RHC CC1π 0.118 0.159
FGD2 RHC CC-Other 0.045 0.084
FGD1 RHC BKG CC0π 0.028 0.044
FGD1 RHC BKG CC1π 0.013 0.016
FGD1 RHC BKG CC-Other 0.044 0.048
FGD2 RHC BKG CC0π 0.028 0.046
FGD2 RHC BKG CC1π 0.007 0.008
FGD2 RHC BKG CC-Other 0.151 0.202
Global 0.000 0.000

TABLE A.9: Posterior predictive p-values for each sample using MaCh3 fits with different ND280
covariance matrices.
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FIGURE A.33: −2LLH for data and randomly selected draws using the standard ND280 covariance
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value for posterior predictive. Both plots show the results for FGD1 FHC CC0π-Np-0γ sample.
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A.9 Impact of ND Detector Uncertainty on FD Prediction Error

ND280 detector systematic errors are not propagated directly to FD; however, that doesn’t
mean that they have no impact on FD spectra uncertainties. This study aims to evaluate
how big this effect is. Firstly, we extract the HPD of the ND280 detector parameters from
the official ND280 fit. Then we run another ND280-only fit with the ND detector parameters
fixed at their HPD values. This way, the ND detector parameters are set at values resembling
the best-fit point but without any error.

Fig. A.34 summarises this study. We can observe smaller FD uncertainties when the ND
detector parameters have no error. Since the ND detector parameters are strongly correlated
with the cross-section and flux parameters, ND detector systematic error widens their distri-
butions. The main conclusion of this study is that the uncertainty of FD predictions is not
dominated by ND detector systematic error, which was tested here for the first time in T2K
analysis history.



A.9. Impact of ND Detector Uncertainty on FD Prediction Error 161

Reconstructed Neutrino Energy [GeV]
0 0.5 1 1.5 2 2.5 3

O
sc

ill
at

ed
 e

ve
nt

s

0

2

4

6

8

10

12

14

16

18

20

22

FHC1Rmu-2021

Standard

FixedND

Reconstructed Neutrino Energy [GeV]
0 0.5 1 1.5 2 2.5 3

O
sc

ill
at

ed
 e

ve
nt

s

0

1

2

3

4

5

6

7

RHC1Rmu-2021

Standard

FixedND

Reconstructed Neutrino Energy [GeV]
0 0.2 0.4 0.6 0.8 1 1.2

O
sc

ill
at

ed
 e

ve
nt

s

0

2

4

6

8

10

FHC1Re-2021

Standard

FixedND

Reconstructed Neutrino Energy [GeV]
0 0.2 0.4 0.6 0.8 1 1.2

O
sc

ill
at

ed
 e

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RHC1Re-2021

Standard

FixedND

Reconstructed Neutrino Energy [GeV]
0 0.2 0.4 0.6 0.8 1 1.2

O
sc

ill
at

ed
 e

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

FHC1Re1de-2021

Standard

FixedND

Reconstructed Neutrino Energy [GeV]
0 0.5 1 1.5 2 2.5 3

O
sc

ill
at

ed
 e

ve
nt

s

0

1

2

3

4

5

FHCnumuCC1pi-2021

Standard

FixedND

FIGURE A.34: FD posterior predictive distributions using constraints from official ND280-only fit and
the fit with ND detector parameters fixed at their HPD values. The uncertainties come only from

ND-constrained parameters.
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A.10 Fixed CCQE Eb Parameters Study

In Section 6.2 the official ND280 data fit results were presented, where some parameters
showed non-Gaussian posterior distributions. The implementation of the CCQE Eb parame-
ters differs from that of the other cross-section parameters. Rather than reweighting events
based on spline response, the CCQE Eb parameters migrate events from one bin to the other.
Such event migration may be problematic because we use the Barlow-Beeston likelihood
without updating w2

i , so when an event migrates to another bin, the w2
i values remain un-

changed. Therefore, an ND280-only data fit was performed with the CCQE Eb and α param-
eter (defined in Eq. 4.1 on page 57) fixed at their prior values.

Fig. A.35 shows the posterior distributions for parameters most influenced by this change.
We can see that the fit prefers higher values of Pauli blocking parameters, which results in
much stronger suppression at low Q2. Also, the posterior distribution takes a different shape
when the CCQE Eb and α parameters are fixed, especially for 16O-related dials. Overall, we
see shifts in the Pauli blocking and the optical potential posterior distributions. This confirms
that Pauli blocking, optical potential and CCQE Eb are all highly correlated and we cannot
fully distinguish the effects related to them at the ND280.

Predicted FD spectra were generated and no significant bias is observed, as presented in
Fig. A.36. Thus, we conclude that results are not biased by the migration systematic when
not updating w2

i in −2LLH calculation.
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FIGURE A.36: FD posterior predictive distributions obtained using ND280 constraints from two
ND280-only data fits with different settings of CCQE Eb and α dials. The uncertainties come only

from ND-constrained parameters.
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A.11 Principal Component Analysis of Flux Covariance Matrix

Principal Component Analysis (PCA) is a method used for reducing dimensionality, which
should lower the number of operations necessary for MCMC to reach stationary state. How-
ever, in this study, we use PCA on the flux matrix to better understand why flux parameters
responsible for low energy are shifted above value 1, while those responsible for high energy
are pulled below value 1. To perform PCA, we need to find Eigenvalues and Eigenvectors for
the flux covariance matrix, then sort them from highest to lowest, and finally remove Eigen-
vectors with the corresponding smallest Eigenvalues. Intuitively, the smaller the Eigenvalue,
the smaller contribution to the system variance.

The left plot in Fig. A.37 shows the Eigenvalues of the flux matrix. The red histogram rep-
resents the Eigenvalues sorted from highest to lowest; the green histogram is the cumulative
sum of absolute values; and the blue histogram shows the values from the red one divided
by the total sum. We see that by setting the threshold to 10−5 marked as the vertical red line,
we only remove 10−5 variation, while being able to cut some parameters (11 in this case).

The right plot in Fig. A.37 shows the Eigenvectors of the flux matrix, where the horizontal
axis corresponds to the normal base and the vertical one to the decomposed or Eigen base.
In PCA, the parameters in the decomposed base are used, but only the parameters in the
normal base have physical interpretation, in this case, the normalisation of a particular region
of Eν. In consequence, we use the matrix in Fig. A.37 to transform from one base to another.
In the same Figure, the green line shows which Eigenvectors are removed after the cut on
Eigenvalues. After removing Eigenvectors, based on the threshold in the decomposed base,
the numbers of matrix rows and columns are no longer equal.
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FIGURE A.37: Sorted Eigenvalues of the flux covariance matrix (left) and corresponding Eigenvectors
(right).

It is worth mentioning that the parameters in the Eigen base are only used for proposing
a step. After the step is proposed, the parameters are transformed from Eigen to normal
base. This is necessary, as we can reweight events only using parameters in the normal base.
Furthermore, we can diagnose posterior distributions in the normal base to interpret results.

Fig. A.38 presents the posterior distributions for selected cross-section parameters. The
results are presented for the official ND280 analysis without PCA and two ND280-only data
fits using PCA with different thresholds, resulting in a reduction of the flux dials number
from 100 to 89 and 75. The three fits are in very good agreement with negligible differences.
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The agreement for cross-section parameters not presented here is similar to the presented
ones.
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FIGURE A.38: Posterior distributions for selected cross-section parameters from the ND280-only data
fits with different PCA thresholds and the official ND280 fit (without PCA).

Fig. A.39 shows the overlay of flux parameters, and similarly, as for cross-section dials, we
observe a good agreement. Interestingly, the biggest discrepancy is seen for flux parameters
corresponding to low or high neutrino energy, for which the constraints are weak. This might
indicate that those parameters are driven by correlations, so when using PCA the results start
to diverge.
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FIGURE A.39: Overlay of selected flux parameters from the ND280-only data fits with different PCA
thresholds and the official ND280 fit (without PCA).
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Lastly, we compare predicted FD spectra after propagating the aforementioned fits in
Fig. A.40. As can be seen, using PCA doesn’t bias the predictions.
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FIGURE A.40: FD posterior predictive distributions obtained using ND280-only data fits with different
PCA thresholds and the official ND280 fit (without PCA). The uncertainties come only from ND-
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A.12 Postfit Parameters from ND+FD Joint-Fit

In the main part of the Thesis, ND280-only fit was very carefully validated, and the impact
of the cross-section and flux parameters has been estimated. For the final oscillation results,
MaCh3 framework performs simultaneous ND+FD joint-fit. Since FD has low event rates
that are affected by oscillations, we don’t expect the flux and cross-section parameters to
differ in ND280-only and ND+FD joint-fit. Nevertheless, it is an important check that should
be performed.

Fig. A.41 shows the overlays of cross-section parameters from both fits. The results are
nearly identical; however, there are differences for pmiss shape or 2p2h Edep dials. It is worth
reminding that those parameters were fixed in ND280-only fit but free in ND+FD fit. In the
ND280-only analysis, the parameters for which ND280 has no sensitivity or the constraints
are very poor are fixed, mostly because the other fitting framework (BANFF) tends to experi-
ence stability issues. Since those parameters are not fixed in ND+FD fit, they might be shifted
from prior values by ND data.

Another parameter worth mentioning is Non-Res I1/2 Low pπ, as it affects only FD sam-
ples. Hence, it is expected that this dial has a different postfit value in ND+FD fit with respect
to ND280-only fit.

Fig. A.42 presents the overlays of SK flux parameters. Similarly, as for cross-section pa-
rameters, ND280-only and ND+FD fit results are almost identical. It is worth reminding that
ND280 constrains SK flux parameters only via their correlations with ND flux parameters.
Hence, adding SK samples doesn’t affect the posterior distribution of SK flux parameters.
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FIGURE A.41: Overlay of cross-section parameters from ND280-only and ND+FD fit.
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FIGURE A.42: Overlay of SK flux parameters from ND280-only and ND+FD fit.
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B
Additional Informations

But it is a well-known maxim of war that whoever tries to hold on to everything
at once, finishes up by holding nothing at all.

Erich von Manstein

B.1 Full Oscillation Formula in Vacuum

The oscillation probability for νµ → νe in vacuum has following form:

P(νµ → νe) = 4c2
13 s2

13 s2
23 sin2 ∆31

+ 8c2
13 s12 s13 s23 (c12 c23 cos δCP − s12 s13 s23) cos ∆32 sin ∆31 sin ∆21

− 8c2
13 c12 c23 s12 s13 s23 sin δCP sin ∆32 sin ∆32 sin ∆21

+ 4s12 c13 (c12 c23 + s12 s23 s13 − 2c12 c23 s12 s23 s13 cos δCP) sin2 ∆21

(B.1)

where sij = sin θij, cij = cos θij and ∆ij =
∆mij L

4E . The first term is sensitive to θ13, the second
one is CP conserving, the third one is CP violating and the fourth is usually called the solar
term.
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B.2 Binning of the ND280 Event Samples

In total there are 4952 bins. The edges of the bins for all samples are listed below.

• FHC CC0π-0p-0γ (650 bins)
pµ (MeV/c): 0, 200, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950,
1000, 1100, 1200, 1300, 1500, 1750, 2000, 2500, 3000, 5000, 30000.
cos θµ: −1, 0.5, 0.6, 0.68, 0.72, 0.76, 0.82, 0.84, 0.86, 0.88, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95,
0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1.

• FHC CC0π-Np-0γ (352 bins)
pµ (MeV/c): 0, 250, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1000, 1100, 1200, 1300,
1500, 1600, 1750, 2000, 2750, 5000, 30000.
cos θµ: −1, 0.55, 0.65, 0.75, 0.8, 0.85, 0.88, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.988,
1.

• FHC CC1π-0γ (272 bins)
pµ (MeV/c): 0, 300, 350, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200, 1500,
2000, 5000, 30000.
cos θµ: −1, 0.6, 0.68, 0.74, 0.79, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.

• FHC CC-Other-0γ (154 bins)
pµ (MeV/c): 0, 350, 500, 600, 650, 700, 800, 900, 1000, 1150, 1250, 1500, 2000, 5000, 30000.
cos θµ: −1, 0.6, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.

• FHC CC-Photon (400 bins)
pµ (MeV/c): 0, 300, 400, 500, 600, 650, 700, 750, 800, 900, 1000, 1100, 1250, 1500, 1600,
1750, 2000, 2500, 3000, 5000, 30000.
cos θµ: −1, 0.6, 0.7, 0.76, 0.8, 0.84, 0.86, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97,
0.98, 0.99, 0.995, 1.

• RHC CC0π (306 bins)
pµ (MeV/c): 0, 300, 400, 500, 550, 600, 650, 700, 750, 800, 900, 1000, 1100, 1200, 1500,
2000, 4000, 30000.
cos θµ: −1, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985,
0.99, 0.995, 1.

• RHC CC1π (48 bins)
pµ (MeV/c): 0, 500, 700, 900, 1300, 2500, 30000.
cos θµ: −1, 0.7, 0.8, 0.9, 0.94, 0.96, 0.98, 0.99, 1.

• RHC CC-Other (80 bins)
pµ (MeV/c): 0, 600, 800, 1000, 1250, 1500, 2000, 4000, 30000.
cos θµ: −1, 0.7, 0.8, 0.85, 0.9, 0.93, 0.95, 0.97, 0.98, 0.99, 1.

• RHC BKG CC0π (120 bins)
pµ (MeV/c): 0, 300, 500, 700, 800, 900, 1250, 1500, 2000, 4000, 30000.
cos θµ: −1, 0.7, 0.8, 0.85, 0.88, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC BKG CC1π (40 bins)
pµ (MeV/c): 0, 600, 800, 1500, 30000.
cos θµ: −1, 0.7, 0.8, 0.86, 0.9, 0.94, 0.96, 0.97, 0.98, 0.99, 1.

• RHC BKG CC-Other (54 bins)
pµ (MeV/c): 0, 600, 1000, 1250, 2000, 4000, 30000.
cos θµ: −1, 0.7, 0.8, 0.86, 0.9, 0.93, 0.95, 0.97, 0.99, 1.
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B.3 Binning of the ND280 Detector Covariance Matrix

Binning presented here is after the bin merging procedure as outlined in Section 4.2, in total
there are 552 bins.

• FHC CC0π-0p-0γ
pµ (MeV/c): 0, 200, 300, 800, 850, 2000, 5000, 30000.
cos θµ: −1, 0.5, 0.6, 0.72, 0.82, 0.86, 0.9, 0.95, 0.96, 1.

• FHC CC0π-Np-0γ
pµ (MeV/c): 0, 250, 1200, 1300, 2750, 5000, 30000.
cos θµ: −1, 0.55, 0.65, 0.8, 0.85, 0.97, 0.98, 0.988, 1.

• FHC CC1π-0γ
pµ (MeV/c): 0, 300, 1000, 2000, 5000, 30000.
cos θµ: −1, 0.6, 0.68, 0.79, 0.92, 0.96, 0.98, 0.99, 1.

• FHC CC-Other-0γ
pµ (MeV/c): 0, 350, 1250, 2000, 5000, 30000.
cos θµ: −1, 0.6, 0.8, 0.92, 0.94, 0.98, 1.

• FHC CC-Photon
pµ (MeV/c): 0, 300, 500, 1500, 3000, 5000, 30000.
cos θµ: −1, 0.7, 0.76, 0.8, 0.84, 0.88, 0.89, 0.96, 1.

• RHC CC0π
pµ (MeV/c): 0, 300, 2000, 4000, 30000.
cos θµ: −1, 0.6, 0.8, 0.9, 0.96, 1.

• RHC CC1π
pµ (MeV/c): 0, 500, 30000.
cos θµ: −1, 0.7, 1.

• RHC CC-Other
pµ (MeV/c): 0, 600, 800, 30000.
cos θµ: −1, 0.7, 0.95, 0.97, 1.

• RHC BKG CC0π
pµ (MeV/c): 0, 300, 1500, 30000.
cos θµ: −1, 0.7, 1.

• RHC BKG CC1π
pµ (MeV/c): 0, 600, 800, 30000.
cos θµ: −1, 0.7, 1.

• RHC BKG CC-Other
pµ (MeV/c): 0, 600, 30000.
cos θµ: −1, 0.7, 1.
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B.4 Binning of the Flux Covariance Matrix

Identical binning is used for ND280 and FD flux parameters. There are 50 bins for each
detector resulting in 100 bins in total.

• FHC νµ; RHC ν̄µ:
Etrue

ν (GeV): 0, 0.4, 0.5, 0.6, 0.7, 1, 1.5, 2.5, 3.5, 5, 7, 30.

• FHC ν̄µ; RHC νµ:
Etrue

ν (GeV): 0, 0.7, 1, 1.5, 2.5, 30.

• FHC νe; RHC ν̄e:
Etrue

ν (GeV): 0, 0.5, 0.7, 0.8, 1.5, 2.5, 4, 30.

• FHC ν̄e; RHC νe:
Etrue

ν (GeV): 0, 2.5, 30.
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B.5 Detector Systematic Uncertainties for FHC Samples

Systematic error source Total error in [%]
CC0π-0p-0γ CC0π-Np-0γ CC1π+-0γ CC-Photon CC-Other-0γ

FGD1 FGD2 FGD1 FGD2 FGD1 FGD2 FGD1 FGD2 FGD1 FGD2
Observable-like systematics
Magnetic field distortions 0.0033 0.0074 0.0025 0.0087 0.0040 0.0153 0.0073 0.0291 0.0237 0.0244
TPC momentum resolution 0.0051 0.0036 0.0080 0.0082 0.0103 0.0104 0.0260 0.0369 0.0434 0.0650
TPC momentum scale 0.0147 0.0170 0.0109 0.0161 0.0171 0.0181 0.0191 0.0350 0.0371 0.0360
TPC PID 0.3145 0.4494 0.6191 0.7884 0.8771 1.1762 0.4758 0.4268 1.2715 1.4023
FGD PID 0.0890 0.0360 0.1801 0.0979 0.0279 0.0426 - - 0.0276 0.0329
Efficiency-like systematics
Charge ID efficiency 0.0814 0.2002 0.2440 0.3681 0.1141 0.3246 0.0333 0.1683 0.0673 0.1591
TPC cluster efficiency 0.0095 0.0096 0.0162 0.0165 0.0154 0.0169 0.0300 0.0300 0.0318 0.0331
TPC tracking efficiency 0.3036 0.7394 0.7527 1.3844 0.6682 1.3976 0.4873 0.8888 0.6551 1.6224
TPC-FGD matching efficiency 0.0767 0.1592 0.1898 0.3297 0.1463 0.2302 0.0922 0.1410 0.1376 0.1813
FGD hybrid tracking efficiency 0.2600 0.0512 0.8183 0.1560 0.2658 0.0308 0.2678 0.0488 0.2973 0.0660
Michel electron efficiency 0.0489 0.0759 0.0768 0.1671 0.2846 0.5191 0.0618 0.0646 0.1007 0.1506
ECal tracking efficiency 0.3414 0.3784 0.5168 0.6917 1.0693 1.5114 0.9993 0.8862 2.6425 4.3522
TPC-ECal matching efficiency 0.6082 0.3178 1.0097 1.0251 0.7418 0.6726 0.9861 1.0375 1.2677 1.2513
ECal PID EmHip 0.0790 0.0648 0.0597 0.0561 0.1036 0.0653 0.4188 0.3280 0.0869 0.0851
ECal photon pile-up 0.0689 0.0490 0.0423 0.0424 0.0808 0.0439 1.1732 1.1095 0.0461 0.0414
Normalisation systematics
OOFV background 0.5425 0.7194 0.1389 0.1978 0.8043 0.6665 0.6977 0.7637 0.1680 0.1688
Pile-up 0.1782 0.1722 0.1789 0.1742 0.1834 0.1746 0.1912 0.1799 0.1841 0.1786
FGD mass 0.5651 0.3850 0.5757 0.3959 0.5558 0.3849 0.5447 0.3743 0.5775 0.3984
Pion secondary interactions 0.3605 0.3833 1.3837 1.3321 1.3141 1.4718 1.6202 1.2123 3.4770 3.1754
Proton secondary interactions 1.0580 1.2580 2.6137 3.0793 0.5876 0.7522 0.6395 0.7262 0.8371 1.0406
Sand muon background 0.0571 0.0280 0.0117 0.0113 0.0714 0.0170 0.0190 0.0146 0.0224 0.0059
All
Total uncertainty 1.6808 1.9692 3.6612 4.2466 2.5623 3.0641 2.7519 2.8189 4.7243 5.6945

TABLE B.1: Total relative errors (in %) for each source of detector systematics, in each sample. The
FGD PID systematic is not applied to the CC-Photon samples since these do not rely on the charged

pion tag which uses FGD PID.
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B.6 Individual Detector Systematic Errors for Proton-Tagged Sam-
ples

Here we summarise the fractional error for each ND280 detector systematic uncertainty as
a function of pµ. A few conclusions can be drawn: for the dominant systematic sources,
such as proton SI or pion SI, the uncertainties increase on average with higher pµ. This is
a consequence of the fact that with an increase of neutrino energy, it is more likely to produce
more energetic protons/pions or a higher multiplicity of them. On the other hand, for very
low pµ the error is significantly larger, which most likely comes from the fact that the chance
of µ-misidentification is higher in such a case.
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FIGURE B.1: Magnetic field distortions.
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FIGURE B.2: TPC momentum resolution.
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FIGURE B.3: TPC momentum scale.
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FIGURE B.4: TPC PID.

 [MeV/c]µReconstructed p
0 1000 2000 3000 4000 5000 6000

R
el

at
iv

e 
E

rr
or

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

FGD1 sample FGD2 sample

(A) CC0π-0p-0γ

 [MeV/c]µReconstructed p
0 1000 2000 3000 4000 5000 6000

R
el

at
iv

e 
E

rr
or

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

FGD1 sample FGD2 sample

(B) CC0π-Np-0γ

FIGURE B.5: FGD PID.

 [MeV/c]µReconstructed p
0 1000 2000 3000 4000 5000 6000

R
el

at
iv

e 
E

rr
or

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

FGD1 sample FGD2 sample

(A) CC0π-0p-0γ

 [MeV/c]µReconstructed p
0 1000 2000 3000 4000 5000 6000

R
el

at
iv

e 
E

rr
or

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

FGD1 sample FGD2 sample

(B) CC0π-Np-0γ

FIGURE B.6: Charge ID efficiency.
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FIGURE B.7: TPC cluster efficiency.
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FIGURE B.8: TPC tracking efficiency.
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FIGURE B.9: TPC-FGD matching efficiency.
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FIGURE B.10: FGD hybrid tracking efficiency.
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FIGURE B.11: Michel electron efficiency.
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FIGURE B.12: ECal tracking efficiency.
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FIGURE B.13: TPC-ECal matching efficiency.
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FIGURE B.14: ECal PID EmHip.
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FIGURE B.15: ECal photon pile-up.
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FIGURE B.16: OOFV background.
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FIGURE B.17: Pile-up.
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FIGURE B.18: FGD mass.
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FIGURE B.19: Pion secondary interactions.
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FIGURE B.20: Proton secondary interactions.
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FIGURE B.21: Sand muon background.
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B.7 Fractional Error Broken by Systematic Type

Sample δN/N(%)
Flux Xsec ND280 Total

pri. post. pri. post. pri. post. pri. post.
FGD1 FHC CC0π-0p-0γ 5.0 2.7 11.8 2.8 1.8 1.2 12.8 0.6
FGD1 FHC CC0π-Np-0γ 5.5 2.8 11.7 3.2 3.5 2.2 12.9 0.9
FGD1 FHC CC1π-0γ 5.2 2.7 9.1 2.7 3.0 1.4 10.6 1.0
FGD1 FHC CC-Other-0γ 5.4 2.8 8.0 2.8 5.2 2.3 11.0 1.6
FGD1 FHC CC-Photon 5.5 2.8 8.5 2.8 2.8 1.8 10.5 0.8
FGD2 FHC CC0π-0p-0γ 5.1 2.7 11.2 2.8 2.1 1.1 11.5 0.6
FGD2 FHC CC0π-Np-0γ 5.5 2.8 11.3 3.3 3.9 2.4 12.2 1.0
FGD2 FHC CC1π-0γ 5.2 2.7 9.0 2.7 3.6 1.6 10.5 1.0
FGD2 FHC CC-Other-0γ 5.6 2.8 8.0 2.8 6.3 2.7 11.5 1.9
FGD2 FHC CC-Photon 5.4 2.8 8.3 2.8 2.5 1.6 10.4 0.8
FGD1 RHC CC0π 4.9 3.2 11.3 3.2 1.9 1.2 12.2 0.9
FGD1 RHC CC1π 4.6 3.1 10.3 3.0 4.2 2.6 11.4 1.9
FGD1 RHC CC-Other 4.5 2.9 9.3 3.0 3.5 2.0 10.5 1.5
FGD2 RHC CC0π 4.8 3.2 10.4 3.0 2.1 1.2 13.8 0.9
FGD2 RHC CC1π 4.6 3.0 9.9 3.2 3.9 2.3 10.9 1.9
FGD2 RHC CC-Other 4.6 2.9 9.7 3.1 2.9 1.8 11.3 1.4
FGD1 RHC BKG CC0π 5.8 2.8 10.1 2.8 2.2 1.1 10.6 1.1
FGD1 RHC BKG CC1π 5.6 2.8 8.0 2.5 3.3 1.6 11.2 1.3
FGD1 RHC BKG CC-Other 5.9 2.9 8.6 2.7 2.6 1.4 10.1 1.4
FGD2 RHC BKG CC0π 5.8 2.8 9.5 2.8 2.2 1.1 10.4 1.1
FGD2 RHC BKG CC1π 5.6 2.8 8.2 2.5 3.2 1.6 10.7 1.3
FGD2 RHC BKG CC-Other 5.9 2.9 8.6 2.7 2.5 1.4 10.6 1.4
Total 4.5 2.7 8.0 2.6 2.1 1.2 9.1 0.3

TABLE B.2: Event rate uncertainties for the prior (pri.) and posterior (post.) predictions broken down
by ND280 sample and systematic group.
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B.8 Nominal MC Predictions for Each ND280 Sample

Here we present nominal MC predictions only as a function of pµ with reaction breakdown.
All plots exclude the high momentum bin going up to 30 GeV/c.

Additionally, this Section presents pµ and cos θµ two-dimensional distributions with Q2

lines visually marking the value of true Q2. Those plots are produced with the restricted
binning range as well, focusing on the most important region of the phase space.
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FIGURE B.22: Nominal MC predictions for FGD1 FHC samples.
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FIGURE B.23: Nominal MC predictions for FGD2 FHC samples.
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FIGURE B.24: Nominal MC predictions for RHC samples.
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FIGURE B.25: Nominal MC predictions for RHC BKG samples.
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FIGURE B.26: 2D nominal event rates for FHC samples with lines showing true values of Q2. All plots
are zoomed.
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FIGURE B.27: 2D nominal event rates for RHC samples with lines showing true values of Q2. All plots
are zoomed.
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B.9 Posterior Predictive Distributions for Each ND280 Sample

Here we present prior and posterior predictive distributions only as a function of pµ with
reaction breakdown. We can observe the impact of ND280 and the reduction of systematic
errors.

The second set of plots displays posterior predictive distributions with reaction break-
down.
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FIGURE B.28: Overlay of prior and posterior predictive distributions for FHC FGD1 samples.
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FIGURE B.29: Overlay of prior and posterior predictive distributions for FHC FGD2 samples.



194 Appendix B. Additional Informations

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

E
ve

nt
s/

(1
00

 M
eV

/c
)

0

200

400

600

800

1000

 CC 0piµνFGD1  CC 0piµνFGD1 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

D
at

a/
M

C

0.7
0.8
0.9
1.0
1.1
1.2
1.3

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500

E
ve

nt
s/

(1
00

 M
eV

/c
)

15

20

25

30

35

40

45

50
 CC 1piµνFGD1  CC 1piµνFGD1 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500

D
at

a/
M

C
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

E
ve

nt
s/

(1
00

 M
eV

/c
)

20

30

40

50

60

70

80

90

100

 CC OtherµνFGD1  CC OtherµνFGD1 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

D
at

a/
M

C

0.7
0.8
0.9
1.0
1.1
1.2
1.3

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

E
ve

nt
s/

(1
00

 M
eV

/c
)

0

200

400

600

800

1000

 CC 0piµνFGD2  CC 0piµνFGD2 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

D
at

a/
M

C

0.7
0.8
0.9
1.0
1.1
1.2
1.3

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500

E
ve

nt
s/

(1
00

 M
eV

/c
)

15

20

25

30

35

40

45

50

 CC 1piµνFGD2  CC 1piµνFGD2 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500

D
at

a/
M

C

0.7
0.8
0.9
1.0
1.1
1.2
1.3

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

E
ve

nt
s/

(1
00

 M
eV

/c
)

20

30

40

50

60

70

80

 CC OtherµνFGD2  CC OtherµνFGD2 

Data

Prior Predictive

Posterior Predictive

 [MeV/c]
µ

Reconstructed p
0 500 1000 1500 2000 2500 3000 3500 4000

D
at

a/
M

C

0.7
0.8
0.9
1.0
1.1
1.2
1.3

FIGURE B.30: Overlay of prior and posterior predictive distributions for RHC samples.
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FIGURE B.31: Overlay of prior and posterior predictive distributions for RHC BKG samples.
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FIGURE B.32: Posterior predictive distributions with reaction breakdown for FHC FGD1 samples.
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FIGURE B.33: Posterior predictive distributions with reaction breakdown for FHC FGD2 samples.
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FIGURE B.34: Posterior predictive distributions with reaction breakdown for RHC samples.
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FIGURE B.35: Posterior predictive distributions with reaction breakdown for RHC BKG samples.
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B.10 Posterior Distribution for Each Parameter
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B.11 Postfit Values for Detector Parameters

This Section presents the postfit distributions of ND280 detector systematic parameters from
the ND280-only analysis, for each event sample. Fig. B.48 shows the plots for FHC samples,
while Fig. B.49 for RHC samples. The bin numbering corresponds to the ND280 detector co-
variance matrix after the bin merging procedure. Oscillatory-like behaviour can be observed,
which is the consequence of groups of bins corresponding to regions with increasing pµ val-
ues for a fixed cos θµ bin. When reaching the upper edge of pµ range, the results for the next
region of cos θµ are plotted, with pµ starting from 0 MeV/c again. Furthermore, the highest
prior errors are for pµ close to ∼30 GeV/c because many particles are produced at such high
energy, resulting in high error for systematics such as pion or proton SI.

Additionally, we show the detector parameters for FD in Fig. B.50, where the posterior
distributions come from ND+FD joint-fit. Contrary to ND detector parameters, those are
very poorly constrained. This is expected, as FD has a much lower number of events and the
fit poorly constrains the detector uncertainties.
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FIGURE B.48: Prefit and postfit values for ND280 detector parameters related to FHC samples.
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FIGURE B.49: Prefit and postfit values for ND280 detector parameters related to RHC samples.



Prior

Postfit
F

D
 D

et
 0

F
D

 D
et

 1

F
D

 D
et

 2

F
D

 D
et

 3

F
D

 D
et

 4

F
D

 D
et

 5

F
D

 D
et

 6

F
D

 D
et

 7

F
D

 D
et

 8

F
D

 D
et

 9

F
D

 D
et

 1
0

F
D

 D
et

 1
1

P
ar

am
et

er
 V

al
ue

FHC 1Re

F
D

 D
et

 0

F
D

 D
et

 1

F
D

 D
et

 2

F
D

 D
et

 3

F
D

 D
et

 4

F
D

 D
et

 5

F
D

 D
et

 6

F
D

 D
et

 7

F
D

 D
et

 8

F
D

 D
et

 9

F
D

 D
et

 1
0

F
D

 D
et

 1
1

P
ar

am
et

er
 V

al
ue

FHC 1Re

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 0

F
D

 D
et

 1

F
D

 D
et

 2

F
D

 D
et

 3

F
D

 D
et

 4

F
D

 D
et

 5

F
D

 D
et

 6

F
D

 D
et

 7

F
D

 D
et

 8

F
D

 D
et

 9

F
D

 D
et

 1
0

F
D

 D
et

 1
1

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2 F
D

 D
et

 1
2

F
D

 D
et

 1
3

F
D

 D
et

 1
4

F
D

 D
et

 1
5

F
D

 D
et

 1
6

F
D

 D
et

 1
7

P
ar

am
et

er
 V

al
ue

µFHC 1R

F
D

 D
et

 1
2

F
D

 D
et

 1
3

F
D

 D
et

 1
4

F
D

 D
et

 1
5

F
D

 D
et

 1
6

F
D

 D
et

 1
7

P
ar

am
et

er
 V

al
ue

µFHC 1R

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 1
2

F
D

 D
et

 1
3

F
D

 D
et

 1
4

F
D

 D
et

 1
5

F
D

 D
et

 1
6

F
D

 D
et

 1
7

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2

F
D

 D
et

 1
8

F
D

 D
et

 1
9

F
D

 D
et

 2
0

F
D

 D
et

 2
1

F
D

 D
et

 2
2

F
D

 D
et

 2
3

F
D

 D
et

 2
4

F
D

 D
et

 2
5

F
D

 D
et

 2
6

F
D

 D
et

 2
7

F
D

 D
et

 2
8

F
D

 D
et

 2
9

P
ar

am
et

er
 V

al
ue

RHC 1Re

F
D

 D
et

 1
8

F
D

 D
et

 1
9

F
D

 D
et

 2
0

F
D

 D
et

 2
1

F
D

 D
et

 2
2

F
D

 D
et

 2
3

F
D

 D
et

 2
4

F
D

 D
et

 2
5

F
D

 D
et

 2
6

F
D

 D
et

 2
7

F
D

 D
et

 2
8

F
D

 D
et

 2
9

P
ar

am
et

er
 V

al
ue

RHC 1Re

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 1
8

F
D

 D
et

 1
9

F
D

 D
et

 2
0

F
D

 D
et

 2
1

F
D

 D
et

 2
2

F
D

 D
et

 2
3

F
D

 D
et

 2
4

F
D

 D
et

 2
5

F
D

 D
et

 2
6

F
D

 D
et

 2
7

F
D

 D
et

 2
8

F
D

 D
et

 2
9

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2 F
D

 D
et

 3
0

F
D

 D
et

 3
1

F
D

 D
et

 3
2

F
D

 D
et

 3
3

F
D

 D
et

 3
4

F
D

 D
et

 3
5

P
ar

am
et

er
 V

al
ue

µRHC 1R

F
D

 D
et

 3
0

F
D

 D
et

 3
1

F
D

 D
et

 3
2

F
D

 D
et

 3
3

F
D

 D
et

 3
4

F
D

 D
et

 3
5

P
ar

am
et

er
 V

al
ue

µRHC 1R

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 3
0

F
D

 D
et

 3
1

F
D

 D
et

 3
2

F
D

 D
et

 3
3

F
D

 D
et

 3
4

F
D

 D
et

 3
5

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2

F
D

 D
et

 3
6

F
D

 D
et

 3
7

F
D

 D
et

 3
8

F
D

 D
et

 3
9

F
D

 D
et

 4
0

F
D

 D
et

 4
1

F
D

 D
et

 4
2

F
D

 D
et

 4
3

P
ar

am
et

er
 V

al
ue

FHC 1Re 1 d.e.

F
D

 D
et

 3
6

F
D

 D
et

 3
7

F
D

 D
et

 3
8

F
D

 D
et

 3
9

F
D

 D
et

 4
0

F
D

 D
et

 4
1

F
D

 D
et

 4
2

F
D

 D
et

 4
3

P
ar

am
et

er
 V

al
ue

FHC 1Re 1 d.e.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 3
6

F
D

 D
et

 3
7

F
D

 D
et

 3
8

F
D

 D
et

 3
9

F
D

 D
et

 4
0

F
D

 D
et

 4
1

F
D

 D
et

 4
2

F
D

 D
et

 4
3

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2 F
D

 D
et

 4
4

F
D

 D
et

 4
5

F
D

 D
et

 4
6

F
D

 D
et

 4
7

F
D

 D
et

 4
8

F
D

 D
et

 4
9

F
D

 D
et

 5
0

F
D

 D
et

 5
1

F
D

 D
et

 5
2

F
D

 D
et

 5
3

F
D

 D
et

 5
4

F
D

 D
et

 5
5

F
D

 D
et

 5
6

P
ar

am
et

er
 V

al
ue

 1 or 2 d.e.µFHC MR

F
D

 D
et

 4
4

F
D

 D
et

 4
5

F
D

 D
et

 4
6

F
D

 D
et

 4
7

F
D

 D
et

 4
8

F
D

 D
et

 4
9

F
D

 D
et

 5
0

F
D

 D
et

 5
1

F
D

 D
et

 5
2

F
D

 D
et

 5
3

F
D

 D
et

 5
4

F
D

 D
et

 5
5

F
D

 D
et

 5
6

P
ar

am
et

er
 V

al
ue

 1 or 2 d.e.µFHC MR

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

F
D

 D
et

 4
4

F
D

 D
et

 4
5

F
D

 D
et

 4
6

F
D

 D
et

 4
7

F
D

 D
et

 4
8

F
D

 D
et

 4
9

F
D

 D
et

 5
0

F
D

 D
et

 5
1

F
D

 D
et

 5
2

F
D

 D
et

 5
3

F
D

 D
et

 5
4

F
D

 D
et

 5
5

F
D

 D
et

 5
6

P
rio

r
σ

)/
P

rio
r

µ-
fit

(x 2−

0

2

FIGURE B.50: Prefit and postfit values for FD detector parameters after ND+FD joint-fit.
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Acronyms

2p2h Two Particles Two Holes - an interaction where because of correlations two nucleons
are ejected from the target nucleus.

AGKY Andreopoulos-Gallagher-Kehayias-Yang - hadronization model which provides in-
formation about the multiplicities and kinematics of the produced hadrons.

BANFF Beam And ND280 Flux measurement task Force - ND280 gradient descent fitter,
using frequentist approach.

BY Bodek-Yang - authors of the correction to DIS which affect cross-section at low Q2.

CC Charged Current - an interaction mediated by W±.

CCQE Charged Current Quasi Elastic - a type of neutrino interaction with a charged lepton
and a nucleon in the final state.

CEX Charge Exchange - process in which π± turns into π0.

COH Coherent - a process where a neutrino interacts with a nucleus as a whole.

CP Charge-Parity symmetry.

DIS Deep Inelastic Scattering - a process where the structure of hadrons is being probed.

FD Far Detector (Super-Kamiokande detector as a part of T2K experiment).

FGD Fine Grained Detector - ND280 scintillation sub-detector, part of the tracker.

FHC Forward Horn Current - neutrino beam mode.

FSI Final State Interactions - secondary interactions occurring inside target nucleus.

FV Fiducial Volume of the detector.

GPU Graphics Processing Unit.

GR Global Reconstruction, responsible for merging tracks and hits from different sub-detectors
of ND280.

HMNT Highest Momentum Negative Track, muon candidate track in FHC and RHC BKG
samples.

HPD Highest Posterior Density - a statistical method to extract the maximum of a distribu-
tion.

IH Inverted Hierarchy of neutrino masses.



INGRID Interactive Neutrino GRID - on-axis T2K near detector.

isoFGD a track fully contained in one of FGDs.

J-PARC Japan Proton Accelerator Research Complex - the research facility producing ν(ν̄)
beam for the T2K experiment, also the location of the near detectors.

KNO Koba-Nielsen-Olesen - a law stating that the cross-section for producing n charged
particles is independent of energy.

LLH Log Likelihood - according to Wilks’ theorem [101] −2LLH approaches asymptotically
∆χ2.

MaCh3 Markov Chain 3 - T2K MCMC fitter, using Bayesian approach.

MCMC Markov chain Monte Carlo - a method for sampling from a probability distribution.

MEC Meson Exchange Current - a process where a meson is propagated between nucleons,
and one of them also is interacting with neutrino.

MF Mean Field - part of SF where nucleon interacts only with the mean potential of the
nucleus.

NC Neutral Current - an interaction mediated by Z0.

ND Near Detector - T2K has two such detectors (on- and off-axis), however in this Thesis
this abbreviation is used only for ND280.

ND280 Near Detector at 280 m - off-axis T2K near detector.

NEUT Neutrino event generator used in T2K experiment [40].

NH Normal Hierarchy of neutrino masses.

OA Oscillation Analysis.

OOFV Out-of-Fiducial-Volume.

PID Particle Identification.

POT Protons on Target - a unit to measure accumulated data.

RES Resonant - the process where ∆ (or other) resonance is produced in the intermediate
state. One of ∆ decay products is π.

RHC Reverse Horn Current - antineutrino beam mode. When discussing event samples, it
refers to ν̄ component of the antineutrino beam.

RHC BKG Reverse Horn Current Background - refers to ν component in RHC.

SF Spectral Function - advanced model which takes into account the shell structure of the
nucleus and is tuned to electron scattering data.

SFGD Super Fine Grained Detector - part of ND280 upgrade, detector consisting of novel
scintillator cubes.



SI Secondary Interactions - interactions occurring in the detector after produced particles left
the target nucleus.

SK Super-Kamiokande - T2K far detector located 295 km away from the near detector.

SPP Single Pion Production - a process when a single pion is produced, most often from
resonant interaction.

SRC Short Range Correlations - part of SF where on top of mean potential there are nucleon
correlations resulting in two nucleons being ejected from the target nucleus after neu-
trino interaction.

T2K Tokai to Kamioka - long baseline neutrino experiment located in Japan.

TPC Time Projection Chamber, ND280 sub-detector, part of the tracker.

xsec Cross-Section.
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