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Abstract
Next-to-eikonal corrections in the

Color Glass Condensate

Arantxa TYMOWSKA

The high energy limit of Quantum Chromodynamics (QCD), in particular the
Color Glass Condensate (CGC) effective theory is the framework used throughout
this thesis. In CGC one of the most commonly used approximations is the eikonal
approximation. This approximation amounts to taking into account only the con-
tributions that are leading in energy, while systematically disregarding the energy
suppressed corrections. The eikonal approximation is based on three assumptions.
The first one takes the target as an infinitely thin ’shockwave’, the second one is tak-
ing into consideration only the leading component of the background field, and, the
third assumption is to disregard the dynamics of the target. The eikonal approxi-
mation is a very reliable one, specially in the high energy limits such as the energies
reached at the Large Hadron Collider (LHC). However, when considering other ex-
periments such as Relativistic Heavy Ion Collider (RHIC) or the future Electron Ion
Collider (EIC), the scattering energies are lower compared to LHC.

The main goal of this work is, therefore, to provide the basis needed to compute
the corrections to the eikonal approximation. These corrections are suppressed in
energy with respect to the eikonal limit. This is the main motivation for the com-
putation of such corrections, since the results obtained at this level of accuracy are
expected to provide better precision for the phenomenology at the RHIC and EIC ex-
periments. In order to obtain these corrections we relax the aforementioned eikonal
assumptions.

After laying the basis of CGC and computing the Wilson line at the eikonal ac-
curacy, the quark propagator at next-to-eikonal (NEik) accuracy in the gluon back-
ground field is computed. With the use of this propagator we compute different
observables. The first observable computed is the forward quark-nucleus scattering
at NEik accuracy, relaxing two out of the three assumptions in the eikonal approxi-
mation while the dynamics of the target is still neglected.

Finally, we relax the third assumption and take into account the dynamics of the
target, thus obtaining the quark propagator at the full NEik accuracy in the gluon
background field. With this propagator we compute two more observables, the DIS
dijet production and the photon + jet production at NEik accuracy.
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Streszczenie
Next-to-eikonal corrections in the

Color Glass Condensate

Arantxa TYMOWSKA

Wysokoenergetyczny limit chromodynamiki kwantowej (QCD), a w szczególności
efektywna teoria "Color Glass Condensate" (CGC), stanowią ramy teoretyczne wyko-
rzystane w tej pracy. W CGC jednym z najczęściej stosowanych przybliżeń jest
przybliżenie eikonalne. Polega ono na uwzględnieniu tylko tych składników, które
są wiodące względem energii, podczas gdy wyrazy wyższego rzędu są systematy-
cznie pomijane. Przybliżenie eikonalne opiera się na trzech założeniach. Pierwsze
założenie zakłada, że tarcza jest nieskończenie cienką "falą uderzeniową", drugie za-
łożenie polega na uwzględnieniu tylko wiodącej składowej pola gluonowego tła, a
trzecie założenie polega na zignorowaniu dynamiki jądra. Przybliżenie eikonalne
jest bardzo dobrym przybliżeniem do opisu procesów rozproszeniowych, szczegól-
nie w przypadku wysokich energii, takich jak te osiągane w Large Hadron Collider
(LHC). Jednak, biorąc pod uwagę inne eksperymenty, takie jak prowadzone w Rel-
ativistic Heavy Ion Collider (RHIC) czy przyszły Electron Ion Collider (EIC), en-
ergie rozpraszania są niższe w porównaniu z LHC i efekty subeikonalne mogą być
znaczące.

Głównym celem tej pracy jest przedstawianie formalizmu służącego do oblicza-
nia poprawek przybliżenia eikonalnego, oraz analiza procesów rozproszeniowych
z ich uwzględnieniem. Te poprawki są tłumione energią w porównaniu z przy-
bliżeniem eikonalnym. Przedstawienie wyników na tym poziomie dokładności jest
główną motywacją tej pracy, ponieważ poprawiają one precyzję analiz fenomeno-
logicznych do eksperymentów prowadzonych na RHIC i EIC. Aby uzyskać te
poprawki, relaksujemy wcześniej wspomniane założenia przybliżenia eikonalnego.

Po przedstawieniu podstaw CGC i obliczeniu linii Wilsona z dokładnością eikon-
alną, obliczony zostaje propagator kwarków z dokładnością do następnego poziomu
po eikonalnym (NEik) w tle pola gluonowego. Z wykorzystaniem tego propagatora
obliczane są różne obserwowalne wielkości. Pierwszą obserwalną, którą obliczamy,
jest przekrój czynny na rozpraszanie kwark-jądro na poziomie subeikonalnym, re-
laksując jednocześnie dwa z trzech założeń przybliżenia eikonalnego, podczas gdy
dynamika tarczy wciąż jest pomijana.

Następnie, relaksujemy trzecie założenie i bierzemy pod uwagę dynamikę ją-
dra, co pozwala na uzyskanie propagatora kwarkowego o pełnej dokładności NEik
w polu tła gluonów. Z wykorzystaniem tego propagatora obliczamy jeszcze dwie
obserwable, produkcję dwóch strumieni jetów w procesie głęboko nieelastycznego
rozpraszania (DIS dijet) oraz produkcję fotonu i jetu z dokładnością NEik.
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1
Introduction to QCD

Before the introduction of the core of this thesis let us start with some important
notions of quantum chromodynamics (QCD). This theory was first developed in the
1970s when the world of physics was trying to generalize the quantum theory of
electrodynamics (QED) so we will see some characteristics of those theories being
compared in this chapter. QCD is the theory that describes the behavior of strongly
interacting particles that compose the hadrons. This chapter will lay the basics we
need in order to study high energy collisions in the small-x regime, which will be
the main focus of this thesis.

1.1 The QCD Lagrangian

Quantum chromodynamics is a non-Abelian gauge theory based on the symmetry
transformation group SU(Nc) with Nc = 3, as opposed to QED where we have an
abelian gauge theory with the U(1) symmetry group. What these theories do have
in common is that their fundamental degrees of freedom are spin-1/2 particles and
both have massless vector bosons with spin 1, photons for QED and gluons for QCD.
In the case of QCD, the elementary massive particles are called quarks with their
corresponding anti-particles called antiquarks. The fundamental representation of
the SU(3) group is the set of three dimentional matrices U that satisfy the conditions
of unitarity, and where

det(U) = 1.

In order to have a physical theory emerging from this symmetry group, one acts on
some quantum fields which are the quark fields. The Lagrangian that remains un-
changed while performing the SU(3) transformations on these fields is the classical
QCD Lagrangian and it is given by

LQCD = q̄i(γµDµ −m)q− 1
4
(Fa

µν)
2. (1.1)

The first term with the quark and antiquark fields (q, q̄) is the kinetic term. These
quarks have six different flavors q=u,d,s,c,b,t. Each of these different quarks has a
different quark mass associated to it. The kinetic term contains the covariant deriva-
tive

Dµ = ∂µ + igsTa Aaµ. (1.2)
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The first term is the partial derivative and the second term is the needed addition
in order to make the Lagrangian SU(3) invariant (alongside with 1

4 (Fa
µν)

2). In this
second term, there appears the new gauge field Aaµ representing the gluons, where
the index a is the color index that takes values from 1 to N2

c − 1 = 8. Furthermore, gs
is the QCD coupling constant and Ta is the SU(3) generator. Finally, the gluon field
strength tensor is given by

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν (1.3)

where f abc are the structure constants that determine the Lie algebra of the group
and they are the generators of the adjoint representation of SU(3), the one defining
gluons. When comparing QCD to QED one finds a crucial difference, since the me-
diating particle in QCD carries a color charge, as opposed to the electrically neutral
photon. This property allows a shift in the color of a quark when it emits or absorbs
a gluon (Fig.(1.1))

FIGURE 1.1: Representation of the color charge flow in a vertex
through the emission/absorption of a gluon

This feature arises from the fact that QCD is a non-abelian theory, which is also
responsible for the fact that gluons are allowed to self-interact with each other, un-
like photons in QED. This self-interactions give rise to 3-gluon and 4-gluon vertices
described by

gs(∂µ Aa
ν − ∂ν Aa

µ) f abc Abµ Acν (1.4)

g2
s f abc Abµ Acν f ab′c′Ab′

µ Ac′
ν , (1.5)

where Eq.(1.4) corresponds to the 3-gluon vertex as represented in Fig.1.2 and Eq.(1.5)
to the 4-gluon vertex, as represented in Fig.1.3.

FIGURE 1.2: Representation of the self-interaction of three gluons
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FIGURE 1.3: Representation of the self-interaction of four gluons

1.2 Running coupling

In the previous section gs was introduced as a constant, but this statement is not
complete and one can go beyond that to improve it. In this section the importance
of gs , or αs = g2

s /4π is discussed. In particular, we discuss how it changes with
increasing energy. This is due to QCD being a renormalizable theory which makes
the coupling constant, dependent on the momentum scale Q, or energy scale, of the
interaction. The renormalization of the theory is determined by the renormalization
scale µr, which helps in separating the high energy from the low energy regime,
allowing one to treat these two regimes differently. However, this renormalization
scale is artificial and as such one needs the physical observables to be independent of
it, which is why one has to impose that the coupling constant depends on it, gs(µr).
In order to have a theory that leaves the physical observables invariant, it has to
be described by a set of differential equations that depend on µr and are known as
renormalization group equations (RGE) that encode the behavior of the β-function.

The solution of the RGE at first order is

αs(Q2) =
αs(µ2

r )

1 + αs(µ2
r )β0ln(Q2/µ2

r )
. (1.6)

One of the main differences between Abelian and non-Abelian theories lies precisely
in the β-function.

In QED, for example, βQED
0 = −4/3 setting the behavior of the coupling in such

a way that it goes towards zero when µr → 0 and towards infinity when µr → ∞.
This implies that at high energies, or smaller distances, the attraction is stronger.
However, for non-Abelian theories, such as QCD, one has

β0 =
11Nc − 2N f

12π
(1.7)

and in the case of QCD, where Nc = 3 and N f = 6 , the coefficient is positive. This
leads to a behavior of the coupling with µr such that it goes toward 0 at infinity and
rises when µr → 0 (see figure Fig.1.4). This implies that when particles get closer
and closer, the color attraction between them diminishes, that can be described as
asymptotic freedom [1, 2]. To show an intuitive picture of this property one may con-
sider two particles connected by a rubber band so that when you pull the particles
apart, the band counteracts on this by increasing its tension. This is a simplified de-
scription of what is called in QCD confinement, which is the property that maintains
the quarks bound to each other forming hadrons so that there are no ’free’ quarks.
Bringing back the previous example this would mean that the harder you pull the
particles away, the harder gets the resistance to this action. Furthermore, if one pulls
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too far away the quarks, this band would break in two pieces but the quarks do not
appear free, instead, the gluon binding energy would break in two so we end up
with two pairs of quarks coming from the original single pair.

FIGURE 1.4: Measurements of αs as a function of the energy scale Q.
This figure has been taken from the Particle Data Group collaboration

in [3]

A consequence of this renormalization mechanism at an energy scale that re-
ferred to as ΛQCD ≈ 200 MeV, the coupling constant αs becomes larger than one
and perturbation theory techniques can no longer be applied. This raises a problem
since the energies at which perturbative techniques are not valid are energies very
common in experiments. However the previously mentioned asymptotic freedom
allows us to divide QCD in two frameworks, the first satisfying µr > ΛQCD where
one is still in the pertubative regime of QCD (pQCD) effectively, and a part that is not
possible to apply these methods, relying then on experiments in order to extract the
information. This plants the basis for factorization schemes, that are mainly applied
in DIS processes.

1.3 Deep Inelastic Scattering

QCD is a theory that can be studied in two regimes: a perturbative one (pQCD)
where we can use standard field theory methods, and a non-perturbative regime
where these methods cannot be used to compute processes. However, as previously
mentioned in section 1.2, real experiments are not restricted to hard processes, there-
fore, we need a reasonable combination of both regimes. This is how factorization is
introduced and a scale is used to separate the regimes by energy. This scale is arbi-
trary so one must demand that the computation of observables does not depend on
this scale.
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However, in order to constrain the models that calculate the non-perturbative
regime, we need experimental information from the structure of the hadron. For this
reason, Deep inelastic scattering (DIS) is such an important process since experimental
studies at the Hadron-Electron Ring Accelerator (HERA) have led to successfully
probe the content of a hadron. In this process, a lepton with four momenta kµ, mainly
an electron, collides with a hadron with four-momentum Pµ and this interaction can
be described as an exchange of a virtual vector boson, mainly photon, that carries a
four-momentum qµ, as illustrated in Fig.1.5. The result of this collision is a lepton
with a four-momentum k′µ and several partons.

FIGURE 1.5: Representation of Deep Inelastic Scattering with a virtual
photon probing the nucleus in the interaction with one parton

This process can be described by the following quantities that are Lorentz invari-
ant

Q2 = −q2 ≥ 0 (1.8)

x =
Q2

2P · q (1.9)

y =
P · q
P · k (1.10)

where Q2 is called the virtuality and in DIS this quantity exceeds the mass of the
collided hadron. This is important because this virtuality also determines the spatial
resolution scale of the probe, so for the energy range where deep inelastic scatterings
occur, this allows us to resolve the partonic constituents of the hadron. Here x is also
called the Bjorken-x variable, and it measures the inelasticity of the process. On the
other hand y is the fractional energy loss of the incoming lepton.

Using the independent set of variables Q2 and x, the DIS differential cross section
can be written as

d2σ

dxdQ2 =
4πα2

s
Q4

[
[1 + (1− y)2]F1(x, Q2) +

1− y
x

[F2(x, Q2)− 2xF1(x, Q2)]

]
(1.11)

where F1(x, Q2), F2(x, Q2) are structure functions that are dimensionless and scalar,
and they contain all the information about the initial hadron’s structure. These struc-
ture functions were proposed to be Q2 invariant at large energies by Bjorken [4] and
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this was then experimentally confirmed by DIS experiments at SLAC-MIT [5].

lim
Q2→∞

F1,2(x, Q2) = F1,2(x) (1.12)

This is what is called Bjorken scaling and is one of the motivations that led to the
formulation of the parton model [6] by Feynman, where the hadrons are seen in terms
of point-like constituents. This means that the scattering in the DIS process does not
occur with the proton or hadron as a whole, but with a parton inside of this hadron,
as long as we restrict to the reference frame known as Infinite Momentum Frame (IMF)
where we assume a very fast moving proton.

In this scenario, because of Lorentz time dilation, the interactions of the partons
have large time scales compared to the interaction of the parton with the virtual pho-
ton, so that the partons look ’frozen’ to the photon. For example, inside a hadron, a
gluon cloud can fluctuate into a quark-antiquark pair, but the virtual photon would
interact with one of these partons much faster than this recombination would hap-
pen. As a result, our ’probe’ (the photon) sees the parton that it interacts with as if it
was static. It is worth defining now the main differences among the constituents of a
hadron, meaning the different types of partons we have: first we have valence quarks
which are the quarks that usually compose the parent parton (3 valence quarks for
the proton); secondly we have gluons that we already introduced in previous sec-
tions and they can be neglected at large values of x as valence quarks dominate that
region, but they become more and more relevant as we approach the small-x region;
finally we have sea quarks that form quark-antiquark pairs coming from a gluon.

Taking all of the above in consideration, we take the DIS process as the absorp-
tion of the virtual photon by one of the partons, where this parton carries just a
fraction of the momentum of the hadron which is denoted by p = ξP, with ξ the
Bjorken-x assuming that the parton is on mass-shell. Now one can interpret the
Bjorken-x as the momentum fraction that the struck quark carries from the initial
parent hadron, so we work in the quark parton model (QPM) [7] where one also as-
sumes the interactions among the partons are negligible when we consider short
distances. The latter occurs when the time scales of the interactions among partons
are much larger than the time scale of the scattering, as we previously explained for
the struck parton to appear temporarily ’free’.

In the QPM we can use the factorisation in order to separate a process that con-
tains hadrons, the hard interaction from the hadron content. This allows us to sep-
arate the perturbative interaction part (that we are able to compute) from the non-
perturbative part, that is the hadron content. Since the last part is non computable,
we need a parton density function in order to describe it, this gives us the probabil-
ity to find the parton with a given momentum fraction ξ in the initial parent hadron,
this probability is also known as the parton distribution function (PDF) represented
by fi(ξ, Q2) and it should be extracted from experiment. The number of quarks of
a given flavour i and momentum fraction from ξ to ξ + dξ that one finds at a res-
olution Q2, is then fi(ξ, Q2)dξ. With these ingredients the DIS cross section can be
described as:

d2σe−p→e−X

dxdq2 =
∫ 1

0
dξ fi(ξ, Q2)σ̂i(ξ, Q2) (1.13)

where at first non-trivial order we have

σ̂i =
4πα2

s
Q4

e2
i

2
δ(xBj − ξ)[1 + (1− y)2]. (1.14)
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This is the cross section of the photon-parton scattering and is computable in pertur-
bation theory and where x is the Bjorken-x, ξ is our momentum fraction and ei the
electric charge of the quark i. Notice that we only take into account the coupling of
the quarks since gluons have no electric charge. Now if we compare 1.11 and 1.13
we obtain the following relation between the structure functions

F2 = 2xF1 = ∑
i

e2
i x f (x, Q2) (1.15)

which is referred to as the Callan-Gross relation [8]. Results at the SLAC-MIT exper-
iment pushed to identify Feynman’s partons as the previously postulated by Gell-
Mann quarks, a big accomplishment for the parton model.

Finally, we have seen that this parton model although successful for a description
of the DIS process, lacks of theoretical description of the insight of the hadron, which
stems from the factorization phenomena as one cannot provide analytical informa-
tion for the non-perturbative region. Now, another issue arrives when one moves
towards the small-x regime (high energies) where a violation of the of the Bjorken
scaling that we previously described, can be seen. In this regime the structure func-
tion F2 increases and one can expect an increase in the partonic density of the proton.
This behavior can be seen in Fig.1.6

FIGURE 1.6: The proton structure function F2 measured in DIS exper-
iments with Bjorken scaling violation for vallues of Bjorken-x under
10−1. This figure has been taken from the Particle Data Group collab-

oration in [9]
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1.4 The DGLAP evolution equation

In the previous section we explained the QPM and the idea of separating the hard
from soft parts by factorization, however this separation was not described rigor-
ously. Due to the fact that we lack from taking all possible information into account,
the parton model we described is only an approximation and we already saw in the
previous section few of the problems we encounter within this model. One of these
problems was the breakdown of Bjorken scaling for the structure functions which
we face when going to larger energies, either when we go to small x and keep Q2

fixed (Regge-Gribov limit) or to higher Q2 and keep x fixed (Bjorken limit). The rea-
son for this issue is precisely the lack of information we account for, since as for now
we have only taken the interacting quarks into account and ignored corrections that
come from the possible QCD interactions. Therefore, one can say that it is only the
zeroth order of a perturbation expansion in αs.

Introducing QCD corrections that come from the interaction among the partons
gives us higher order computations, this is called next-to-leading order (NLO) in
perturbation theory of QCD. It includes additional quantum fluctuations such as
gluon emission before the interaction, interpreted as real corrections, and gluon fluc-
tuation into itself as an emission-absorption, which is a virtual correction. These
corrections can be seen in the figure below Fig.1.7. The data obtained from DIS pro-
cesses becomes more and more sensitive to these corrections as one moves towards
smaller x values where one no longer sees only the valence quarks but, as mentoined
in the previous section, the sea quarks’ presence is more and more noticeable.

FIGURE 1.7: First order corrections to the Deep Inelastic Scattering
process, with real correction on the upper line and virtual corrections

in the lower line

Let us provide a simple picture on what happens in the nucleon at high ener-
gies to understand from a qualitative point of view why these corrections appear.
Take first the nucleon as a bound state of valence quarks with gluon exchange be-
tween them and fluctuations that turn a quark into a gluon and a quark temporar-
ily. However when probing this nucleon with the photon (for the case of DIS), one
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needs to take into account the time and length scale of this photon, so it can resolve
only the fluctuations that are larger and longer lived than the probe scales. Thus,
for the Regge-Gribov limit, we can roughly interpret the x as the time resolution of
the probe. Therefore, if one decreases its value, this photon is able to see shorter
and shorter lived fluctuations that one needs to take into account as compared to
lower energy values. On the other hand, for the Bjorken limit one has a higher space
resolution of the probe (higher Q2) allowing the photon to see a higher number of
partons.

The corrections mentioned introduce, as discussed before, an artificial scale that
needs to be taken care of in order to make our observables independent of this scale.
This is done through RGEs that describe the evolution of the scale, and in our case
we want to know the evolution of the PDFs as functions of the photon virtuality Q2.
The RGEs that encode this behaviour are called the DGLAP evolution equations.
They were proposed by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi in [10–13]. The
DGLAP evolution equation when perturbative schemes are valid (Q2 > ΛQCD) can
be written as

∂

∂lnQ2

(
Σ(x, Q2)
G(x, Q2)

)
=

αs(Q2)

2π

∫ 1

x

dz
z

(
Pqq(z) Pqg(z)
Pgq(z) Pgg(z)

)
×
(

Σ(x/z, Q2)
G(x/z, Q2)

)
(1.16)

where the sea quarks PDF are given by Σ(x, Q2) = fq(x, Q2) + fq̄(x, Q2) and the
gluon PDF by G(x, Q2). The Pij(z) are called the splitting functions and are repre-
sented diagramatically in Fig.1.8 at leading order (LO). They represent the probabil-
ity functions for a parton i to emit a parton j carrying a z fraction of the longitudinal
momentum from the parent parton. One needs to provide initial conditions in order
to solve the DGLAP equation, meaning one needs an initial Q2

0 that typically comes
from experimental data and we can use in order to make predictions. Moving to-
wards small-x values, an enhancement in the integrand of Eq.(1.16) by Pqg, Pgg ∼ 1/z
appears. This translates as an enhancement of the evolution of the gluon PDFs with
respect to the sea quark PDFs. This suggests that the small-x (or high energy) regime
is dominated by gluons.

FIGURE 1.8: Representation for the diagrams of the four Leading Or-
der splitting functions appearing in the DGLAP evolution equation

Let us now consider the probability of a gluon emitting another gluon with trans-
verse1 momentum k⊥ in the small-x and collinear (|k⊥| → 0) regimes.

1Here, we introduce the light-coordinate notation that is explained in the Appendix A and will be
used through the whole thesis.
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P =
αsNc

π

dx
x

d2k⊥
k2
⊥

, (1.17)

we see that in this situation an additional logarithm of 1/x appears, and therefore
this regime is referred to as the double logarithm approximation (DLA). One can in-
terpret the solution to the DLA DGLAP [14] equation as a ladder diagram as shown
in Fig.1.9. In this diagram one has on and on gluon emission that comes from an-
other parent gluon. The transverse momentum of the gluons is ordered in such a
way that it is lower as we go up in the ladder, while the longitudinal momentum
goes in the opposite direction, with the highest value at the top of the ladder.

Q2 >> k2
n >> k2

n−1 >> ... >> k2
1 >> Q2

0 >> Λ2
QCD (1.18)

P+ >> k+1 >> k+2 >> ... >> k+n >> k+ (1.19)

FIGURE 1.9: representation of the gluonic ladder-like diagram of one
cascade

Taking into account everything that has been reviewed so far, one can write the
probability of an ordered emission of a gluon in transverse and longitudinal mo-
mentum:

Pn =
∫ Q2

Q2
0

ᾱsdk1

k2
1

...
∫ Q2

kn−1

ᾱsdkn

k2
n

∫ P+

k+

dk+1
k+1

...
∫ k+n−1

k+

dk+n
k+n

(1.20)

=
1

n!2

[
ᾱsln

Q2

Q2
0

ln
1
x

]n

(1.21)

with ᾱs = αsNc/π.
Summing up the gluon emission probability for all orders of the cascade, one

gets an estimation for the gluon distribution function

G(x, Q2) ∼
∞

∑
n=0

Pn, (1.22)

where one would get a prediction of the higher gluon distribution on lower x, mak-
ing that region gluon dominated.
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1.5 Gluon saturation

In the previous section we have seen the DGLAP evolution equations, which de-
scribe the dynamics of the hadrons for increasing value of Q2 and keeping x fixed.
However, in this section we are interested in the domain of small-x for fixed Q2,
the Regge-Grobov limit, so we need a different picture from DGLAP. In this small-
x limit, we resum powers of ln 1

x instead of powers of lnQ2, which is the essential
difference compared to DGLAP. The equation that is introduced in this section is
therefore, an evolution in x instead of in Q2.

In this limit of small x and fixed Q2, the main mechanism for evolution is gluon
radiation, and the gluonic content in a hadron evolve in this limit via cascades. Since
we are only interested in resumming powers of ln 1

x , one only needs to impose strong
ordering in the energy fractions of the radiated gluons. This ordering in the energy
fraction is opposite when compared to the case of DGLAP, where the ordering is
in transverse momenta. The transverse momenta in this limit is taken as a random
walk in k⊥-space. The ordering in energy fractions is

x1 >> x2... >> xn, (1.23)

x1 being the energy fraction of the first emitted gluon, that then emits more gluons
making the subsequent ’daughter’ gluons have smaller energy fractions than the
’parent’ gluon. This radiation process is described by the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) evolution equation 2:

∂ϕ(x, k2)

∂ln(1/x)
=

αsNc

π2

∫ d2q
(k− q)

[
ϕ(x, q2)− k2

2q2 ϕ(x, k2)

]
. (1.24)

that resums large logarithms of the type αsln(1/x) ∼ 1. Here, ϕ(x, k2) is the un-
integrated gluon distribution (UGD) that defines the number of gluons per unit phase
space in a hadron with transverse momentum k and longitudinal momentum fraction-
x. The relation between the UGD and standard gluon PDF is

xG(x, Q2) =
∫ Q2

0
d2kϕ(x, k2). (1.25)

However in this equation, both PDFs and UGDs are non-perturbative quantities that
can be extracted from data. Nevertheless, the solution of the BFKL equation (1.24),
yields a gluon distribution that leads to a singular behavior in the small-x limit. The
solution of Eq.(1.24) behaves as

ϕ(x, k2) ∼ x−
4Ncln2

π αs . (1.26)

which, violates unitarity. This is because the BFKL equation leads to an uninter-
rupted rise of the gluon distribution in the small-x limit and this violates unitarity.
This is a fundamental requirement of any quantum field theory. The origin of this
behavior is the fact that BFKL is a linear evolution equation.

Another problem the BFKL encounters is that in particle collisions experiments
where the Froissart bound [18] is introduced, this bound is violated. The Froissart
bound is given by

σtot(s) ≤
1

m2
π

ln2s. (1.27)

2This evolution equation was first derived in [15, 16] and for a modern review of the derivation of
the BFKL equations we refer to [17].
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Here mπ is the pion mass and s the squared center of mass energy of the collision.
The Froissart bound is a strong condition and it was derived in [17]. However, one
can also derive this using the optical theorem and the black disk limit [14]. Using
the BFKL solution, the small-x cross-section is roughly

σBFKL
tot ∼ s

4Ncln2
π αs (1.28)

which violates the Froissart bound. This problem still remains to be solved in this
saturated regime of QCD.

However, one can still restore unitarity by taking into account other evolution
mechanisms beyond the gluon radiation. Consider a hadron with three valence
quarks, each of these quarks yields the gluon cascade that was described previously.
At one point, the gluon radiation from each of these cascades makes the nucleon
to be densely packed, and the possible interactions between the gluons should be
accounted for, as illustrated in Fig.1.10. The merging of the gluons from different
cascades slows down the increase of the gluon distribution, it adds a term with neg-
ative coefficient and quadratic in gluon density to the BFKL equation. This effect is
known as gluon saturation.

FIGURE 1.10: Interaction of the gluons coming from two different
cascades, which ultimately gives rise to non-linear effects.

From the previous discussion one can see that at small-x BFKL cannot be used
when non-linear effects become important. In DIS processes the virtual photon re-
solves only one parton at a time which makes the system dilute. The dilute scheme
is not valid anymore at small-x and changes into a saturated system, where the
recombination processes have to be taken into account, finally obtaining the non-
linear terms. This description now agrees with the unitarity bound. This was first
discussed in [19] , where Gribov, Levin and Ryskin derived a non-linear evolution
equation that is also an evolution in Q2. However, for our discussion it is sufficient
to work with a schematic equation that contains the BFKL-like equation and looks
like

∂ϕ(x, k)
∂ln(1/x)

= a
∂2ϕ

∂k2 + bϕ− cαsϕ
2, (1.29)

where a, b and c are coefficients of order of unity and where we note that the new ex-
tra quadratic term has an extra power of αs , thus the merging of two gluon cascades
has two extra powers of the strong coupling g. Therefore, when the gluon density is
of order 1/αs, the non-linear terms should be taken into account.
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In this regime, a boost in the longitudinal direction turns the nucleon into a ’thin
pancake’ due to Lorentz contraction. The probe, which is a virtual photon, does not
resolve the gluon distribution in the longitudinal direction since it is larger than the
’pancake’ nucleon. The probe sees only the number of gluons integrated over the z
axis. Take then a nucleon of radius rh, the surface density would be approximately

ρg ∼
xG(x, k2)

πr2
h

, (1.30)

which one should compare to the cross section for the recombination of two gluons.
Since the probability of having two gluons recombine can be expressed as

κ = ρgσgg ∼
xG(x, k2)

πr2
h

αs

k2 (1.31)

where the cross section for the recombination of two gluons is roughly σgg ∼ αs/k2.
In order to decide if it is large enough to account for that merging we apply the
following condition ρgσgg ≥ 1, and if this condition is met, recombination effects
should be taken into account.

Let us now introduce a new quantity, the saturation momentum Qs. This is defined
in terms of the gluon distribution as

Q2
s (x) ∼ αsxG(x, Q2

s )

πr2
h

. (1.32)

and with this, the condition for taking into account the recombination effects can be
rewritten as

k ≤ Qs(x). (1.33)

With this new quantity, Qs, one can now separate the dilute regime from the
saturated one. One can see in Fig.1.11 that lnQ2

s separates the saturated regime from
the dilute one.

Taking into account Eqs. (1.25) and (1.26), one can see that because xG(x, Q2
s ) ∼

x−λ, in Eq. (1.32) the saturation momentum depends on x as Q2
s ∼ x−λ approxi-

mately, where λ ≈ 0.3 [20, 21]. The discussion above can be also applied to a nucleus
that contains A nucleons. Therefore, the UGD should be multiplied by A and taking
into account that πr2

h ∼ A2/3. If one replaces in Qs the factor xG(x, Q2
s ) ∼ x−λ. The

saturation momentum would be proportional to

Q2
s,A(x) ∼ A1/3 1

xλ
. (1.34)

The saturation momentum grows for larger nuclei because of the A1/3 dependence.
With all of the above in mind, we conclude this section with some numerical values.
For RHIC kinematics (Gold nuclei at x ≈ 10−2) the saturation momentum is roughly
Qs ≈ 1.2GeV [22] while at LHC the value reaches Qs ≈ 2GeV with x ≈ 10−4, where
saturation effects would be even more present.

1.6 The McLerran-Venugopalan model

The main focus of this section is to introduce a model that sheds some light on the
theoretical description of gluon saturation, the McLerran-Venugopalan (MV) model
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FIGURE 1.11: Evolution of the domains depending on x and Q2 val-
ues. In the Bjorken limit with high Q2, we get the dilute regime, and
in the Regge-Gribov limit with low-x, we get the saturated regime

Those regimes are separated by the saturation scale, Qs.

[23–25]. As seen in previous sections, there are two main regions separated by their
x values, the region of small-x where the saturation momentum is large and Q2

s >>
Λ2

QCD . In this regime weak coupling methods can be used since αs(Qs) << 1. The
other region is a large-x region where weak coupling methods cannot be applied.
The latter is also the region where the valence quarks dominate.

The MV model describes the parton content of a nucleus in the IMF, where the
nucleus moves in the positive x3 direction with a very large light-cone momentum
P+ >> ΛQCD. In the IMF the partons are separated as either fast or slow ones, based
on their momentum fraction. The fast ones have a larger momentum fraction p+ =
xP+ and are sharply localized around the light cone, roughly within the distance
∆x− ∼ 1/p+. The fast partons are also long-lived, with a mean lifetime ∆x+ ∝ p+. In
the MV model these fast partons are quasi-static over the timescales relevant for the
interaction and are identified with the valence quarks that act as radiative sources of
the small-x gluons. Thus, we just need to specify the color current of the fast partons
in order to compute the radiation of the slower gluons from the fast ones.

One needs to introduce a cutoff Λ+ in the longitudinal momentum of the partons
p+ so that the fast partons with p+ > Λ+ can be replaced by a color current like

Jµ
a (x) = δµ+δ(x−)ρa(x), (1.35)

with ρa the color charge density per unit of transverse area. The current, that sits
at x− = 0, has vanishing transverse component and only the + component in the
light-cone coordinates is nonzero. As the current does not depend on x+, these new
degrees of freedom are seen as static.

The slow partons, or gluons, that have p+ < Λ+ are described, as discussed in
section 1.1, by the gauge fieldsAµ

a and their action is the standard Yang-Mills action.
The coupling between the fast and slow degrees of freedom is Eikonal and of the
form ∫

d4xJµ
a (x)Aµa. (1.36)
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The action that encodes the dynamics of the gluon fields is

S =
∫

d4x
(
−1

2
Fa

µνFµν,a + Ja
µAµ,a

)
, (1.37)

where the second term in Eq. (1.37) is identified as the interaction term and is the
standard coupling between fields and sources defined in Eq. (1.36). The first term in
Eq. (1.37) is the classical Yang-Mills action. Minimizing this action, the Yang-Mills
equations of motion is obtained:

[Dµ, Fµν] = Jν,ata = δµ+ρa(x−, x)ta, (1.38)

with ρa acting as the source of the classical gauge fields. In order to complete the
theory, we have to find a model precisely for ρa, that describe the distribution of the
fast partons. This distribution varies in time and so we can refer to the moment of
the collision as just a snapshot of that distribution. Therefore, ρa should be seen as a
stochastic variable that follows a statistical distributionW [ρa].

The MV model proposes a model for W [ρa] for the case of large nucleus. First,
two color charges belonging to different nucleons are uncorrelated. In the MV model
one assumes at two distinct points in the transverse plane, the values of the color
charge densities are also uncorrelated. Secondly, take a tube in the longitudinal di-
rection with cross section d2x so that at one point x, the amount ρa(x)d2x is made up
of all the color charges in that tube. These charges are also uncorrelated and random,
and in a large nucleus one would have a large number of them (∝ A1/3) so that ρa is
an incoherent sum of many random variables. The statistical distribution for ρa(x)
is a Gaussian distribution and is characterized by a 2-point correlator as

⟨ρa(x)ρb(y)⟩ = µ2(x−)δabδ(x− y) (1.39)

and the distribution is

W [ρa] = exp
[
−
∫

d2x
ρa(x)ρa(x)

2µ2

]
. (1.40)

One is now able to compute the expectation value of an observable O in the
MV model by following the next steps. First one needs to obtain O[ρa], that is, the
observable with an arbitrary ρa configuration of the color sources, assuming in the
saturated regime ρa ∼ g−1. At Leading Order this model can describe gluon satu-
ration, as the non-linearities in ρa have to be taken into account. Then one solves
the classical Yang-Mills equation (1.38), and finally, average the observable over the
distribution functional via

⟨O⟩ =
∫
[Dρa]W [ρa]O[ρa]. (1.41)

This final expectation value is gauge invariant as the distributionW is invariant
under gauge transformations, as well as the functional measure [Dρa].

1.7 The Color Glass Condensate

The MV model presents a singular problem when going beyond the tree level calcu-
lations. Although it is sufficient for phenomenological calculations for processes like
DIS, the factor δ(x−) in the color current gives us singularities when going beyond
tree level. One needs to assume then that the dependence on x− comes as
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δ(x−)ρa(x)→ ρa(x−, x) (1.42)

so this dependence is absorbed into ρa, yet still sitting at x− = 0.
In the previous section we started out from imposing a momentum scale Λ+ that

separated the fast partons from the slow ones. This dependence of the artificial scale
is taken into the functional weight W [ρa] ≡ WΛ[ρa], and gives the probability of
observing a specific configuration of the color charge sources at this scale. However,
the observables do not depend on this scale Λ+, so a new set of renormalization
group equations are introduced. This RGE was derived by Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov and Kovner (JIMWLK) in [26–30]. It describes the
evolution ofWΛ+ with changing momentum scale Λ+:

∂WΛ+ [ρ]

∂lnΛ+
= HJ IMWLKWΛ+ [ρ], (1.43)

where HJ IMWLK is the operator containing first and second derivatives with respect
to ρ. We start at some initial scale Λ+

0 that gives the initial conditionWΛ+
0

for which
we would use (1.40) to model it. Thus, the JIMWLK evolution equation describes
the evolution of this distribution as the cutoff decreases.

The Color Glass Condensate (CGC) is an effective theory that that includes both,
the separation of fast and slow partons according to the MV model, and the JIMWLK
evolution equation. Breaking down the name of the theory, the Color stands for the
fact that the gluons that govern the small-x regime, have color degrees of freedom.
The word Glass comes from the time evolution of the degrees of freedom described
by ρa. Due to Lorentz dilation this evolution is slow in comparison to the interaction
time, like it is in glass systems. Finally the word Condensate stems from the saturated
nature of the system in the small-x limit. The CGC may be also found in literature
to stand for Color Gluon Cloud, but this is less common. A more complete review
of theoretical and phenomenological aspects of CGC can be found in [31–33].
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2
Eikonal approximation and power
counting beyond eikonal accuracy

DISCLAIMER: The material presented in this chapter was originally published
in Phys. Rev.D 104 (2021) 1 , 014019 [34] and in Phys. Rev. D 107 (2023) 7, 074016
[35] of which I am a coauthor. More precisely, Section 2.2 and 2.3 was originally
published in Phys. Rev.D 104 (2021) 1, 014019 and Section 2.4 was published in in
Phys. Rev. D 107 (2023) 7, 074016. This chapter only constitutes partial discussions
of the original publications to give an introduction to eikonal approximation and
the power counting beyond eikonal accuracy. The main results of these two pub-
lications will be presented in Chapters 3 and 4. At the beginning of each of these
chapters I summarize my contributions to these publications as a disclaimer.

This chapter is dedicated to the Eikonal approximation since the bulk of the work
throughout the Ph.D. was focused on computing the corrections to this approxima-
tion. In Section 2.1 one can find a brief introduction to the Eikonal approximation
in different fields of physics. In Section 2.2 the Eikonal approximation in CGC is de-
fined. In Section 2.3 we can find the derivation for the quark propagator at Eikonal
accuracy and finally in section 2.4 there is a discussion about the power counting for
eikonal and beyond eikonal approximation.

2.1 The Eikonal approximation in physics

In physics we find many areas where the Eikonal approximation is used like optics,
seismology, quantum mechanics, QED or partial wave expansion. The word eikon
( from Greek eikenai) means ’to resemble’ or ’image’ and this evolved ever since to
what today is ’icon’. In physics, when one encounters a problem that is not possible
to solve in an exact manner, one makes use of approximations. For the vast majority
of the time, these approximations make good and reliable predictions.

In the mid XX-century, when high energy physics was being tested in experi-
ments, it was soon realized the need for a new approximation that would give pre-
diction in agreement with data. This is how the eikonal approximation came to life
in quantum mechanics and quantum field theories. QCD was the main theory that
benefited from this approximation, but we leave this discussion for the next section.
However, the eikonal approximation was born many years before QFT or QM, and
it was within the field of optics.

Optics, as we know today, is described in terms of waves that obey wave equa-
tions, and consequently behave according to Maxwell’s equations. However, this set
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of equations was not postulated until the XIX century, but we know that optics was
able to describe a lot of phenomena many years before that, and to this day we can
still admit the validity of some of these primitive explanations. This is due to taking
the eikonal approximation, which allows us to treat the light as a ’ray light’ in a way
that we can approximate it by a straight line. With this approximation it was pos-
sible to describe how light works when it meets objects that are big enough, that is,
large when compared with the wavelength of light. One example of a phenomena
that was understood centuries ago precisely thanks to the eikonal approximation is
reflection. However, when physicist tried to describe diffraction, they were forced
to switch to the previously mentioned wave point of view for light, and with this
they concluded that light, when treated in small scales, obeys Maxwell equations as
every other type of wave.

Once one acknowledges that the light is a wave where the eikonal approximation
works at a given scale, one realizes that this approximation may be valid for other
fields in physics with a wave nature or where we find a diffusion equation.

Due to this, another domain of physics we should mention where the eikonal
approximation has proven to be very useful is quantum mechanics. In QM this ap-
proximation works for scattering processes where incoming particles have a large
momentum and the scattering angle is very small. When using the eikonal approxi-
mation in quantum mechanics, one ends up with a simplified set of differential equa-
tions that depend on only one variable, as a result of the straight line approximation.
This is a big difference when comparing this approximation in quantum mechanics
with the WKB approximation. The latter one, has as its objective to find approx-
imate solutions to linear differential equations with coefficients that vary through
space, however, this description with the trajectory is in general complicated when
compared to the classical trajectory used in the eikonal approximation.

2.2 Eikonal approximation in Color Glass Condensate

Let us now focus on the Eikonal approximation within CGC. The CGC effective
theory is used to describe processes at very high energies that are probed at the
Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider (LHC) or the future
Electron Ion Collider (EIC). The validity of the eikonal approximation is then secured
as it is an approximation for high energies. In this section the formulation for the
eikonal approximation is shown within CGC, and we also discuss how it allows us
to perform the calculations simpler in this saturated region.

Let us start with a reminder of what happens during a high energy collision,
where relativistic kinematics are involved. The nucleon that appears at high energies
is Lorentz contracted, therefore its geometry is modified to a two dimensional one
in the laboratory frame. At the same time the internal timescales are also modified
by the same Lorentz factor. While in the lower energy nucleon one has fluctuations
among the partons that were short lived making very few of them probed by the
photon, in a high energy nucleon the lifetimes of these fluctuations are dilated and
more of them can be now probed. In these collisions several interactions among the
constituents appear as well. When the duration of these interactions is boosted, the
constituents appear as free in the collision and are rather unlikely to interact. These
consequences are the reason for the increase of gluons probed during the process,
and also the fact that now these gluons outnumber significantly other parton species
such as valence and sea quarks.
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In CGC there is another approximation apart from the eikonal one that need to
be taken into account, that is the semi-classical approximation. As a consequence
of this approximation the dense target is treated as a classical background field Aµ,
while the ptrojectile is assumed to be dilute. This is why CGC is used for high energy
dilute-dense systems, which can be achieved by boosting the dense target from their
rest frames to the scattering energies. Boosting the target along the x− direction
leads to the following scaling of the background field Aµ

Aµ
a (x)→


γtA−a

(
γtx+, 1

γt
x−, x

)
1
γt
A+

a
(
γtx+, 1

γt
x−, x

)
Ai

a
(
γtx+, 1

γt
x−, x

)
the above shows two hierarchies that appear after the boost, one among the com-
ponents of the background field, and one among the coordinates of this field. In
the case of the components of the background field, the "-" component is power
enhanced compared to the perpendicular and "+" component, which are left un-
changed and suppressed, respectively. On the other hand, in the case of the coordi-
nates, the opposite situation arises, being the "+" component enhanced and the "-"
one suppressed, while the perpendicular component is still left unchanged.

The eikonal approximation in this configuration amounts to applying the follow-
ing three assumptions. The first one states that the highly boosted background field
that describes the target, is localized in the longitudinal direction around x+ = 0 due
to Lorentz contraction. This is also referred to as the shockwave approximation. The
second assumption is to take into account only the leading component of the back-
ground field A−a , neglecting then the subleading ones due to the hierarchy shown
before. Finally the third assumption is to neglect the x− dependence of the back-
ground field due to its slow dependence. In fact, this amounts to neglecting the
dynamics of the target. Taking in all of the assumptions, one can describe the back-
ground field of the target as

Aµ
a (x−, x+, x) ≈ δµ−δ(x+)A−a (x). (2.1)

Within the eikonal approximation, the projectile partons undergo multiple scat-
terings while propagating through the dense target and this information is encoded
via Wilson lines. These Wilson lines are defined as path ordered exponentials of
the leading component of the background field of the target. Finally, the eikonal
approximation in CGC amounts to taking the contributions leading in energy and
neglecting the power-suppressed ones in order to describe the scattering processes.

2.3 Derivation of the quark propagator at eikonal accuracy

Let us now derive the quark propagator at the pure eikonal level taking into consid-
eration all the ingredients and assumptions that were discussed in section 2.2. The
setup for this calculation includes the following definition for the quark propagator:

SF(x, y)βα = S0,F(x, y)βα + δSF(x, y)βα , (2.2)

where β and α are the fundamental color indices, S0,F(x, y)βα is the vacuum con-
tribution to the propagator and δSF(x, y)βα is the medium correction. The vacuum



20Chapter 2. Eikonal approximation and power counting beyond eikonal accuracy

propagator is

S0,F(x, y)βα = (1)αβ

∫ d4k
(2π)4 e−ik·(x−y) i(/k + m)

[k2−m2 + iϵ]
(2.3)

the Fourier transform is

SF(x, y)βα =
∫ d4q

(2π)4

∫ d4k
(2π)4 e−ix·q e+iy·k S̃F(q, k)βα . (2.4)

The quark propagator that is computed in this section is in a background field
taking only the pure A−a (x+, x) component. The medium correction to the quark
propagator in momentum space is obtained by summing multiple interaction dia-
grams of the type shown in Fig.2.1.

k = p0 p1

z1

A−(z1) A−(z2)

z2

p2

zN

A−(zN)

pN−1 q = pN

FIGURE 2.1: Multiple scattering of a quark on a pureA− background
field.

This sum can be written as

δS̃F(q, k)βα

∣∣∣∣
pure A−

=
+∞

∑
N=1

∫ [N−1

∏
n=1

d4 pn

(2π)4

] ∫ [ N

∏
n=1

d3zn eizn·(pn−pn−1) 2πδ(p+n −p+n−1)

]

×
{
Pn

N

∏
n=1

[
−igt·A−(zn)

]}
βα

i(/q+m)

[q2−m2 + iϵ]

{
Pn

N−1

∏
n=0

[
γ+ i(/pn+m)

[pn2−m2 + iϵ]

]}
,

(2.5)

where p0 ≡ k and pN ≡ q. The symbol Pn shows the ordering of the matrix factors
with increasing the value of n from right to left, for color matrices in the first bracket
and Dirac matrices in the second one. From the equation Eq. (2.5) on, the notation
Aa

µ(x+, x) ≡ Aa
µ(x) is used for the leading coordinates. Noting that γ+γ+ = 0,

which comes from the fact that g++ = 0 in the light-cone coordinates. Using this
one can get

γ+(/pn+m)γ+ = {γ+, /pn} γ+ = (2p+n ) γ+ , (2.6)

which simplifies the numerator in Eq. (2.5). One can perform the integration over
p−n for each internal free fermion propagator as∫ dp−n

2π
e−ip−n (z

+
n+1−z+n ) (2p+n )i

[pn2−m2 + iϵ]

=
{

θ(p+n )θ(z
+
n+1−z+n )− θ(−p+n )θ(z

+
n −z+n+1)

}
e−i p̌−n (z

+
n+1−z+n ) . (2.7)
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where is on-shell, p̌− = (p2 + m2)/(2p+). Plugging in this result into Eq. (2.5), one
gets

δS̃F(q, k)βα

∣∣∣∣
pure A−

= 2πδ(q+−k+)
i(/̌q+m)

[q2−m2 + iϵ]
γ+ i(/̌k+m)

[k2−m2 + iϵ]

+∞

∑
N=1

∫ [ N

∏
n=1

d3zn

]

×
{

θ(k+)

(
N−1

∏
n=1

θ(z+n+1−z+n )

)
+ (−1)N−1 θ(−k+)

(
N−1

∏
n=1

θ(z+n −z+n+1)

)}

× eizN ·q e−iz1·k
{
Pn

N

∏
n=1

[
−igt·A−(zn)

]}
βα

×
∫ [N−1

∏
n=1

d2pn

(2π)2 eipn·(zn+1−zn) e−i p̌−n (z
+
n+1−z+n )

]
, (2.8)

Where the terms q− and k− are only present in the denominator and phase factor,
while in the numerator /q and /k have been replaced by their on-shell counterparts /̌q
and /̌k . Note also that in Eq. (2.8), p+n = k+ for n from 1 to N−1.

Here, we consider the background field with a finite support along the x+ di-
rection [−L+/2, L+/2]. In the eikonal limit, L+ → 0. This finite width L+ is of
order O(1/γ) due to Lorentz contraction. Each vertex of interaction of the quark
with the background field comes with an integration in x+ over [−L+/2, L+/2], thus
bringing a suppression factor 1/γ. In Eq. (2.8) one has |z+n+1−z+n | < L+ → 0, thus
the phase factors exp [−i p̌−n (z

+
n+1−z+n )] can be replaced by 1 in first approximation.

This approximation is possible only after taking the integral over p−n , otherwise one
would not be able to recover the correct ordering in z+ unambiguously. With this,
one reduces the integrals in pn to δ(2)(zn+1 − zn) factors, leading then to the expres-
sion

δS̃F(q, k)βα

∣∣∣∣
pure A−, Eik.

= 2πδ(q+−k+)
i(/̌q+m)

[q2−m2 + iϵ]
γ+ i(/̌k+m)

[k2−m2 + iϵ]

∫
d2z e−iz·(q−k)

×
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

]
eiz+Nq− e−iz+1 k−

{
Pn

N

∏
n=1

[
−igt·A−(z+n , z)

]}
βα

×
{

θ(k+)

(
N−1

∏
n=1

θ(z+n+1−z+n )

)
+ (−1)N−1 θ(−k+)

(
N−1

∏
n=1

θ(z+n −z+n+1)

)}
(2.9)

Note that in Eq. (2.9) the N = 1 term has not been affected by the eikonal approxi-
mation therefore is still exact. Taking now the Fourier transform following the previ-
ously established convention, and perfmorming the integrals over q− and k− thanks
to Eq. (2.7), one gets
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δSF(x, y)βα

∣∣∣∣
pure A−, Eik.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌+iy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
∫

d2z e−iz·(q−k)
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

]
eiz+N q̌− e−iz+1 ǩ−

{
Pn

N

∏
n=1

[
−igt·A−(z+n , z)

]}
βα

×
{

θ(k+)

(
N

∏
n=0

θ(z+n+1−z+n )

)
+ (−1)N+1 θ(−k+)

(
N

∏
n=0

θ(z+n −z+n+1)

)}
,

(2.10)

where z+0 ≡ y+ and z+N+1 ≡ x+. Since the integrals over q− and k− have already
been performed, one can neglect the phase factors dependent on z+1 and z+N , in the
eikonal approximation. Using P+ and P+ to indicate the ordering and anti-ordering
of the color matrices along z+ from right to left, one can recognize in Eq. (2.10) the
series of expansion of the gauge link

UF(x+, y+; z) ≡1 +
+∞

∑
N=1

1
N!
P+

[
−ig

∫ x+

y+
dz+ t·A−(z+, z)

]N

=1 +
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

] (
N

∏
n=0

θ(z+n+1−z+n )

) {
Pn

N

∏
n=1

[
−igt·A−(z+n , z)

]}
(2.11)

and of the conjugate gauge link

U †
F(y

+, x+; z) ≡1 +
+∞

∑
N=1

1
N!

{
P+

[
−ig

∫ y+

x+
dz+ t·A−(z+, z)

]N}†

=1 +
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

] (
N

∏
n=0

θ(z+n −z+n+1)

) {
Pn

N

∏
n=1

[
+igt·A−(z+n , z)

]}
,

(2.12)

Thus, in the eikonal approximation, the complete A− medium correction to the
quark propagator looks like

δSF(x, y)βα

∣∣∣∣
pure A−, Eik.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌+iy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
∫

d2z e−iz·(q−k)
{

θ(k+)θ(x+−y+)
[
UF(x+, y+; z)− 1

]
βα

− θ(−k+)θ(y+−x+)
[
U †

F(y
+, x+; z)− 1

]
βα

}
. (2.13)

which is valid for all values of x+ and y+. In order to get the full propagator,
one needs to combine the vacuum propagator Eq.(2.3) and the medium correction
Eq.(2.13). This can be achieved by splitting the momentum space expression of the
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vacuum propagator into a simple pole contribution in k− and a non-pole contribu-
tion as follows

i(/k + m)

[k2−m2 + iϵ]
=

i
[
(/̌k + m) + (k−−ǩ−)γ+

]
[k2−m2 + iϵ]

=
i(/̌k + m)

[k2−m2 + iϵ]
+

i γ+

2k+
(2.14)

The simple pole contribution cancels identically the color identity matrix terms from
Eq.(2.13) and one can use the identity∫ dk+

2π

i
2k+

e−ik+(x−−y−) =
1
4

sgn(x−−y−) (2.15)

where the sign function is sgn(x) ≡ θ(x)− θ(−x), thus we obtain

SF(x, y)βα

∣∣∣∣
pure A−, Eik.

= 1αβ δ(3)(x−y) sgn(x−−y−)
γ+

4
+
∫ d3q

(2π)3

∫ d3k
(2π)3

× 2πδ(q+−k+) e−ix·q̌+iy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
∫

d2z e−iz·(q−k)
{

θ(k+)θ(x+−y+)UF(x+, y+; z)βα

− θ(−k+)θ(y+−x+)U †
F(y

+, x+; z)βα

}
. (2.16)

for the quark propagator in a pure A− background field, in the eikonal approxima-
tion valid for any x+ and y+.

2.4 Power counting beyond the eikonal approximation

In this section we discuss the power counting beyond eikonal approximation since
the actual purpose of this thesis is to show how one can get corrections beyond the
eikonal order by relaxing the eikonal approximation described in section 2.2. These
corrections are also called next-to-eikonal (NEik). In section 2.2 we discussed that
the high-energy limit of a collision process can be understood in terms of the in-
finite Lorentz boost of the target, which introduced a hierarchy among both, the
components of the background field and its coordinates. Thus, one can classify con-
tributions according to their scaling with the Lorentz boost factor γt of the target.

2.4.1 Scaling of the background field

Under a large active boost of the target along the x− direction, the components of the
background field strength are transformed following the standard Lorentz transfor-
mation rules for tensors. In light-cone coordinates, the tensor components are en-
hanced by a factor γt for each upper “−" or lower “+" index under such a boost,
and are suppressed by a factor 1/γt for each lower “−" or upper “+" index. The
background field strength is defined as

F a
ij(z) ≡ ∂ziAa

j (z)− ∂zjAa
i (z)− g f abcAb

i (z)Ac
j (z) (2.17)
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Hence, the components of the background field strength scale under a large boost of
the target along x− direction as

F−j ∝ γt ≫ 1 (2.18)
F ij ∝ (γt)

0 = 1 (2.19)
F−+ ∝ (γt)

0 = 1 (2.20)

F+j ∝
1
γt
≪ 1 (2.21)

One can extend these rules to the background field of the target, thus obtaining
the following scaling

A−(x) ∝ γt ≫ 1 (2.22)

Aj(x) ∝ (γt)
0 = 1 (2.23)

A+(x) ∝
1
γt
≪ 1. (2.24)

from this scaling one can see that the NEik correction corresponds to taking into ac-
count the perpendicular component of the background field, while includingA+(x)
would give us corrections of order next-to-next-to-eikonal, which is out of the scope
of this thesis.

2.4.2 Scaling of derivatives

Let us now look at the scaling of the derivatives of the background field. These
derivatives acting on the background field will appear when computing corrections
to the eikonal approximation. The derivatives are with respect to any of the coordi-
nates that the background field depends on. The scaling rules that these derivatives
follow are the same ones based on the counting of “+" and “−" indices. A partial
derivative on a tensor leads to a higher rank tensor, thus the following scaling rules
apply

∂−Fµν ∝
1
γt
Fµν ≪ Fµν (2.25)

∂+Fµν ∝ γt Fµν ≫ Fµν (2.26)
∂iFµν ∝ (γt)

0 Fµν (2.27)

in the case of partial derivatives acting on the background gauge field similar rules
apply. Moreover, due to the scaling rules of the components of the background
gauge field given in Eqs. (2.22), (2.23) and (2.24), background covariant derivatives
follow the scaling rules as partial derivatives when acting on the background field.

2.4.3 Scaling of the width of the target

As we have seen in section 2.2, the eikonal approximation takes the width of the
target as a infinitely thin shockwave, therefore in order to compute corrections that
stem from relaxing this approximation one needs to introduce a finite width of the
target.
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Since the background field strength Fµν(x) represents a hadronic or nuclear tar-
get subject to confinement, it should decay faster than a power for x+ → ±∞. Hence,
the profile of Fµν(x) along x+ has a finite width, that we note L+. Due to Lorentz
contraction under a large boost of the target along x− direction, that width scales as

L+ =O
(

1
γt

)
(2.28)

In particular, in the limit of infinite boost, Fµν(x) becomes a shockwave of van-
ishing width along the x+ direction. For the purpose of power counting, the finite
width L+ of Fµν(x) can be assimilated as a finite support for Fµν(x) along the x+.
In a generic gauge where A−(x) ̸= 0 (for example the light-cone gauge A+(x) = 0),
the background gauge field Aµ(x) has a finite width of O(L+) along the x+ direc-
tion, which becomes a shockwave in the infinite boost limit. Therefore, each inte-
gration over the position x of a background field strength or gauge field insertion is
effectively restricted to the small width L+ along the x+ direction, and can thus be
counted as a suppression by a factor of L+ or equivalently of 1/γt at large γt.

2.4.4 Eikonal and NEik contributions in propagators

As discussed in the previous sections, for the case of eikonal approximation, one
takes only the leading contributions, or equivalently, the high-energy limit. There-
fore only the leading component A−(x) of the gauge field is kept and due to its
enhancement with γt, each power ofA−(x) compensates the suppression due to the
integration over its x+ coordinate. Hence, multiple insertions of A−(x) have to be
resummed in the eikonal approximation, which as we have seen in section 2.3, lead
to the Wilson lines describing the interaction of each parton in the projectile with the
target in the CGC formalism in the eikonal approximation. Each A−(x) insertion in
a Wilson line has the same transverse position x in the eikonal approximation, due
to the parametrically small L+ width of the target. As for scaling of the derivatives,
they appear when one expandsA−(x) as a series in x−, and each further term comes
with an extra ∂− acting on the background field. This term is suppressed by an extra
1/γt factor under large boosts. In the case of eikonal approximation, one needs to
account only for the zeroth order term in this expansion, hence the x− dependence
of A−(x) is neglected.

In order to compute a propagator at NEik accuracy, one needs to include contri-
butions that are suppressed by one power of 1/γt at large γt compared to the eikonal
contribution. These terms arise as follows:

• by replacing an enhanced A−(x) insertion with a non-enhanced Aj(x) inser-
tion,

• or by accounting for the transverse motion of the projectile parton over the
duration L+ of the interaction with the target,

• or by including terms with one ∂x− derivative acting on the background field
in the gradient expansion of A−(x) in x−.

At the level of the cross-section, one has to square the amplitudes that contain
these corrections, hence new technical difficulties may appear if the gradient expan-
sion of all A−(x) insertions is performed around a fixed value of x− like x− = 0.
In order to bypass this issue, one can instead perform the gradient expansion of
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all A−(x) insertions around a common value of x− and write the amplitude (or
S-matrix) as integral over that variable. This amounts to resumming a subset of non-
eikonal corrections together with the eikonal term and one obtains what we refer to
as generalized eikonal approximation. In the second chapter, this generalized eikonal
term does not appear but it is introduced in chapters 4 and 5. There, one can see
which terms are kept and which ones are neglected in order to get both eikonal and
NEik terms at the level of the cross-section.

Finally, we can find that there has been a lot of effort in the recent years to com-
pute these NEik corrections. Initially, in Refs. [36, 37] subeikonal corrections that
stem from considering a finite width target are computed for the gluon propagator
and its application to single inclusive gluon production and various spin asymme-
tries in central pA collisions were studied at next-to-next-to-eikonal accuracy. In
Refs. [38, 39], it was shown that these corrections can be attributed to the modifica-
tions of the Lipatov vertex in pp collisions. The effects of subeikonal corrections on
the azimuthal harmonics for pp [40] and for pA [41, 42] collisions were also inves-
tigated. Recently, next-to-eikonal (NEik) corrections that are related with the trans-
verse component of the background field [34] and the dynamics of the target [43]
have been computed for scalar and quark propagators. Apart from the aforemen-
tioned works that focus on the derivation of the subeikonal corrections to the parton
propagators and their applications to observables, in [44–55] quark and gluon helic-
ity evolutions have been computed at next-to-eikonal accuracy. In [56, 57] helicity
dependent extensions of the CGC at next-to-eikonal accuracy have been studied. In
[58, 59] subeikonal corrections to both quark and gluon propagators have been calcu-
lated in the high-energy operator product expansion (OPE) formalism, and applied
to study the polarized structure function g1 at low x. Moreover, rapidity evolution
of transverse momentum dependent parton distributions (TMDs) that interpolates
between the low and moderate energies are studied in [60–64]. A similar idea is
pursued in [65, 66] to study the interpolation between the low and moderate values
of x for the unintegrated gluon distributions. Finally, an approach based on longi-
tudinal momentum exchange between the projectile and the target during the inter-
action have been followed in [67–69] to study the subeikonal effects. The effects of
subeikonal corrections are also studied in the context of orbital angular momentum
in [70, 71].
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3
NEik corrections: effects of finite
width and transverse background
field

DISCLAIMER: The material presented in this Chapter was originally published
in Phys. Rev. D 104 (2021) 1, 014019 (which can be found as a the reference in
this thesis [34]) of which I am a coauthor. My contributions to this publication
can be summarized as follows. I have contributed to the derivation of the quark
propagator at next-to-eikonal accuracy and also to the computation of the partonic
cross section for the forward quark-nucleus scattering. I have also derived the an-
tiquark propagator and computed the forward antiquark-nucleus cross section at
NEik accuracy. I have presented these results in an invited (online) seminar in
Centro de Investigation y de Estudios Avanzados del Instituto Politecnico Na-
cional de Mejico, Mexico in December 2021.

The eikonal approximation that was reviewed in the previous chapter is a very
successful and powerful tool when used to describe scatterings that are encountered
in the asymptotically high energy regime. However, the energies that are reached in
reality in scattering experiments are limited. Although for scattering energies that
are achieved at the LHC, the eikonal approximation is still valid and gives reliable
results when compared with the experimental data; subeikonal corrections are ex-
pected to be sizeable for RHIC and future EIC colliders phenomenology. One finds
that it is of key importance to understand the applicability regions of the eikonal ap-
proximation and computing the corrections to this approximation in order to obtain
a precise comparison of the experimental data with with the theoretical calculations.

In the previous section, the basis for computations at NEik order was laid down.
In this chapter we calculate the quark propagator at NEik, which is then used to
study an observable, the forward quark-nucleus scattering. In order to get correc-
tions beyond the eikonal approximation one needs to relax the assumptions that
were discussed in section 2.2. The idea of computing subeikonal correction for a bet-
ter understanding of the lower energy regions in the experiments, triggered a lot of
work in CGC to get these corrections, as we at the end of the previous chapter.

In this chapter, we focus on the quark propagator in a gluon background field
and we compute the NEik corrections to it. These corrections originate from relaxing
two of the assumptions stated in section 2.2. On one hand, in section 3.1, we consider
a finite width of the target instead of the infinitely thin shockwave, obtaining thus
NEik corrections due to finite longitudinal width that lead to the transverse motion
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of the projectile parton during its interaction with the target. On the other hand, in
section 3.2, we relax the fact that the target background field is defined only by its
leading component, A−. We include the transverse component of the background
field in the computations, since it is the next in order of the hierarchy among the
components of the background field. Finally, in section 3.3 we combine both these
results and obtain the quark propagator at NEik accuracy that will be used in section
3.4 in order to compute the forward quark-nucleus scattering cross-section.

3.1 Finite width effects

The first step in order to go beyond the eikonal approximation as we have said, is
to relax the shockwave approximation. By doing so one gets a target with a finite
longitudinal width that the projectile parton traverses. We adopt the same set up as
in section 2.3, where we computed the quark propagator in the pureA− background
at the eikonal level.

The support of the background field along the x+ direction is [−L+/2, L+/2]. In
order to derive the quark propagator in a at NEik in a pure A− background field,
we start from Eq.(2.8). One can Fourier transform this into the position space using
Eq.(2.4), and then integrate over pn (with n from 1 to N − 1), and over q− and k− to
arrive at

δSF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
+∞

∑
N=1

∫ [ N

∏
n=1

d3zn

]
eizN ·q̌ e−iz1·ǩ

{
Pn

N

∏
n=1

[
−igt·A−(zn)

]}

×
{

N−1

∏
n=1

[
(−i)k+

2π(z+n+1−z+n )
e−i

(z+n+1−z+n )m2

2k+ e
i

k+(zn+1−zn)2

2(z+n+1−z+n )

]}

×
{

θ(k+)

(
N

∏
n=0

θ(z+n+1−z+n )

)
+ (−1)N+1 θ(−k+)

(
N

∏
n=0

θ(z+n −z+n+1)

)}
, (3.1)

where we use the notation z+0 ≡ y+ and z+N+1 ≡ x+, and keeping fundamental color
indices implicit. Applying the change of variables zn → un, defined as

zn ≡ un +
1
2

(
q

q+
+

k
k+

)
z+n = un +

z+n (q+k)
2k+

. (3.2)

one can simplify the phase factor. The interpretation for the change of variables is
as follows. In the 2 + 1 dimensional Galilean subgroup of the Poincaré group in
light-cone coordinates, p/p+ plays the role of a transverse Galilean velocity, and
z+ the role of time. Hence, the change of variables Eq.(3.2) amounts to express the
successive transverse positions of the quark in a transversely moving frame, with a
Galilean velocity which is the average between the initial velocity of the quark k/k+
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and the final one q/q+. Eq.(3.1) then becomes

δSF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

]{
θ(k+)

(
N

∏
n=0

θ(z+n+1−z+n )

)

+ (−1)N+1 θ(−k+)

(
N

∏
n=0

θ(z+n −z+n+1)

)}

× ei(z+N−z+1 ) (q−k)2

8k+

∫ [ N

∏
n=1

d2un

]
e−

i
2 (uN+u1)·(q−k)

{
N−1

∏
n=1

[
(−i)k+

2π(z+n+1−z+n )
e

i
k+(un+1−un)2

2(z+n+1−z+n )

]}

×
{
Pn

N

∏
n=1

[
−igt·A−

(
z+n , un +

z+n (q+k)
2k+

)]}
. (3.3)

At this point one can perform the change of variables from un (with n from 1 to N)
to wn (with n from 1 to N − 1) and z defined as

wn ≡ un+1 − un

z ≡ (uN + u1)

2
. (3.4)

finding thus,

δSF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

(2k+)2

×
+∞

∑
N=1

∫ [ N

∏
n=1

dz+n

]{
θ(k+)

(
N

∏
n=0

θ(z+n+1−z+n )

)

+ (−1)N+1 θ(−k+)

(
N

∏
n=0

θ(z+n −z+n+1)

)}
ei(z+N−z+1 ) (q−k)2

8k+

∫
d2z e−iz·(q−k) E , (3.5)

where

E ≡
∫ {N−1

∏
n=1

[
d2wn

(−i)k+

2π(z+n+1−z+n )
e

i k+ w2
n

2(z+n+1−z+n )

]}

×
{
Pn

N

∏
n=1

[
−igt·A−

(
z+n , ẑn +

1
2

n−1

∑
n′=1

wn′ −
1
2

N−1

∑
n′=n

wn′

)]}
, (3.6)

and using the notation ẑn ≡ z + z+n (q + k)/(2k+) for the analog of the classical
trajectory used in Refs. [36, 37]. The Taylor expansion of each background field in-
sertion around its classical position ẑn allows us to go systematically beyond the
Eikonal approximation. The integrations over wn can be performed analytically
thanks to
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∫
d2wn

(−i)k+

2π(z+n+1−z+n )
e

i k+ w2
n

2(z+n+1−z+n ) = 1 (3.7)

∫
d2wn

(−i)k+

2π(z+n+1−z+n )
e

i k+ w2
n

2(z+n+1−z+n ) wi
n = 0 (3.8)

∫
d2wn

(−i)k+

2π(z+n+1−z+n )
e

i k+ w2
n

2(z+n+1−z+n ) wi
n wj

n =
i(z+n+1−z+n )

k+
δij . (3.9)

In order to account for the subeikonal corrections, one has to take into account all
contributions quadratic in wn in the Taylor expansion, for each n separately. How-
ever, the two powers of wn do not necesarily come from the Taylor expansion of the
same A− insertion. We thus find,

E =

{
1 +

i(z+N−z+1 )
8k+

∂zj ∂zj

}{
Pn

N

∏
n=1

[
−igt·A−

(
z+n , ẑn

)]}

− i
2k+

N−1

∑
n1=1

N

∑
n2=n1+1

(z+n2
−z+n1

)

×
{
Pn
[
−igt·∂jA−

(
z+n2

, ẑn2

)] [
−igt·∂jA−

(
z+n1

, ẑn1

)] N

∏
n = 1

n ̸= n1, n2

×
[
−igt·A−

(
z+n , ẑn

)] }
+ NNEik . (3.10)

Then we obtain

ei(z+N−z+1 ) (q−k)2

8k+

∫
d2z e−iz·(q−k) E =

∫
d2z e−iz·(q−k)

{
Pn

N

∏
n=1

[
−igt·A−

(
z+n , ẑn

)]}

− i
2k+

∫
d2z e−iz·(q−k)

N−1

∑
n1=1

N

∑
n2=n1+1

(z+n2
−z+n1

)

×
{
Pn
[
−igt·∂jA−

(
z+n2

, ẑn2

)] [
−igt·∂jA−

(
z+n1

, ẑn1

)] N

∏
n = 1

n ̸= n1, n2

×
[
−igt·A−

(
z+n , ẑn

)] }
+ NNEik , (3.11)

where the correction obtained from the double integration by parts in z cancels ex-
actly the NEik correction that comes from expanding the phase factor.

Up to this point, we have performed the analog of what was called the expansion
around the classical trajectory in Refs. [36, 37]. Now one has to perform the so called
small angle expansion, in which the small parameters are ẑn − z. In order to reach
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Next-to-Eikonal accuracy, it is sufficient to expand the leading term in Eq. (3.11) to
first order in any ẑn − z, and make the replacement ẑn 7→ z in the subleading term
in Eq. (3.11). One thus gets

ei(z+N−z+1 ) (q−k)2

8k+

∫
d2z e−iz·(q−k) E =

∫
d2z e−iz·(q−k)

{
Pn

N

∏
n=1

[
−igt·A−

(
z+n , z

)]}

+
(qj+kj)

2k+

∫
d2z e−iz·(q−k)

N

∑
n1=1

z+n1

×


Pn
[
−igt·∂jA−

(
z+n1

, z
)] N

∏
n = 1

n ̸= n1

[
−igt·A−

(
z+n , z

)]


− i
2k+

∫
d2z e−iz·(q−k)

N−1

∑
n1=1

N

∑
n2=n1+1

(z+n2
−z+n1

)

×


Pn
[
−igt·∂jA−

(
z+n2

, z
)] [
−igt·∂jA−

(
z+n1

, z
)] N

∏
n = 1

n ̸= n1, n2

[
−igt·A−

(
z+n , z

)]


+ NNEik . (3.12)

Now one needs to insert this result into Eq. (3.5), and using the definitions we
obtained for the Wilson lines in Eq.(2.11) and Eq.(2.12), we have

δSF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

× θ(k+)
(2k+)2

∫
d2z e−iz·(q−k)

{[
UF(x+, y+; z)− 1

]
+

(qj+kj)

2k+

∫ x+

y+
dv+ v+ UF(x+, v+; z)

[
−igt·∂jA−

(
v+, z

)]
UF(v+, y+; z)

− i
2k+

∫ x+

y+
dv+

∫ x+

v+
dw+ (w+−v+)UF(x+, w+; z)

[
−igt·∂jA−

(
w+, z

)]
×UF(w+, v+; z)

[
−igt·∂jA−

(
v+, z

)]
UF(v+, y+; z)

}
+ NNEik (3.13)
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for x+ > y+, and

δSF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+) e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

× θ(−k+)
(2k+)2

∫
d2z e−iz·(q−k)

{
−
[
U †

F(y
+, x+; z)− 1

]
− (qj+kj)

2k+

∫ y+

x+
dv+ v+ U †

F(v
+, x+; z)

[
+igt·∂jA−

(
v+, z

)]
U †

F(y
+, v+; z)

− i
2k+

∫ y+

x+
dv+

∫ v+

x+
dw+ (v+−w+)U †

F(w
+, x+; z)

[
+igt·∂jA−

(
w+, z

)]
× U †

F(v
+, w+; z)

[
+igt·∂jA−

(
v+, z

)]
U †

F(y
+, v+; z)

}
+ NNEik (3.14)

for y+ > x+.
From the following property of the Wilson line

∂zjUF

(
x+, y+; z

)
=
∫ x+

y+
dz+ UF

(
x+, z+; z

) [
− igt·∂zjA−(z+, z)

]
UF

(
z+, y+; z

)
.

(3.15)

and taking (w+−v+) =
∫ w+

v+ dz+ one can rewrite the bilocal term in Eq. (3.13)

∫ x+

y+
dv+

∫ x+

v+
dw+ (w+−v+)UF(x+, w+; z)

[
−igt·∂jA−

(
w+, z

)]
× UF(w+, v+; z)

[
−igt·∂jA−

(
v+, z

)]
UF(v+, y+; z)

=
∫ x+

y+
dz+ UF

(
x+, z+; z

)←−
∂zj
−→
∂zj UF

(
z+, y+; z

)
. (3.16)

Here only for the overlap of the [y+, x+] interval with the support [−L+/2, L+/2]
of the background field one gets nontrivial contributions in the integration over z+.
The bilocal term in Eq. (3.14), can be written as

∫ y+

x+
dv+

∫ v+

x+
dw+ (v+−w+)U †

F(w
+, x+; z)

[
+igt·∂jA−

(
w+, z

)]
× U †

F(v
+, w+; z)

[
+igt·∂jA−

(
v+, z

)]
U †

F(y
+, v+; z)

=
∫ y+

x+
dz+ U †

F

(
z+, x+; z

)←−
∂zj
−→
∂zj U †

F

(
y+, z+; z

)
. (3.17)

Lastly, one can also rewrite the third line in both Eq. (3.13) and Eq. (3.14) using
the previous discussion and also

v+ =
1
2

[∫ v+

z+min

dz+ −
∫ z+max

v+
dz+

]
+

(z+max+z+min)

2
. (3.18)
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for the case x+ > y+, and we get

∫
d2z e−iz·(q−k)

∫ z+max

z+min

dv+ v+ UF

(
z+max, v+; z

) [
− igt·∂zjA−(v+, z)

]
UF

(
v+, z+min; z

)
=− 1

2

∫
d2z e−iz·(q−k)

∫ z+max

z+min

dz+
[
UF

(
z+max, z+; z

)←→
∂zj UF

(
z+, z+min; z

)]
+

i(z+max+z+min)

2
(qj−kj)

∫
d2z e−iz·(q−k) UF

(
z+max, z+min; z

)
. (3.19)

In the particular case of the quark propagation through the whole medium, mean-
ing x+ > L+/2 and y+ < −L+/2, we have z+max = L+/2 and z+min = −L+/2, so that
z+max + z+min = 0, which implies that the extra term proportional to the eikonal con-
tribution in Eq. (3.19) vanishes. All in all, we obtain the result for the case of the
quark

SF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(k+)
(2k+)2 e−ix·q̌+iy·ǩ (/̌q + m)γ+

× (/̌k + m)
∫

d2z e−iz·(q−k)

{
UF

(L+

2
,−L+

2
; z
)

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←→
∂zj UF

(
z+,−L+

2
; z
)]

− i
2k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←−
∂zj
−→
∂zj UF

(
z+,−L+

2
; z
)]}

+ NNEik . (3.20)

For x+ < y+, the situation is analog. In particular, for y+ > L+/2 and x+ <
−L+/2, one finds the result for the antiquark:

SF(x, y)
∣∣∣∣
pure A−

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(−k+)
(2k+)2 e−ix·q̌+iy·ǩ (/̌q + m)γ+

× (/̌k + m)
∫

d2z e−iz·(q−k)

{
−U †

F

(L+

2
,−L+

2
; z
)

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z
)←→

∂zj U †
F

(L+

2
, z+; z

)]
− i

2k+

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z
)←−

∂zj
−→
∂zj U †

F

(L+

2
, z+; z

)]}
+ NNEik . (3.21)

Thus, we have the final result for a quark propagator with a finite width of the
target in Eq (3.20), and Eq(3.21) for the antiquark propagator.

3.2 Including the interactions with the transverse component
of the background field

Let us now concentrate on the corrections beyond the eikonal approximation that
stem from relaxing the assumption that neglects all components of the background
field except A−. We include the interaction with the perpendicular component, A⊥.
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We use the results of the previous section 3.1 and we compute the interactions with
the perpendicular component via perturbation theory in position space. Thus, for a
single insertion of Aj, the contribution is computed via

δSF(x, y)
∣∣∣∣
single A⊥

=
∫

d4z SF(x, z)
∣∣∣∣
pure A−

[−ig γj ta] Aa
j (z) SF(z, y)

∣∣∣∣
pure A−

.

(3.22)

In Eq. (3.22), the integration in z+ gives a L+ factor for L+ → 0, whereasAa
j is in-

dependent of L+ in that limit. One may think that this contribution would then start
already at NEik order, however this naive power counting fails due to the instan-
taneous contribution to the quark propagator, see Eq. (2.16). The delta distribution
gives a trivial contribution when integrating over z+. In that case, the transverse
field Aa

j (z) is taken at z+ = x+ or at z+ = y+, which is possible only if x+ or y+

belong to the support [−L+/2, L+/2].
In order to avoid these complications, we focus on the case in which neither

x+ nor y+ belong to the support [−L+/2, L+/2] of the background field and the
naive power counting in L+ applies. Then, Eq. (3.22) starts at NEik accuracy, with a
term obtained by using the eikonal expression Eq.(2.16) for both propagators in A−
background.

For x+ > L+/2 and y+ < −L+/2, one obtains

δSF(x, y)
∣∣∣∣
single A⊥

=
∫

d4z
∫ d3q

(2π)3

∫ d3 p2

(2π)3 2πδ(q+−p+2 ) e−ix·q̌+iz· p̌2
(/̌q + m)γ+

(2q+)2

× (/̌p2 + m)
∫

d2v e−iv·(q−p2) θ(q+)UF

(
L+

2
, z+; v

)
[−ig γj ta] Aa

j (z)

×
∫ d3 p1

(2π)3

∫ d3k
(2π)3 2πδ(p+1 −k+) e−iz· p̌1+iy·ǩ (/̌p1 + m)γ+(/̌k + m)

(2k+)2

×
∫

d2u e−iu·(p1−k) θ(k+)UF

(
z+,−L+

2
; u
)

+ NNEik , (3.23)

due to the ordering x+ > z+ > y+, only the terms with positive light-cone mo-
mentum q+ or k+ from Eq. (2.16) survive. Then, the integration over z− yields
p+1 = p+2 = k+ = q+. The Dirac algebra in Eq. (3.23) can then be performed as

(/̌q + m)γ+(/̌p2 + m)γj(/̌p1 + m)γ+(/̌k + m)

=(2k+) (/̌q + m)
[
γjγ+γi pi

1 + pi
2 γiγ+γj

]
(/̌k + m) . (3.24)

where we can write pi
1 and pi

2 in the numerator (3.24) as derivatives with respect to
ui or vi acting on the phase factor in Eq. (3.23), then one finally gets the expression

δSF(x, y)
∣∣∣∣
single A⊥

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γjγ+γi (/̌k + m)
∫

d3z
[

e−iz·q UF

(L+

2
, z+; z

)]
×
[←−

∂zj

[
gt·Ai(z)

]
−
[
gt·Aj(z)

]−→
∂zi

] [
UF

(
z+,−L+

2
; z
)

eiz·k
]

+ NNEik (3.25)
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Note that the transverse derivatives here act on both the Wilson lines and the phase
factors.

The result for the case of the antiquark propagating through a shockwave, that
is, y+ > L+/2 and x+ < −L+/2, can be computed in a similar manner only keeping
terms with negative q+ or k+ from Eq. (2.16) this time. This result is

δSF(x, y)
∣∣∣∣
single A⊥

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(−k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γjγ+γi (/̌k + m)
∫

d3z
[

e−iz·q U †
F

(
z+,−L+

2
; z
)]

×
[←−

∂zj

[
gt·Ai(z)

]
−
[
gt·Aj(z)

]−→
∂zi

] [
U †

F

(L+

2
, z+; z

)
eiz·k

]
+ NNEik . (3.26)

At this point, in order to compute the full NEik corrections that stem from in-
cluding the transverse field insertions, one needs to include the insertions of two
such fields. In this case, the contribution looks like

δSF(x, y)
∣∣∣∣
double A⊥

=
∫

d4z
∫

d4z′ SF(x, z′)
∣∣∣∣
pure A−

[−ig γj tb] Ab
j (z
′) SF(z′, z)

∣∣∣∣
pure A−

× [−ig γi ta] Aa
i (z) SF(z, y)

∣∣∣∣
pure A−

. (3.27)

Following the previous discussion at the beginning of this section about power
counting, one realises that due to the extra integration, each extra insertion would
bring an extra power of L+ for L+ → 0 naively. However, due to the instantaneous
contribution to the quark propagator, see Eq. (2.16), this naive power counting fails
as discussed previously. Let us focus on the cases in which neither x+ nor y+ belong
to the support [−L+/2, L+/2] of the background field and the instantaneous term
in Eq. (2.16) does not contribute to the external legs in Eq. (3.27). By contrast, the in-
stantaneous term contributes to the internal line, giving the dominant contribution
to Eq. (3.27), which is at NEik accuracy.

For x+ > L+/2 and y+ < −L+/2, one obtains

δSF(x, y)
∣∣∣∣
double A⊥

=
∫

d4z
∫

d4z′
∫ d3q

(2π)3

∫ d3 p2

(2π)3 2πδ(q+−p+2 ) e−ix·q̌+iz′· p̌2

× (/̌q + m)γ+(/̌p2 + m)

(2q+)2

∫
d2v e−iv·(q−p2) θ(q+)UF

(
L+

2
, z′+; v

)
× [−ig γj tb] Ab

j (z
′) δ(3)(z′−z) γ+

∫ dp+

2π

i
2p+

e−ip+(z′−−z−) [−ig γi ta] Aa
i (z)

×
∫ d3 p1

(2π)3

∫ d3k
(2π)3 2πδ(p+1 −k+) e−iz· p̌1+iy·ǩ (/̌p1 + m)γ+(/̌k + m)

(2k+)2

×
∫

d2u e−iu·(p1−k) θ(k+)UF

(
z+,−L+

2
; u
)

+ NNEik , (3.28)

using Eq.(2.15) for the sign function. Finally for the case of the quark going through
the whole shockwave is given by:
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δSF(x, y)
∣∣∣∣
double A⊥

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γjγ+γi (/̌k + m)
∫

d3z e−iz·(q−k)

× (−i) UF

(L+

2
, z+; z

) [
gt·Aj(z)

][
gt·Ai(z)

]
UF

(
z+,−L+

2
; z
)
+ NNEik

(3.29)

A similar computation corresponding to the case of an antiquark going through
the whole shockwave, where y+ > L+/2 and x+ < −L+/2, leads to the final result:

δSF(x, y)
∣∣∣∣
double A⊥

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(−k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γjγ+γi (/̌k + m)
∫

d3z e−iz·(q−k)

× (−i) U †
F

(
z+,−L+

2
; z
) [

gt·Aj(z)
][

gt·Ai(z)
]
U †

F

(L+

2
, z+; z

)
+ NNEik .

(3.30)

Finally, one could naively generalize such results to the case of higher number of
insertions of the transverse components of the background field. Keeping only the
instantaneous term in the internal quark lines, only one integration in z+ would sur-
vive, thus giving a Next-to-Eikonal contribution. However, that contribution van-
ishes, because the instantaneous term is proportional to γ+, which anticommutes
with the transverse γj. Hence, there is no non-vanishing contribution with two suc-
cessive instantaneous quark lines separated only by an A⊥ insertion.

3.3 Quark propagator at next-to-eikonal accuracy

In sections 3.1 and 3.2, we have computed up to next-to-eikonal accuracy the quark
(and antiquark) propagator considering both the finite width of the target and the
interaction with the perpendicular component of the background field. For the case
of the quark, our final expressions is given in Eq.(3.20) for the propagator through
a pure A− field at NEik, and Eqs. (3.25) and (3.29) provide the corrections due to
single and double A⊥ insertions, respectively. One finds a difference in these ex-
pressions in the spinor structure since, the one in the pureA− background at eikonal
and NEik accuracy differ from the spinor structure resulting from single and double
A⊥ insertions. Therefore one can separate the spinor structure into symmetric and
antisymmetric terms in i, j as

γjγ+γi = −γ+γjγi =− γ+

({γj, γi}
2

+
[γj, γi]

2

)
= δij γ+ + γ+ [γi, γj]

2
, (3.31)

now the pure A− contributions, (/̌q + m)γ+(/̌k + m), can be combined with the sym-
metric part in Eq.(3.31). We propose to split the propagator contributions at NEik
as
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SF(x, y) =SF(x, y)
∣∣∣∣
unpol.

+ SF(x, y)
∣∣∣∣
h. dep.

(3.32)

where the first term corresponds to an unpolarized piece and the second one to an
helicity-dependent piece, since [γi, γj] is proportional to the quark helicity when
acting on a u or v spinor.

Combining the contributions from Eqs. (3.20), (3.25) and (3.29), we get the ex-
pressions for the quark propagator through the medium, for x+ > L+/2 and y+ <
−L+/2,

SF(x, y)
∣∣∣∣
unpol.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(k+)
(2k+)2 e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

×
∫

d2z e−iz·(q−k)

{
UF

(L+

2
,−L+

2
; z
)

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←→Dzj UF

(
z+,−L+

2
; z
)]

− i
2k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←−Dzj
−→Dzj UF

(
z+,−L+

2
; z
)]}

+ NNEik (3.33)

and

SF(x, y)
∣∣∣∣
h. dep.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γ+ [γi, γj]

4
(/̌k + m)

∫
d2z e−iz·(q−k)

×
∫ L+

2

− L+
2

dz+ UF

(L+

2
, z+; z

)
gt·Fij(z)UF

(
z+,−L+

2
; z
)
+ NNEik , (3.34)

where we used the following notation for the covariant derivatives and field strength
tensor:

−→Dzµ ≡−→∂zµ + igt·Aµ(z) (3.35)
←−Dzµ ≡←−∂zµ − igt·Aµ(z) (3.36)
←→Dzµ ≡−→Dzµ −←−Dzµ =

←→
∂zµ + 2igt·Aµ(z) (3.37)

F a
ij(z) ≡ ∂ziAa

j (z)− ∂zjAa
i (z)− g f abcAb

i (z)Ac
j (z). (3.38)

Note that in Eq.(3.33) the transverse covariant derivatives act only on the Wilson
lines, not on the phase factors. Since no explicit gauge condition has been imposed
on the background field, the results Eq.(3.33) and Eq.(3.34) are written in terms of
gauge-covariant building blocks as expected. In Eq.(3.33), the first term corresponds
to the typical eikonal contribution, whereas the remaining two terms and the helic-
ity dependent contribution given in Eq.(3.34) are the NEik corrections to the quark
propagator passing through medium.

Similar arguments hold for the antiquark propagator given in Eqs. (3.21), (3.26)
and (3.30), leading to the following two separate contributions for the case of y+ >
L+/2 and x+ < −L+/2 :
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SF(x, y)
∣∣∣∣
unpol.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(−k+)
(2k+)2 e−ix·q̌ eiy·ǩ (/̌q + m)γ+(/̌k + m)

×
∫

d2z e−iz·(q−k)

{
−U †

F

(L+

2
,−L+

2
; z
)

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z
)←→Dzj U †

F

(L+

2
, z+; z

)]
− i

2k+

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z
)←−Dzj

−→Dzj U †
F

(L+

2
, z+; z

)]}
+ NNEik (3.39)

and

SF(x, y)
∣∣∣∣
h. dep.

=
∫ d3q

(2π)3

∫ d3k
(2π)3 2πδ(q+−k+)

θ(−k+)
(2k+)3 e−ix·q̌ eiy·ǩ

× (/̌q + m)γ+ [γi, γj]

4
(/̌k + m)

∫
d2z e−iz·(q−k)

×
∫ L+

2

− L+
2

dz+ U †
F

(
z+,−L+

2
; z
)

gt·Fij(z)U †
F

(L+

2
, z+; z

)
+ NNEik . (3.40)

These final expressions summarize the result for the quark and antiquark prop-
agators at NEik accuracy going through the whole medium, where we take into
account corrections that stem from both, considering a finite width of the target and
the interactions with the transverse component of the background field . The final
results are are written in a gauge-covariant form.

3.4 Forward quark-nucleus scattering

In this final section, we apply the obtained results to study the inclusive forward
quark-nucleus scattering in pA collisions. Although forward quark production oc-
curs at high energies and therefore one may suggest that these NEik corrections, that
are energy suppressed, can be neglected in this case, for moderate energies these
corrections can improve the description of experimental data. This is the case for
experiments such as at RHIC and at the future EIC, where the NEik corrections are
expected to give more precise information.

In the rest of this section, first we compute the quark-nucleus scattering ampli-
tude by using the LSZ reduction formula and then use the computed amplitude
to calculate the unpolarized forward quark production cross section as well as the
quark helicity asymmetry at NEik accuracy.

3.4.1 Quark-target scattering amplitude from the LSZ reduction

Let us start from the definition of the free fermion fields:
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FIGURE 3.1: Elastic scattering of a quark on a strong background
field.

Ψα(x) =
∫ ∞

0
dp+
2π

∫ d2p
(2π)2

1
2p+ ∑h

[
b̂( p̌, h, α)u( p̌, h)e−i p̌·x

+d̂†( p̌, h, α)v( p̌, h)ei p̌·x
]

(3.41)

Ψ̄α(x) =
∫ ∞

0
dp+
2π

∫ d2p
(2π)2

1
2p+ ∑h

[
d̂( p̌, h, α)v̄( p̌, h)e−i p̌·x

+b̂†( p̌, h, α)ū( p̌, h)ei p̌·x
]

(3.42)

where p̌ is the on-shell momentum defined in section 2.3 and h = ±1/2 is helicity. b̂
and b̂† (d̂ and d̂†) are the annihilation and creation operators, respectively, of a quark
(antiquark). Using the following property of the spinors

ū( p̌, h)γ+u(ǩ, h′) =
√

2p+
√

2k+δhh′ , (3.43)

Eqs. (3.41) and (3.42) can be inverted in order to express the annihilation and creation
operators for a quark in terms of the free quark field as

b̂(ǩ, h, α) =
∫

d2x
∫

dx−eix·ǩū(ǩ, h)γ+Ψα(x), (3.44)

b̂†(ǩ, h, α) =
∫

d2x
∫

dx−e−ix·ǩΨ̄α(x)γ+u(ǩ, h). (3.45)

Our process is a quark that undergoes multiple scatterings while it propagates
through the target, that is, the strong background field. The quark is considered free
in the asymptotic past and future. Thus, one can build the corresponding "in" and
"out" Fock space. The annihilation operator of a quark in the "out" Fock space and
creation operator of a quark in the "in" Fock space with the interacting quark field
Ψβ(x) can be written as

b̂out(q̌, h′, β) = lim
x+→+∞

∫
d2x

∫
dx−eix·q̌ū(q̌, h′)γ+Ψβ(x), (3.46)

b̂†
in(ǩ, h, α) = lim

y+→−∞

∫
d2y

∫
dy−e−iy·ǩΨ̄α(y)γ+u(ǩ, h) (3.47)
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The S-matrix element for quark scattering on the background field (see Fig. 3.1)
is defined as

Sq(q̌,h′,β)←q(ǩ,h,α) = ⟨0|b̂out(q̌, h, β)b̂†
in(ǩ, h, α)|0⟩ (3.48)

with the vacuum states ⟨0| = ⟨0|in = ⟨0|out. Using Eqs. (3.46) and (3.47), the S-matrix
element can be rewritten as

Sq(q̌,h′,β)←q(ǩ,h,α) = lim
x+→+∞

lim
y+→−∞

∫
d2x

∫
dx−

∫
d2y

∫
dy−eix·q̌−iy·ǩ

×ū(q̌, h′)γ+SF(x, y)βαγ+u(ǩ, h) (3.49)

with the following definition for the Feynman propagator

SF(x, y)βα = ⟨0|T̂[Ψβ(x)Ψ̄α(y)]|0⟩ (3.50)

where T̂ is the time ordering operator. Finally, the quark Feynman propagator in
background field, SF(x, y)αβ, is written in Eq. (3.32) with the explicit expressions of
the unpolarized piece given in Eq. (3.33) and the helicity dependent piece given in
Eq. (3.34) at NEik accuracy. Let us first define the scattering amplitude:

Mq(q̌,h′,β)←q(ǩ,h,α) ≡Mhh′
αβ (k, q) (3.51)

which appears in the S-matrix as

Sq(q̌,h′,β)←q(ǩ,h,α) = (2k+)2πδ(q+ − k+)iMhh′
αβ (k, q) . (3.52)

In order to extract this amplitude, one needs to compare the expressions Eq. (3.49)
and Eq. (3.52), where the first one can be computed inserting into the definition the
Eqs. (3.32), (3.33) and (3.34). After performing these calculations one obtains the
following scattering amplitude at NEik accuracy:

iMhh′
αβ (k, q) =

1
2k+

∫
d2z e−iz·(q−k) ū(q̌, h′)γ+

{
UF

(L+

2
,−L+

2
; z
)

(3.53)

+
i[γi, γj]

8k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

) (
− igt·Fij(z)

)
UF

(
z+,−L+

2
; z
)]

− i
2k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←−Dzj
−→Dzj UF

(
z+,−L+

2
; z
)]

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←→Dzj UF

(
z+,−L+

2
; z
)]}

αβ

u(ǩ, h)

We would like to emphasize that the second term in Eq. (3.53) which is pro-
portional to [γi, γj] introduces the helicity dependence on the scattering amplitude
at NEik order and it governs the polarization effects during the scattering process.
This helicity dependent term can be further simplified by using the helicity operator
S3, which acts on spinors as

S3u(ǩ, h) = hu(ǩ, h), (3.54)
S3v(ǩ, h) = −hv(ǩ, h). (3.55)
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Since [γi, γj] = −4iϵijS3, the spinor structure of the helicity dependent term in the
scattering amplitude given in Eq. (3.53) can be simplified to

ū(q̌, h′)γ+ [γi, γj]

4
u(ǩ, h) = −iϵijh ū(q̌, h′)γ+u(ǩ, h) (3.56)

where ϵij is the antisymmetric tensor with ϵ12 = +1. By using this simplification for
the helicity dependent term and the relation in Eq. (3.43), the scattering amplitude
can be written at NEik accuracy as

iMhh′
αβ (k, q) = δhh′

∫
d2z e−iz·(q−k)

{
UF

(L+

2
,−L+

2
; z
)

+
ϵijh
2k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

) (
− igt·Fij(z)

)
UF

(
z+,−L+

2
; z
)]

− i
2k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←−Dzj
−→Dzj UF

(
z+,−L+

2
; z
)]

− (qj+kj)

4k+

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z

)←→Dzj UF

(
z+,−L+

2
; z
)]}

αβ

.(3.57)

3.4.2 Unpolarized partonic cross section

According to the hybrid factorization ansatz [72], in order to compute the hadronic
cross section one first computes the partonic cross section. In our case this corre-
sponds to the projectile quark (or antiquark) scattering on the dense target. Then,
the partonic cross section is convoluted with the quark distribution function in the
proton and with the fragmentation function. Nevertheless, our goal is simply to
understand qualitatively the effects of the quark propagator computed at NEik ac-
curacy. Therefore, we restrict ourselves to the computation of the partonic cross
section.

At the partonic level, the differential cross section of the quark traversing the
target and undergoing multiple scatterings with the strong background field is given
as

d3σq(ǩ,h,α)→q(q̌,h′,β) = (2q+)2πδ(q+ − k+)Mhh′
αβ (k, q)†Mhh′

αβ (k, q)
θ(q+)
2q+

d2q
(2π)2

dq+

2π
(3.58)

After performing the trivial integration over the outgoing quark longitudinal
momentum q+, the partonic cross section can be cast into

d2σqA→q+X

d2q
=

1
(2π)2

1
2Nc

∑
h,h′

∑
α,β
Mhh′

αβ (k, q)†Mhh′
αβ (k, q)

∣∣∣∣
q+=k+

. (3.59)

Here, the factor 2 in the denominator originates from averaging over the initial state
quark helicity and the factor Nc from averaging over the color, while summing over
the final state helicity and color. Using the explicit expression for the forward quark
scattering amplitude given in Eq. (3.57), the partonic level production cross section
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at NEik accuracy yields

d2σqA→q+X

d2q
=

1
Nc

1
(2π)2

∫
d2z′

∫
d2z e−i(q−k)·(z−z′) tr

{
U †

F(z
′)UF(z) (3.60)

+
1

2k+

∫ L+
2

− L+
2

dz+ U †
F(z
′)UF

(L+

2
, z+; z

) [
−i
←−Dzj
−→Dzj − (qj + kj)

2
←→Dzj

]
UF

(
z+,−L+

2
; z
)

+
1

2k+

∫ L+
2

− L+
2

dz+ U †
F

(
z+,−L+

2
; z′
) [

i
←−Dz′j
−→Dz′j +

(qj + kj)

2
←→Dz′j

]
×U †

F

(L+

2
, z+; z′

)
UF(z)

}

where we used UF(z) ≡ UF

(
L+

2 ,− L+

2 ; z
)

for the Wilson lines. Thus Eq. (3.60) rep-
resents the case of unpolarized target and projectile, where the trace arises from the
summation over the initial and final color indices α and β 1.

Let us now discuss the symmetry properties for the unpolarized cross-section.
After introducing the target averaging, the unpolarized cross section reads〈

d2σqA→q+X

d2q

〉
A
=

1
(2π)2

∫
d2r e−i(q−k)·r

{
dF(r)−

1
2k+

(qj + kj)

2

×
[
O j

(1)(r) +O
†j
(1)(−r)

]
− i

2k+
[
O(2)(r)−O†

(2)(−r)
]}

(3.61)

where we introduced the new variables (z− z′) ≡ r and (z + z′) ≡ 2b. In Eq. (3.61)
we introduced the following dipole and decorated dipole operators:

dF(r) =
1

Nc

∫
d2b

〈
tr
[
U †

F

(L+

2
,−L+

2
; b− r

2

)
UF

(L+

2
,−L+

2
; b +

r
2

)]〉
A

,(3.62)

O j
(1)(r) =

1
Nc

∫
d2b

∫ L+
2

− L+
2

dz+
〈

tr
[
U †

F

(
b− r

2

)
(3.63)

× UF

(L+

2
, z+; b +

r
2

)←−−→D
bj+ rj

2
UF

(
z+,−L+

2
; b +

r
2

)]〉
A

,

O(2)(r) =
1

Nc

∫
d2b

∫ L+/2

−L+/2
dz+

〈
tr
[
U †

F

(
b− r

2

)
(3.64)

× UF

(L+

2
, z+; b +

r
2

)←−−−D
bj+ rj

2

−−−→D
bj+ rj

2
UF

(
z+,−L+

2
; b +

r
2

)]〉
A

.

The operator O j
(1)(r) behaves as a vector quantity under rotations in the trans-

verse plane, thus satisfying

O j
(1)(−r) = −O j

(1)(r) (3.65)

O†j
(1)(−r) = −O†j

(1)(r) (3.66)

1Note that helicity dependent term in the forward quark scattering amplitude given in Eq. (3.57)
vanishes at the level of the cross section after summing over incoming and outgoing quark helicities.
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On the contrary, the operator O(2)(r) behaves as a scalar quantity under rotations in
the transverse plane, so that

O(2)(−r) = O(2)(r) (3.67)

O†
(2)(−r) = O†

(2)(r) (3.68)

Using the above symmetry properties, target-averaged unpolarized cross section can
be written as〈

d2σqA→q+X

d2q

〉
A

= 1
(2π)2

∫
d2r e−i(q−k)·r

{
dF(r)− 1

2k+
(qj+kj)

2

×
[
O j

(1)(r)−O
†j
(1)(r)

]
− i

2k+

[
O(2)(r)−O†

(2)(r)
]}

(3.69)

Let us rewrite now the NEik corrections to the unpolarized cross-section in terms
of the known operators Pomeron and Odderon. These operators are defined in terms
of the fundamental dipole and its hermitian conjugate:

P(x, y) =
1
2

[
2− dF(x, y)− d†

F(x, y)
]

(3.70)

O(x, y) =
1
2

[
dF(x, y)− d†

F(x, y)
]

(3.71)

with the fundamental dipole operator defined in Eq. (3.62). In order to preserve the
consistency, we introduce the same change of variables (r and b) in Eqs. (3.70) and
(3.71), and define the following new operators which are integrated expressions of
the Pomeron and Odderon operators over b:

P̄(r) ≡
∫

d2b P
(

b +
r
2

, b− r
2

)
=

1
2

[
2− dF(r)− d†

F(r)
]

(3.72)

Ō(r) ≡
∫

d2b O
(

b +
r
2

, b− r
2

)
=

1
2

[
dF(r)− d†

F(r)
]

. (3.73)

Using these definitions, the target-averaged unpolarized partonic cross section for a
quark can be written as〈

d2σqA→q+X

d2q

〉
A
= 1

(2π)2

∫
d2r e−i(q−k)·r

{
1− P̄(r)

+

Ō(r)− 1
2k+

(qj+kj)
2

[
O j

(1)(r)−O
†j
(1)(r)

]
− i

2k+

[
O(2)(r)−O†

(2)(r)
]}

= 1
(2π)2

∫
d2r

{
cos [(q− k)·r]

[
1− P̄(r)

]
(3.74)

+ sin [(q− k)·r]
[
ImŌ(r)− (qj+kj)

2k+ ImO j
(1)(r)

]
+ cos [(q− k)·r] 1

k+ ImO(2)(r)
}

.

The analogous expression for antiquark-nucleus scattering reads
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〈
d2σq̄A→q̄+X

d2q

〉
A
= 1

(2π)2

∫
d2r e−i(q−k)·r

{
1− P̄(r)

−
Ō(r)− 1

2k+
(qj+kj)

2

[
O j

(1)(r)−O
†j
(1)(r)

]
− i

2k+

[
O(2)(r)−O†

(2)(r)
]}

= 1
(2π)2

∫
d2r

{
cos [(q− k)· r]

[
1− P̄(r)

]
(3.75)

− sin [(q− k)· r]
[
ImŌ(r)− (qj+kj)

2k+ ImO j
(1)(r)

]
− cos [(q− k)· r] 1

k+ ImO(2)(r)
}

.

The Pomeron is even under both signature transformation (U (x) → U †(x)) and
charge conjugation (quark→ antiquark) while the Odderon is odd under both trans-
formations. If one compares Eqs.(3.74) and (3.75), one realises that NEik corrections
in the unpolarized partonic cross section couple to the Odderon, since they are also
odd under these transformations. However, for the unpolarized cross section, a
Pomeron type contribution is seen at the strict eikonal order. Moreover, we also ex-
pect to see such contributions at NNEik (next-to-next-to-eikonal) accuracy just like
the analogue contributions for gluon propagator computed in [37]. Finally, Odderon
type contributions are seen both at eikonal and NEik orders.

3.4.3 Quark helicity asymmetry

The other application considered here for our background quark propagator at NEik
accuracy concerns the quark helicity asymmetry. Here, we again restrict ourselves
to the partonic level.

We consider the difference between the cross sections for a quark of positive and
negative helicity scattering on the nucleus target

d2∆σqA→q+X

d2q
≡ d2σq(+)A→q+X

d2q
− d2σq(−)A→q+X

d2q
(3.76)

that we call the quark helicity asymmetry.2 This asymmetry, when written in terms
of the forward quark scattering amplitudeMhh′

αβ (k, q) (keeping the conventions from
Fig. 3.1), reads

d2∆σqA→q+X

d2q
=

1
(2π)2

1
2Nc

∑
h,h′

∑
α,β

(2h)Mhh′
αβ (k, q)†Mhh′

αβ (k, q)
∣∣∣∣
q+=k+

(3.77)

since h = ±1/2. Now we insert the definition of the forward quark scattering am-
plitude Eq. (3.57) into the definition of the quark helicity asymmetry Eq.(3.77) and

2In principle an asymmetry is defined as the ratio of difference over the sum of positive and negative
helicity contributions. Here, we focus on the numerator for simplicity and still call it as asymmetry
with a small abuse of language.
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get

d2∆σqA→q+X

d2q
=

1
Nc

1
(2π)2

∫
d2z′

∫
d2z e−i(q−k)·(z−z′) 1

4k+
(3.78)

× tr
{ ∫ L+

2

− L+
2

dz+ U †
F(z
′)UF

(L+

2
, z+; z

) [
ϵij (−igt·Fij(z)

) ]
UF

(
z+,−L+

2
; z
)

+
∫ L+

2

− L+
2

dz+ U †
F

(
z+,−L+

2
; z′
) [

ϵij (igt·Fij(z+, z′)
) ]
U †

F

(L+

2
, z+; z′

)
UF(z)

}
.

Note that in this case, only the helicity dependent piece of the quark scattering
amplitude contributes to the quark helicity asymmetry. Moreover, the quark helic-
ity asymmetry starts already at NEik order, unlike the unpolarized partonic cross-
section, which contained an eikonal part as well.

As in the previous case, let us now look at the symmetry properties of the quark
helicity asymmetry. Following the same logic as before, we introduce the variables
b and r, and we average over the target. The quark helicity asymmetry thus can be
written as〈d2∆σqA→q+X

d2q

〉
A
=

1
(2π)2

∫
d2r e−i(q−k)·r (−i)

4k+
[
O(3)(r)−O†

(3)(−r)
]

(3.79)

where we define the new decorated dipole operator O(3)(r) as

O(3)(r) =
1

Nc

∫
d2b

∫ L+/2

−L+/2
dz+

〈
tr
[
U †

F

(
b− r

2

)
UF

(L+

2
, z+; b +

r
2

)
×
{

ϵij
[

gt · Fij

(
z+, b +

r
2

)]}
UF

(
z+,−L+

2
; b +

r
2

)]〉
A

. (3.80)

Since in O(3)(r), the antisymmetric tensor ϵij is already contracted with the ij
component of the field strength tensor, this operator O(3)(r) behaves as a scalar
quantity under rotations within the transverse plane, and therefore

O(3)(−r) = O(3)(r) (3.81)

O†
(3)(−r) = O†

(3)(r) (3.82)

and the target-averaged quark helicity asymmetry reads〈d2∆σqA→q+X

d2q

〉
A

=
1

(2π)2

∫
d2r e−i(q−k)·r (−i)

4k+
[
O(3)(r)−O†

(3)(r)
]

=
1

(2π)2
1

2k+

∫
d2r cos [(q− k)·r] ImO(3)(r) . (3.83)

Following the similar path in order to compute the antiquark helicity asymmetry,
one gets

〈d2∆σq̄A→q̄+X

d2q

〉
A

=
1

(2π)2

∫
d2r e−i(q−k)·r (−i)

4k+
[
O(3)(r)−O†

(3)(r)
]

=
1

(2π)2
1

2k+

∫
d2r cos [(q− k)·r] ImO(3)(r) . (3.84)
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The form of the target-averaged helicity asymmetries given in Eqs.(3.83) and
(3.84) suggests that it is odd under signature transformation but even under charge
conjugation which is compatible with neither Pomeron nor Odderon type of behav-
ior. These quantum numbers are instead observed in higher order Reggeons [73,
74].

3.5 Conclusions

Thus, in this chapter we have computed the quark and antiquark propagator at NEik
accuracy by relaxing two assumptions from the eikonal approximation. Therefore,
we have taken into account both, a finite width of the target and the interaction
with the transverse component of the background field. It is also worth mentioning
that we have taken into account the cases of not only one insertion of the transverse
component of the background field, but also two such insertions in order to get the
full result at NEik accuracy that stems from this correction. The quark propagator as
well as the antiquark propagator have been divided into two different contributions,
the unpolarized and the helicity dependent one.

With these propagators at NEik accuracy, we have computed the quark-nucleus
scattering and the antiquark-nucleus scattering. The results of these observables
are divided into unpolarized partonic cross-section and quark-helicity asymmetry.
Finally, the target-averaged unpolarized partonic cross-section is expressed in terms
of Pomeron and Odderon operators, while the quark helicity asymmetry behaviour
is instead observed in higher order Reggeons.
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4
DIS dijet production at NEik
accuracy: including dynamics of
the target

DISCLAIMER: The material presented in this Chapter was originally published
in Phys. Rev. D 107 (2023) 7, 074016 (which corresponds to the reference [35] in
this thesis) of which I am a coauthor. My contributions to this publication can be
summarized as follows. I have contributed to the derivation of the quark propa-
gators from before to after the medium and the propagator from inside to after the
medium. I have also contributed to the computation of the NEik DIS dijet produc-
tion cross section both via longitudinal and via transverse photon. I have given
talks presenting these results in the “DIS2022: XXIX International Workshop on
Deep-Inelastic Scattering and Related Subjects” (Santiago de Compostela, Spain
in May 2022), in the summer school “GDR-QCD HIC in the QCD phase diagram”
(Nantes, France in July 2022) and in the “XXIX Cracow Epiphany Meeting: on
Physics at the Electron-Ion Collider and in Future Facilities” (Cracow, Poland in
January 2023).

In this chapter we introduce a new type of NEik correction to the quark prop-
agator in addition to the two types of corrections studied in sections 3.1, 3.2. This
new contribution stems from relaxing the third assumption presented in section 2.2,
that is, including the dependence of the gluon background field on the coordinate
x−. This new effect takes into account the dynamics of the gluon background field.

In this chapter we present the full quark (and antiquark) propagator at next-to-
eikonal accuracy in the gluon background field, where we include all the possible
corrections that stem from relaxing the eikonal approximation. We use this propa-
gator to compute the DIS dijet production at NEik accuracy. In fact, within the CGC
effective theory, gluon saturation effects in DIS on a dense target is one of the most
frequently used observables. This is due to the fact that it provides a clean environ-
ment to probe gluon saturation. Furthermore, computing this observable at NEik
accuracy is of great importance since it is one of the focus for the future EIC, where
the energies are lower compared to LHC. Since NEik corrections are suppressed in
power of energy, computing these corrections for an observable that planned to be
studied at lower energies, was the main motivation behind this work.

This chapter is organized as follows, in section 4.1 we lay out the reduction for-
mula for the S-matrix element. In section 4.2 we compute the propagators that will



48Chapter 4. DIS dijet production at NEik accuracy: including dynamics of the target

then contribute to the cross section for DIS dijet production and the production cross-
section is presented in section 4.3.

4.1 Reduction formula for the S-matrix and integrated prop-
agators

Let us consider the process in which a virtual photon of momentum q and polariza-
tion λ splits into a quark of momentum k1 and an antiquark of momentum k2, in the
presence of a gluon background field Aµ(x) representing the target. The S-matrix
element for that process can be obtained following the LSZ approach. Due to the
photon splitting vertex, the first non-zero contribution to the S-matrix is at order e
in QED. We are interested in the lowest order contribution in perturbation theory in
a possibly strong background field, which is then of order e g0 at the S-matrix level,
with gAµ(x) resummed to all orders. At this order, the S-matrix can be written as1

Sq1 q̄2←γ∗ =
∫

d4z ϵλ
µ(q) e−iq·z ⟨0|dout(2)bout(1) : Ψ̄(z) (−iee f γµ)Ψ(z) : |0⟩ . (4.1)

In Eq. (4.1), bout(1) and dout(2) are the annihilation operators for the outgoing
quark and antiquark in the asymptotic free Fock space, whereas ϵλ

µ(q) e−iq·z accounts
for the incoming virtual photon, and the normal-ordered current operator comes
from the photon splitting vertex. The quark field Ψ(z) in Eq. (4.1) is a quantum
field in a modified interaction picture, in such a way that the evolution of Ψ(z) is
generated by a Hamiltonian quadratic in the quantum fields, but with terms of any
order in the background field. Hence, not only the free limit of the theory but also
the interactions of quantum particles with the background field contributes to the
evolution of Ψ(z). Only the interactions between quantum particles are removed
from the evolution of Ψ(z) in this picture with respect to the Heisenberg picture.
Moreover, we assume that the background field alone cannot lead to pair creation or
pair annihilation of quantum particles. Then, the only possible contribution to the
expectation value in Eq. (4.1) factorizes as

⟨0|dout(2)bout(1) : Ψ̄(z) (−iee f γµ)Ψ(z) : |0⟩
= ⟨0|bout(1)Ψ̄(z)|0⟩ (−iee f γµ) ⟨0|dout(2)Ψ(z)|0⟩ . (4.2)

the annihilation operators bout(1) and dout(2) can be expressed as in the previous
chapter

bout(1) = limx+→+∞

∫
d2x

∫
dx− eiǩ1·x ū(1)γ+Ψ(x) (4.3)

dout(2) = limy+→+∞

∫
d2y

∫
dy− eiǩ2·y Ψ̄(y)γ+v(2) . (4.4)

The Feynman quark propagator in the gluon background field is defined as

1See Appendix A for the notation on the light-cone coordinates and on-shell momenta. We also use
the condensed notations u(1) ≡ u(k1, h1) and v(2) ≡ v(k2, h2) for the Dirac spinors, where h1 or h2 is
the light-front helicity.
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SF(x, y) = ⟨0|T (Ψ(x) Ψ̄(y)) |0⟩
= = θ(x0−y0) ⟨0|Ψ(x) Ψ̄(y)|0⟩ − θ(y0−x0) ⟨0|Ψ̄(y)Ψ(x)|0⟩ . (4.5)

Here the implicit spinor and color indices of the fields are not contracted. The minus
sign in the second term is because of the Fermi-Dirac statistics for fermions (quarks).
We thus have

⟨0|Ψ(x)Ψ̄(z)|0⟩ = SF(x, z) for x+ → +∞
⟨0|Ψ̄(y)Ψ(z)|0⟩ = − SF(z, y) for y+ → +∞ . (4.6)

With these ingredients, the S-matrix element at lowest order e g0 but with the inter-
actions with the background field resummed to all orders, can be written as

Sq1 q̄2←γ∗ = limx+,y+→+∞

∫
d2x

∫
dx−

∫
d2y

∫
dy−eiǩ1·x eiǩ2·y

× ϵλ
µ(q)

∫
d4z e−iq·z ū(1)γ+SF(x, z) (−iee f γµ) (−SF(z, y)) γ+v(2) . (4.7)

Defining the integrated quark and antiquark propagators as

S̃q
F(z) = limx+→+∞

∫
d2x

∫
dx−eiǩ1·xū(1)γ+SF(x, z) (4.8)

S̃q̄
F(z) = limy+→+∞

∫
d2y

∫
dy−eiǩ2·y (−1) SF(z, y)γ+v(2) . (4.9)

the S-matrix can be once again, rewritten as

Sq1 q̄2←γ∗ = −iee f ϵλ
µ(q)

∫
d4ze−iq·z S̃q

F(z)γ
µ S̃q̄

F(z) . (4.10)

Let us now consider the process of DIS dijet production. We assume that the
background field strength has a finite support of length L+ along z+. Then the range
[−∞,−L+/2] is before the target, and [L+/2,+∞] is after the target. The region
[−L+/2, L+/2] is inside the target. We also choose the light-cone gauge A+ = 0,
where not only the field strength but also the gauge field vanishes outside the target.
The S-matrix element can be split into the three contributions corresponding to each
region as

Sq1 q̄2←γ∗ = −iee f ϵλ
µ(q)

∫
d2z

∫
dz−

∫ −L+/2

−∞
dz+e−iq·zS̃q

F(z)αδγµS̃q̄
F(z)δβ

−iee f ϵλ
µ(q)

∫
d2z

∫
dz−

∫ L+/2

−L+/2
dz+e−iq·zS̃q

F(z)αδγµS̃q̄
F(z)δβ

−iee f ϵλ
µ(q)

∫
d2z

∫
dz−

∫ +∞

L+/2
dz+e−iq·zS̃q

0,F(z)αδγµS̃q̄
0,F(z)δβ (4.11)

The third term corresponds to the photon crossing the medium and splitting af-
ter, however, the photon does not interact with the gluon field at LO in QED. Thus,
the third term corresponds to the vacuum contribution, which vanishes in our con-
figuration. This vacuum contribution vanishes because the condition in a DIS pro-
cess (q2 < 0) is not compatible with the 4-momentum conservation ǩµ

1 + ǩµ
2 = qµ and
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other requirements that one obtains in this configuration. The first two terms con-
tain medium-induced contributions as well as the vacuum contribution, however,
since the latter is zero, we can rewrite it as

Sq1 q̄2←γ∗ = Sbef
q1 q̄2←γ∗ + Sin

q1 q̄2←γ∗ (4.12)

where

Sbef
q1 q̄2←γ∗ = −iee f ϵλ

µ(q)
∫

d2z
∫

dz−
∫ −L+/2
−∞ dz+e−iq·z

×
[

S̃q
F(z)γ

µS̃q̄
F(z)− ei(ǩ1+ǩ2)·z ū(1)γµv(2)

]
(4.13)

Sin
q1 q̄2←γ∗ = −iee f ϵλ

µ(q)
∫

d2z
∫

dz−
∫ L+/2
−L+/2 dz+e−iq·z

×
[

S̃q
F(z)γ

µS̃q̄
F(z)− ei(ǩ1+ǩ2)·z ū(1)γµv(2)

]
(4.14)

that are the medium-induced contributions corresponding to the photon splitting
before (see Fig. 4.1 left panel) or inside (see Fig. 4.1 right panel) the target, respec-
tively.

q, λ
z

v

w

x; k1, h1

y; k2, h2

k

p

q, λ
z x; k1, h1

y; k2, h2

FIGURE 4.1: Contributions to dijet production in DIS at next-to-
eikonal accuracy: photon splitting into a qq̄ pair before reaching the
target (left panel) and photon splitting inside the target (right panel).

4.2 Propagators at full NEik accuracy

In this chapter, our goal is to compute the cross-section for DIS dijet production at
Neik accuracy. In order to compute this, one needs the expressions for the quark
propagators contributing to this process at full NEik order in the gluon background
field. There are two such kinds of propagators, one where the splitting of the photon
into a quark-antiquark pair occurs before the medium, and one when this splitting
happens inside of it. The propagators derived in this section are at full NEik ac-
curacy because they contain not only the corrections to the eikonal approximation
computed in the previous chapter, but also take into account the dynamics of the
target by considering the dependence of the Wilson line on the z− coordinate.

In the contribution Eq.(4.13) to the S-matrix element, the photon splits at light-
cone time z+ before the medium. The integration over z+ does not bring a suppres-
sion at large γt in that case. In order to calculate both the eikonal and NEik terms
in the contribution Eq.(4.13) to the S-matrix element, one should thus include both
eikonal and NEik terms in the reduced propagators S̃q

F(z) and S̃q̄
F(z).
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By contrast, in the contribution Eq.(4.14) to the S-matrix element, the photon
splits at light-cone time z+ inside the medium, so that the integration over z+ brings
a suppression by a factor L+, and thus is of order 1/γt. Hence, the expression
Eq.(4.14) does not contribute at eikonal accuracy, and starts contributing only at
NEik accuracy. One should thus restrict to the eikonal expression for the reduced
propagators S̃q

F(z) and S̃q̄
F(z).

Let us first show the quark propagator in a background field with only the lead-
ing A− component

SF(x, y)βα

∣∣∣∣
pure A−, Eik.

= 1βα δ(3)(x−y) γ+
∫ dk+

2π

i
2k+

e−ik+(x−−y−)

+
∫ d3 p

(2π)3

∫ d3k
(2π)3 e−ix· p̌+iy·ǩ

∫
dz−eiz−(p+−k+)

∫
d2z e−iz·(p−k) (/̌p + m)

2p+
γ+

×
{

θ(x+−y+) θ(p+)θ(k+)UF(x+, y+; z, z−)βα

− θ(y+−x+) θ(−p+)θ(−k+)U †
F(y

+, x+; z, z−)βα

}
(/̌k + m)

2k+
. (4.15)

This propagator is at eikonal order up to the z− dependence on the Wilson lines.
This is what we call generalized eikonal since it recovers the strict eikonal form upon
setting z− = 0. The first term on the right hand side of Eq. (4.15) corresponds to an
instantaneous quark exchange. By contrast, the two terms in the bracket correspond
respectively to the propagation of a quark or of an antiquark in the background field.
The Wilson line appearing in the expression above is defined as

UF(x+, y+; z, z−) ≡ P+ exp
{
−ig

∫ x+

y+
dz+A−(z)

}
(4.16)

with P+ denoting the ordering of color matrices along z+ direction. This Wilson line
goes back to its standard eikonal definition if one sets z− = 0.

4.2.1 Propagators from before to after the medium at NEik accuracy

In order to compute the contribution of the photon splitting into a quark-antiquark
pair before the medium, one needs the expression for the quark propagator that
traverser the whole medium. In this case, y is before and x after the support of the
background field, the transverse components Aj only matter at NEik accuracy, and
the first term in the bracket in Eq. (4.15) gives the entire result at Eikonal accuracy.
For this configuration, the NEik corrections were computed in chapter 3 where the
z− dependence was neglected. The quark propagator including all NEik effects in a
gluon background field in the region x+ > L+/2 and y+ < −L+/2, can be written
as 2

2In the case of Wilson lines traversing the whole medium, in order to avoid unnecessary clutter-

ing, we adopt the compact notation UF(z, z−) ≡ UF

(
L+

2 ,− L+

2 ; z, z−
)

, and similarly we will use the

notation UF(z) ≡ UF

(
L+

2 ,− L+

2 ; z
)

.
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SF(x, y) =
∫ d3 p

(2π)3

∫ d3k
(2π)3 θ(p+)θ(k+)e−ix· p̌ eiy·ǩ

∫
dz−eiz−(p+−k+)

∫
d2z e−iz·(p−k)

× (/̌p + m)

2p+
γ+

{
UF(z, z−)

− (pj+kj)

2(p+ + k+)

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z, z−

)←→Dzj UF

(
z+,−L+

2
; z, z−

)]
− i

(p+ + k+)

∫ L+
2

− L+
2

dz+
[
UF

(L+

2
, z+; z, z−

)←−Dzj
−→Dzj UF

(
z+,−L+

2
; z, z−

)]
+

[γi, γj]

4(p+ + k+)

∫ L+
2

− L+
2

dz+ UF

(L+

2
, z+; z, z−

)
gt·Fij(z)UF

(
z+,−L+

2
; z, z−

)} (/̌k + m)

2k+

+ O(NNEik) , (4.17)

and for the case of antiquark propagating through the whole medium, meaning
y+ > L+/2 and x+ < −L+/2, one has

SF(x, y) =
∫ d3 p

(2π)3

∫ d3k
(2π)3 θ(−p+)θ(−k+)e−ix· p̌ eiy·ǩ

∫
dz−eiz−(p+−k+)

∫
d2z

× e−iz·(p−k) (/̌p + m)

2p+
γ+

{
−U †

F(z, z−)

− (pj+kj)

2(p+ + k+)

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z, z−

)←→Dzj U †
F

(L+

2
, z+; z, z−

)]
− i

(p+ + k+)

∫ L+
2

− L+
2

dz+
[
U †

F

(
z+,−L+

2
; z, z−

)←−Dzj
−→Dzj U †

F

(L+

2
, z+; z, z−

)]
+

[γi, γj]

4(p+ + k+)

∫ L+
2

− L+
2

dz+ U †
F

(
z+,−L+

2
; z, z−

)
gt·Fij(z)U †

F

(L+

2
, z+; z, z−

)} (/̌k + m)

2k+

+ O(NNEik) . (4.18)

where we used the same notation as in Eqs. (3.35), (3.36), (3.37) and (3.38) for the
covariant derivatives and field strength.

4.2.2 Propagators from inside to after the medium at Eik accuracy

In this subsection we compute the propagator for the case when the splitting of the
photon occurs inside the medium, which corresponds to the outgoing quark kine-
matics x+ > L+/2 and −L+/2 < y+ < L+/2 as well as to the outgoing antiquark
kinematics y+ > L+/2 and −L+/2 < x+ < L+/2. The diagrammatical represen-
tation for this case corresponds to the right panel in Fig.4.1. First, we compute the
quark propagator. From Eq. (4.15), one can read off the quark propagator in pure
A− background at Eikonal accuracy in the inside-after quark kinematics and find

SF(x, y)βα

∣∣∣∣IA, q

pure A−, Eik.
=
∫ d3 p

(2π)3

∫ d3k
(2π)3 θ(p+)θ(k+) e−ix· p̌eiy−k+−iy·k (/̌p+m)

2p+ γ+ (/̌k+m)
2k+

×
∫

dz−eiz−(p+−k+)
∫

d2z e−iz·(p−k) UF(x+, y+; z, z−)βα . (4.19)
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where the phase eiy+ ǩ− was dropped, since it contributes only at beyond eikonal
accuracy as |y+| < L+/2. The Dirac structure can be expressed as

(/̌p + m)γ+(/̌k + m) = (/̌p + m)
[
{γ+, /̌k} − (/̌k−m)γ+

]
= (/̌p + m)

[
2k+ − (/̌p−m)γ+ − (/̌k−/̌p)γ+

]
= (/̌p + m)

[
2k+ − (k+−p+)γ−γ+ + (ki−pi)γiγ+

]
. (4.20)

We plug this in the propagator and obtain

SF(x, y)βα

∣∣∣∣IA, q

pure A−, Eik.
=
∫ d3 p

(2π)3

∫ d3k
(2π)3

θ(p+)
2p+ θ(k+) e−ix· p̌eiy−k+−iy·k ∫ dz−

∫
d2z

×eiz−(p+−k+)e−iz·(p−k) (/̌p + m)
[
1 + γ−γ+

2k+ i
−→
∂z− − γ+γi

2k+ i
−→
∂zi

]
UF(x+, y+; z, z−)βα . (4.21)

The z− dependence of the background field and of UF(x+, y+; z, z−) is parametrically
slow for a highly boosted target due to Lorentz time dilation. For that reason, the
term in ∂z−UF(x+, y+; z, z−) is a NEik correction. In order to evaluate Eq.(4.14) at
NEik accuracy, we need the propagator Eq.(4.21) only at strict Eikonal accuracy. In
Eq.(4.21), it is thus safe to neglect the term in ∂z−UF(x+, y+; z, z−). Moreover, the
whole dependence of UF(x+, y+; z, z−) on z− can be neglected as well. The integral
over z− is then straightforward to perform and we also integrate over k and then
k+. One finds

SF(x, y)βα

∣∣∣∣IA, q

pure A−, Eik.
=

∫ d3 p
(2π)3

θ(p+)
2p+

e−ix· p̌ eiy−p+ e−iy·p

× (/̌p + m)

[
1− γ+γi

2p+
i
−→
∂yi

]
UF(x+, y+; y)βα . (4.22)

We also need to compute the contribution coming from the interaction with the
transverse component of the background field. We compute this using the expres-
sion

δSF(x, y)
∣∣∣∣
single A⊥

=
∫

d4w SF(x, w)

∣∣∣∣
pure A−

[−ig γj ta] Aa
j (w) SF(w, y)

∣∣∣∣
pure A−

.

(4.23)

By naive counting, one may think that due to the integration over w+ in this region,
where Aa

j (w) is non-trivial, the contribution Eq.(4.23) seems to be a NEik correction.
However, due to the instantaneous term present in the propagator in pure A− field
Eq.(4.15), this integration can be removed, and an Eikonal contribution can indeed
be obtained 3 with the transverse gauge field inserted either at w+ = x+ or at w+ =
y+. In the inside-after kinematics x+ > L+/2 and −L+/2 < y+ < L+/2 under
consideration, the gauge field vanishes at x+ but not at y+, so that Eq. (4.23) provides

3Because the Dirac structure of the instantaneous contribution to the propagator is simply γ+, we
would get γ+γjγ+ = 0 in the case of two instantaneous propagators separated by a transverse field
insertion. Because of this observation, there is no Eikonal contribution to the quark propagator in
inside-after kinematics with more than one transverse gauge field insertion.
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an Eikonal contribution

δSF(x, y)
∣∣∣∣IA, q

single A⊥, Eik.
=
∫

d4w SF(x, w)

∣∣∣∣IA, q

pure A−, Eik.
[−ig γj ta] Aa

j (w) SF(w, y)
∣∣∣∣
pure A−, instant.

=
∫

d4w
∫ d3 p

(2π)3
θ(p+)
2p+

e−ix· p̌ eiw−p+ e−iw·p (/̌p + m)

×
{ [

1− γ+γi

2p+
i
−→
∂wi

]
UF(x+, w+; w)

}
× [−ig γj ta] Aa

j (w) δ(3)(w−y) γ+
∫ dq+

2π

i
2q+

e−iq+(w−−y−) ,

(4.24)

where we have neglected the dependence on the w− coordinate of Aa
j . In the above

expression the term with the derivative ∂wi vanishes, since it comes with the Dirac
structure γ+γiγjγ+ = γ+γ+γiγj = 0. Performing the integration over w, and then
over q+, we get

δSF(x, y)
∣∣∣∣IA, q

single A⊥, Eik.
=
∫ d3 p

(2π)3
θ(p+)
2p+

e−ix· p̌ eiy−p+ e−iy·p (/̌p + m)

× (−1)
γ+γj

2p+
UF(x+, y+; y)

[
gt·Aj(y)

]
. (4.25)

One can obtain the full quark propagator at NEik order for the case of the photon
splitting inside the medium by summing the expressions Eq.(4.22) and Eq.(4.25).
One then finds

SF(x, y)
∣∣∣∣IA, q

Eik.
=
∫ d3 p

(2π)3
θ(p+)
2p+

e−ix· p̌

×(/̌p + m) UF(x+, y+; y)
[

1− γ+γi

2p+
i
←−Dyi

]
eiy−p+ e−iy·p . (4.26)

In a similar manner, one can compute the propagator for the antiquark at Eiknoal
accuracy in the inside-after kinematics, that is, y+ > L+/2 and −L+/2 < x+ <
L+/2. One finds

SF(x, y)
∣∣∣∣IA, q̄

Eik.
=
∫ d3k

(2π)3 (−1)
θ(−k+)

2k+
eiy·ǩ

×e−ix−k+ eix·k
[

1− γ+γi

2k+
i
−→Dxi

]
U †

F(y
+, x+; x) (/̌k + m) . (4.27)

4.3 DIS-dijet production at NEik accuracy

In this section we compute the S-matrix elements and then the cross-section for the
DIS dijet production. We can split this computation into two contributions according
to the two types of diagrams for this process, as in Fig. 4.1.
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4.3.1 Photon splitting inside the medium

Let us first discuss the contributions coming from the diagram with splitting inside.
We need the expressions for the reduced propagators S̃q

F(z) and S̃q̄
F(z) at Eikonal

accuracy when the vertex location zµ is inside the target, meaning −L+/2 < z+ <
L+/2. In the case of the reduced quark propagator S̃q

F(z), it simply amounts to insert
the expression Eq.(4.26) into the definition Eq.(4.8), as

S̃q
F(z)

∣∣∣∣In
Eik.

= limx+→+∞

∫
d2x

∫
dx−eiǩ1·xū(1)γ+SF(x, z)

∣∣∣∣IA, q

Eik.

=
θ(k+1 )
2k+1

ū(1)γ+( /̌k1 + m) UF(+∞, z+; z)
[

1− γ+γi

2k+1
i
←−Dzi

]
eiz−k+1 e−iz·k1

=UF

(
L+

2
, z+; z

)
ū(1)

[
1− γ+γi

2k+1
i
←−Dzi

]
eiz−k+1 e−iz·k1 , (4.28)

where it does not matter if the end point of the Wilson line is taken at +∞ or at
+L+/2, since the gauge field vanishes outside the target.

Similarly, inserting the expression Eq.(4.27) into the definition Eq.(4.9), one finds
the reduced antiquark propagator at Eikonal accuracy from zµ inside the target as

S̃q̄
F(z)

∣∣∣∣In
Eik.

= limy+→+∞

∫
d2y

∫
dy−eiǩ2·y (−1) SF(z, y)

∣∣∣∣IA, q̄

Eik.
γ+v(2)

= eiz−k+2 e−iz·k2

[
1 +

γ+γj

2k+2
i
−→Dzj

]
v(2)U †

F

(
L+

2
, z+; z

)
. (4.29)

Inserting the expressions Eq.(4.28) and Eq.(4.29) into the S-matrix expression,
Eq. (4.14), and dropping the z+ dependent phase factors, since they would con-
tribute only at NNEik accuracy in the S-matrix and cross section, one gets

Sin
q1 q̄2←γ∗ = − iee f ϵλ

µ(q) 2πδ(k+1 +k+2 −q+)
∫

d2z
∫ L+/2

−L+/2
dz+ū(1)UF

(
L+

2
, z+; z

)
×
{
− γ+γiγµ

2k+1
i
←−Dzi e−i(k1+k2−q)·z + e−i(k1+k2−q)·z γµγ+γj

2k+2
i
−→Dzj

+
γ+γiγµγ+γj

(2k+1 )(2k+2 )
←−Dzi e−i(k1+k2−q)·z −→Dzj

}
U †

F

(
L+

2
, z+; z

)
v(2) .

(4.30)

The color structure in the first term can be simplified as[
UF

(L+

2
, z+; z

)←−DzjU †
F

(L+

2
, z+; z

)]
= −1

2

[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
(4.31)

and similarly the second one[
UF

(L+

2
, z+; z

)−→DzjU †
F

(L+

2
, z+; z

)]
=

1
2

[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
(4.32)
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Using these expressions the "in" contribution to the S-matrix reads:

Sin
q1 q̄2←γ∗ = −iee f ϵλ

µ(q) 2πδ(k+1 +k+2 −q+)
∫

d2z e−i(k1+k2−q)·z
∫ L+/2

−L+/2
dz+

×
{ [

i
4k+1

ū(1)γ+γjγµv(2) +
i

4k+2
ū(1)γµγ+γjv(2)

]
×
[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
+

gµ+

2k+1 k+2
ū(1)γ+γiγjv(2)

[
UF

(L+

2
, z+; z

)←−Dzi
−→DzjU †

F

(L+

2
, z+; z

)]}
, (4.33)

where now the covariant derivatives act only on the Wilson lines and not on the
phases.

At this point, before computing the cross-section, one can evaluate the S-matrix
for the two possible polarization of the photon in this process. We have both trans-
verse and longitudinal polarization, but the last term in Eq.(4.33) does not contribute
to the scattering processes, since in the light-cone gauge ϵ+λ (q) = 0.

Longitudinal photon case :
In light-cone gauge, the longitudinal polarization vector can be chosen as

ϵλ
µ(q)→ ϵL

µ(q) ≡
Q
q+

g+µ . (4.34)

Upon inserting this in Eq. (4.33), the first two Dirac structures vanish as well due
to γ+γ+ = 0 and {γ+, γi} = 0. Therefore, in the case of longitudinally polarized
photon, the inside contribution to the S-matrix element vanishes at NEik order:

Sin
q1 q̄2←γ∗L

= 0 + O(NNEik) . (4.35)

Transverse photon case :
For a transverse photon, the two possible polarization vectors in light-cone gauge

can be written as

ϵ+λ (q) = 0

ϵi
λ(q) = εi

λ

ϵ−λ (q) =
qiεi

λ

q+
(4.36)

inserting these polarization vectors in Eq. (4.33), one gets

Sin
q1 q̄2←γ∗T

= ee f εi
λ 2πδ(k+1 +k+2 −q+)

[
− 1

4k+1
ū(1)γ+γjγiv(2)− 1

4k+2
ū(1)γiγ+γjv(2)

]
×
∫

d2z e−i(k1+k2−q)·z
∫ L+/2

−L+/2
dz+

[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
.

(4.37)



4.3. DIS-dijet production at NEik accuracy 57

It is convenient to separate the parts of the Dirac structures into symmetric and an-
tisymmetric under the exchange of i and j. Then, one finds

Sin
q1 q̄2←γ∗T

= ee f εi
λ 2πδ(k+1 +k+2 −q+)

q+

4k+1 k+2
ū(1)γ+

(
(k+2 −k+1 )

q+
δij +

1
2
[γi, γj]

)
v(2)

×
∫

d2z e−i(k1+k2−q)·z
∫ L+/2

−L+/2
dz+

[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
.

(4.38)

4.3.2 Photon splitting before the medium

We now focus on the contribution Eq.(4.13) to the S-matrix, in which the photon
splits before the target, at NEik accuracy. The first step is then to calculate the re-
duced quark and antiquark propagators S̃q

F(z) and S̃q̄
F(z) at NEik accuracy.When

the photon splits before the target, we use, for the quark propagator in the formula
Eq.(4.8), the expression Eq.(4.17). Then we get

S̃q
F(z) = limx+→+∞

∫
d2x

∫
dx−eik1·xū(1)γ+

∫ d3 p
(2π)3

∫ d3k
(2π)3

∫
dv−eiv−(p+−k+)

× θ(k+)θ(p+)e−ix· p̌ eiz·ǩ (/̌p+m)

2p+
γ+

∫
d2v e−iv·(p−k)

{
UF(v, v−) +

1
p++k+

∫ L+
2

− L+
2

dv+

×
[
UF

(L+

2
, v+; v, v−

)( [γi, γj]

4
gt · Fij(v)−

(pj+kj)

2
←→Dvj − i

←−Dvj
−→Dvj

)

×UF

(
v+,−L+

2
; v, v−

)]} (/̌k+m)

2k+
(4.39)

using γ+(/̌p + m)γ+ = 2p+γ+ and integrating first over x and x− and then over p
we obtain

S̃q
F(z) = ū(1)γ+

∫ d3k
(2π)3 θ(k+) eiz·ǩ

∫
dv−eiv−(k+1 −k+)

∫
d2v e−iv·(k1−k)

{
UF(v, v−)

+
1

k+1 +k+

∫ L+
2

− L+
2

dv+
[
UF

(L+

2
, v+; v, v−

) ( [γi, γj]

4
gt · Fij(v)−

(kj
1+kj)

2
←→Dvj − i

←−Dvj
−→Dvj

)

×UF

(
v+,−L+

2
; v, v−

)]} (/̌k+m)

2k+
. (4.40)

where we used eix+(ǩ−1 − p̌−) → eix+(ǩ−1 −ǩ−1 ) = 1.
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For the anti-quark propagator in the formula Eq.(4.9) we use the expression
Eq.(4.18). We have

S̃q̄
F(z) = limy+→+∞

∫
d2y

∫
dy−eik2·y

∫ d3 p
(2π)3

∫ d3k
(2π)3

∫
dw−eiw−(p+−k+)

× θ(−p+)θ(−k+)e−iz· p̌ eiy·ǩ (/̌p+m)

2p+
γ+

∫
d2w e−iw·(p−k)

{
U †

F(w, w−)

− 1
p++k+

∫ L+
2

− L+
2

dw+

[
U †

F

(
w+,−L+

2
; w, w−

)
×
(
[γi, γj]

4
gt · Fij(w)− (pj+kj)

2
←→Dwj − i

←−Dwj
−→Dwj

)
U †

F

(L+

2
, w+; w, w−

)]}

× (/̌k+m)

2k+
γ+v(2) (4.41)

Since γ+ commutes with [γi, γj] we can use γ+(/̌k + m)γ+ = 2k+γ+. We also inte-
grate first over y and y− and then over k and obtain

S̃q̄
F(z) =

∫ d3 p
(2π)3 θ(−p+)θ(k+2 )

∫
dw−eiw−(p++k+2 )e−iz· p̌ (/̌p+m)

2p+

∫
d2w e−iw·(p+k2)

×
{
U †

F(w, w−)

[
U †

F

(
w+,−L+

2
; w, w−

)
×
(
[γi, γj]

4
gt · Fij(w)− (pj−kj

2)

2
←→Dwj − i

←−Dwj
−→Dwj

)
U †

F

(L+

2
, w+; w, w−

)]}
γ+v(2)

(4.42)

where we used eiy+(ǩ−+ǩ−2 ) → eiy+(−ǩ−2 +ǩ−2 ) = 1.
Inserting now the propagators Eq.(4.40) and Eq.(4.42) to Eq.(4.13) we get

Sbef
q1 q̄2←γ∗ = −iee f ϵλ

µ(q)
∫ d3k

(2π)3 θ(k+)
∫ d3 p

(2π)3 θ(−p+)
∫

d2z
∫

dz−
∫ −L+/2

−∞
dz+

× e−iz·(q−ǩ+ p̌)
∫

dv− eiv−(k+1 −k+)
∫

dw− eiw−(k+2 +p+)
∫

d2v e−iv·(k1−k)

×
∫

d2w e−iw·(p+k2) ū(1)γ+

{
UF(v, v−) +

1
k+1 +k+

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

)
×
(
[γi, γj]

4
gt · Fij(v)−

(kj
1+kj)

2
←→Dvj − i

←−Dvj
−→Dvj

)
UF

(
v+,−L+

2
; v, v−

)} (/̌k+m)

2k+

× γµ (/̌p+m)

2p+

{
U †

F(w, w−) +
1

k+2 −p+

∫ L+
2

− L+
2

dw+ U †
F

(
w+,−L+

2
; w, w−

)
×
(
[γi′ , γj′ ]

4
gt · Fi′ j′(w)− (pj′−kj′

2 )

2
←→Dwj′ − i

←−−Dwj′
−−→Dwj′

)
U †

F

(L+

2
, w+; w, w−

)}

× γ+v(2) + iee f ϵλ
µ(q) ū(1)γµv(2)

∫
d2z

∫
dz−

∫ −L+/2

−∞
dz+ e−iz·(q−ǩ1−ǩ2) (4.43)
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The integrals over the location zµ of the photon splitting vertex before the target
can be performed explicitly: the unrestricted integrations over z and z− enforce the
conservation of the transverse and + components of the momentum at the vertex,
whereas the integrations over z+ are of the form

∫ −L+/2

−∞
dz+ e−iz+E− =

i
(E−+iϵ)

ei L+
2 E− , (4.44)

with E− = (q−− ǩ−+ p̌−), except in the vacuum subtraction term, in which E− =
(q−−ǩ−1 −ǩ−2 ). We thus obtain

Sbef
q1 q̄2←γ∗ = −iee f ϵλ

µ(q)
∫ d3k

(2π)3 θ(k+)
∫ d3 p

(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)

× iei L+
2 (q−−ǩ−+ p̌−)

(q−−ǩ−+ p̌−+iϵ)

∫
dv− eiv−(k+1 −k+)

∫
dw− eiw−(k+2 +p+)

∫
d2v e−iv·(k1−k)

×
∫

d2w e−iw·(p+k2) ū(1)γ+

{
UF(v, v−) +

1
k+1 +k+

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

)
×
(
[γi, γj]

4
gt · Fij(v)−

(kj
1+kj)

2
←→Dvj − i

←−Dvj
−→Dvj

)
UF

(
v+,−L+

2
; v, v−

)}

× (/̌k+m)

2k+
γµ (/̌p+m)

2p+

{
U †

F(w, w−) +
1

k+2 −p+

∫ L+
2

− L+
2

dw+ U †
F

(
w+,−L+

2
; w, w−

)
×
(
[γi, γj]

4
gt · Fij(w)− (pj−kj

2)

2
←→Dwj − i

←−Dwj
−→Dwj

)
U †

F

(L+

2
, w+; w, w−

)}

× γ+v(2) + iee f ϵλ
µ(q) ū(1)γµv(2) (2π)3δ(3)(q− k1 − k2)

iei L+
2 (q−−ǩ−1 −ǩ−2 )

(q−−ǩ−1 −ǩ−2 +iϵ)
.

(4.45)

In Eq.(4.45) one can find contributions at both generalized eikonal and subeikonal
order. The latter can be split into different types of contributions that are at NEik or-
der: decorations on the Wilson line associated with the quark or with the antiquark
and phase factor dependent on the target width L+. The generalized eikonal term
is represented by the dependence on v− or w− of the background field and Wilson
lines. However, we only account for one of these NEik terms at a time, since taking
two such corrections together would yield terms that are at NNeik accuracy at the
level of the S-matrix and cross-section.

Let us consider the contribution to the expression Eq.(4.45) with decorations in-
serted on the quark Wilson line. This contribution only starts at NEik accuracy due
to the integration over the v+ at which the decorations are inserted. We can thus ne-
glect in that contribution any further non-Eikonal effect: the phase factor dependent
on L+, and the dependence on v− and w− of the background field and Wilson lines.
The latter allows us to perform the integrations over v− and w− analytically, and to
obtain4

4Note that in this case θ(k+) = θ(k+1 ) = 1 and θ(−p+) = θ(k+2 ) = 1, since k+1 > 0 and k+2 > 0 by
definition for the produced particles.
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Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q

= 2πδ(k+1 +k+2 −q+) (−i)ee f ϵλ
µ(q)

∫ d3k
(2π)3 2πδ(k+−k+1 )

∫ d3 p
(2π)3

× (2π)3δ(3)(q− k + p)
1

2k+1

i
(q−−ǩ−+ p̌−+iϵ)

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2) ū(1)

×
∫ L+

2

− L+
2

dv+
[
UF

(L+

2
, v+; v

) ( [γi, γj]

4
gt · Fij(v)−

(kj
1+kj)

2
←→Dvj − i

←−Dvj
−→Dvj

)

×UF

(
v+,−L+

2
; v
)
U †

F(w)

]
γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2) . (4.46)

Similarly, one can extract from Eq. (4.45) the NEik contribution associated with dec-
orations inserted on the antiquark Wilson line, and simplify it into

Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

= 2πδ(k+1 +k+2 −q+) (−i)ee f ϵλ
µ(q)

∫ d3k
(2π)3 2πδ(k+−k+1 )

∫ d3 p
(2π)3

× (2π)3δ(3)(q− k + p)
1

2k+2

i
(q−−ǩ−+ p̌−+iϵ)

ū(1)γ+ (/̌k+m)

2k+
γµ

× (/̌p+m)

2p+
γ+

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2)

∫ L+
2

− L+
2

dw+

[
UF(v)U †

F

(
w+,−L+

2
; w
)

×
(
[γi, γj]

4
gt · Fij(w)− (pj−kj

2)

2
←→Dwj−i

←−Dwj
−→Dwj

)
U †

F

(L+

2
, w+; w

)]
v(2) . (4.47)

After extracting from Eq. (4.45) the contributions Eq.(4.46) and Eq.(4.47) of decora-
tions on the quark or antiquark Wilson lines, the leftover is

Sbef
q1 q̄2←γ∗ − Sbef

q1 q̄2←γ∗

∣∣∣∣
dec. on q

− Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

= −iee f ϵλ
µ(q)

∫ d3k
(2π)3 θ(k+)

∫ d3 p
(2π)3

× θ(−p+) (2π)3δ(3)(q− k + p)
i

(q−−ǩ−+ p̌−+iϵ)
ei L+

2 (q−−ǩ−+ p̌−) ū(1)γ+

× (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2)

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2)

×
∫

dv− eiv−(k+1 −k+)
∫

dw− eiw−(k+2 +p+) UF(v, v−)U †
F(w, w−)

+ iee f ϵλ
µ(q) ū(1)γµv(2) (2π)3δ(3)(q− k1 − k2)

i
(q−−ǩ−1 −ǩ−2 +iϵ)

ei L+
2 (q−−ǩ−1 −ǩ−2 ) .

(4.48)
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Noting that

∫ d3k
(2π)3 θ(k+)

∫ d3 p
(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)

i
(q−−ǩ−+ p̌−+iϵ)

× ei L+
2 (q−−ǩ−+ p̌−) ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2)

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2)

×
∫

dv− eiv−(k+1 −k+)
∫

dw− eiw−(k+2 +p+)

=
∫ d3k

(2π)3 θ(k+)
∫ d3 p

(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)
i

(q−−ǩ−+ p̌−+iϵ)
ei L+

2 (q−−ǩ−+ p̌−)

× ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2) (2π)3δ(3)(k−k1) (2π)3δ(3)(p+k2)

= (2π)3δ(3)(q− k1 − k2)
i

(q−−ǩ−1 −ǩ−2 +iϵ)
ei L+

2 (q−−ǩ−1 −ǩ−2 ) ū(1)γµv(2) , (4.49)

it is possible to rewrite Eq. (4.48) as

Sbef
q1 q̄2←γ∗ − Sbef

q1 q̄2←γ∗

∣∣∣∣
dec. on q

− Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

= −iee f ϵλ
µ(q)

∫ d3k
(2π)3 θ(k+)

×
∫ d3 p

(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)
i

(q−−ǩ−+ p̌−+iϵ)
ei L+

2 (q−−ǩ−+ p̌−) ū(1)γ+

× (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2)

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2)

∫
dv− eiv−(k+1 −k+)

×
∫

dw− eiw−(k+2 +p+)
[
UF(v, v−)U †

F(w, w−)− 1
]

. (4.50)

Expanding the L+ dependent phase factor at small target width L+, one finds the
contribution linear in L+ to be 5

Sbef
q1 q̄2←γ∗

∣∣∣∣
L+ phase

= 2πδ(k+1 +k+2 −q+) (−i)ee f ϵλ
µ(q)

∫ d3k
(2π)3 2πδ(k+−k+1 )

∫ d3 p
(2π)3

× (2π)3δ(3)(q− k + p) (−1)
L+

2
ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2)

×
∫

d2v e−iv·(k1−k)
∫

d2w e−iw·(p+k2)
[
UF(v)U †

F(w)− 1
]

. (4.51)

5here we neglect the dependence of the Wilson lines on v− or w− since due to the overall L+ factor,
this contribution already starts at NEik order
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Subtracting the contribution Eq.(4.51) as well from Eq. (4.50), one has, at NEik
accuracy

Sbef
q1 q̄2←γ∗ − Sbef

q1 q̄2←γ∗

∣∣∣∣
dec. on q

− Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

− Sbef
q1 q̄2←γ∗

∣∣∣∣
L+ phase

= −iee f ϵλ
µ(q)

∫ d3k
(2π)3 θ(k+)

∫ d3 p
(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)

i
(q−−ǩ−+ p̌−+iϵ)

× ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2)

∫
d2v e−iv·(k1−k)

∫
d2w e−iw·(p+k2)

×
∫

dv− eiv−(k+1 −k+)
∫

dw− eiw−(k+2 +p+)
[
UF(v, v−)U †

F(w, w−)− 1
]

. (4.52)

In Eq. (4.52), the only leftover effect beyond the Eikonal approximation is the de-
pendence on v− or w− of the Wilson lines. Using the change of variables (v−, w−) 7→
(b−, r−) defined as

b− =
(v− + w−)

2
, r− = (w− − v−) (4.53)

so that

w− = b− +
r−

2
, v− = b− − r−

2
, (4.54)

By Taylor-expanding the Wilson lines around b−, one finds that two separate
NEik contributions come out. The first one is the generalized eikonal contribution
that contains the the dependence of the Wilson lines on a common b− as the only
leftover effect beyond the strict Eikonal approximation

Sbef
q1 q̄2←γ∗

∣∣∣∣
Gen. Eik

= −iee f ϵλ
µ(q)

∫
d2v

∫
d2w

∫
db− eib−(k+1 +k+2 −q+)

×
[
UF

(
v, b−

)
U †

F

(
w, b−

)
− 1
] ∫ d3k

(2π)3 θ(k+)2πδ

(
k+−1

2
(k+1 −k+2 +q+)

)
×
∫ d3 p

(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)

× e−iv·(k1−k) e−iw·(p+k2)
i

(q−−ǩ−+ p̌−+iϵ)
ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2) , (4.55)
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Second, we have an explicit NEik correction6

Sbef
q1 q̄2←γ∗

∣∣∣∣
dyn. target

= 2πδ(k+1 +k+2 −q+) (−i)ee f ϵλ
µ(q)

∫
d2v

∫
d2w

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

×
∫ d3k

(2π)3 θ(k+) (−1)
i
2

2πδ′(k+−k+1 )
∫ d3 p

(2π)3 θ(−p+) (2π)3δ(3)(q− k + p)

× e−iv·(k1−k) e−iw·(p+k2)
i

(q−−ǩ−+ p̌−+iϵ)
ū(1)γ+ (/̌k+m)

2k+
γµ (/̌p+m)

2p+
γ+v(2) . (4.56)

The − axis in light-cone coordinates can be interpreted as the longitudinal direc-
tion for the right-moving projectile and as the time direction for the left-moving tar-
get. If the target background field is dynamical, meaning z− dependent, the quark
and antiquark from the projectile will probe a different value of the field not only
because of their transverse separation w−v but also because of their longitudinal
separation r− = w−−v−. The contribution Eq.(4.56) is then the NEik correction in-
duced by the tidal-like force exerted by the dynamical background field on the quark
and antiquark due to their longitudinal separation r−.

All in all, we have written the S-matrix element for the before diagram at NEik
accuracy as

Sbef
q1 q̄2←γ∗ = Sbef

q1 q̄2←γ∗

∣∣∣∣
Gen. Eik

+ Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q

+ Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

+ Sbef
q1 q̄2←γ∗

∣∣∣∣
L+ phase

+ Sbef
q1 q̄2←γ∗

∣∣∣∣
dyn. target

+ O(NNEik) , (4.57)

Most of these contributions contain the same energy denominator:

(q−−ǩ−+ p̌−+iϵ) =
(q2−Q2)

2q+
− (k2+m2)

2k+
+

(p2+m2)

2p+
+ iϵ , (4.58)

Introducing the photon virtuality Q2 ≡ −qµqµ and using the momentum conserva-
tion constraint p = k− q at the photon splitting vertex, one finds

(q−−ǩ−+ p̌−+iϵ) = − Q2

2q+
− q+

2k+(q+−k+)

[ (
k− k+

q+
q
)2

+ m2
]
+ iϵ . (4.59)

Since the real part of this energy denominator cannot change sign, the +iϵ has no
effect and can be always dropped. Using the expression Eq.(4.59) in the Generalized

6Note that due to the choice of the light cone gauge A+ = 0, the ordinary derivative
←→
∂b− can

equivalently be written as a covariant derivative
←→
Db− .
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Eikonal contribution Eq.(4.55) , one has

Sbef
q1 q̄2←γ∗

∣∣∣∣
Gen. Eik

= ee f ϵλ
µ(q)

∫
d2v

∫
d2w

∫
db− eib−(k+1 +k+2 −q+)

×
[
UF

(
v, b−

)
U †

F

(
w, b−

)
− 1
]

2π

2q+

∫ d3k
(2π)3 θ(k+) θ(q+−k+)δ

(
k+−1

2
(k+1 −k+2 +q+)

)
× e−iv·(k1−k) e−iw·(k2+k−q) ū(1)γ+(/̌k+m)γµ(/̌k−/q+m)γ+v(2)[(

k− k+
q+ q

)2
+ m2 + k+(q+−k+)

(q+)2 Q2

] . (4.60)

Similarly, one obtains

Sbef
q1 q̄2←γ∗

∣∣∣∣
dyn. target

= 2πδ(k+1 +k+2 −q+) ee f ϵλ
µ(q)

∫
d2v

∫
d2w

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

(−i)
4q+

∫ d3k
(2π)3 θ(k+) θ(q+−k+)2πδ′(k+−k+1 )

× e−iv·(k1−k) e−iw·(k2+k−q) ū(1)γ+(/̌k+m)γµ(/̌k−/q+m)γ+v(2)[(
k− k+

q+ q
)2

+ m2 + k+(q+−k+)
(q+)2 Q2

] (4.61)

from Eq. (4.56) and

Sbef
q1 q̄2←γ∗

∣∣∣∣
L+ phase

= 2πδ(k+1 +k+2 −q+) ee f ϵλ
µ(q)

∫
d2v

∫
d2w

[
UF(v)U †

F(w)− 1
]

× (−i)L+

8k+1 k+2

∫ d3k
(2π)3 2πδ(k+−k+1 )e

−iv·(k1−k) e−iw·(k2+k−q)

× ū(1)γ+(/̌k+m)γµ(/̌k−/q+m)γ+v(2) (4.62)

from Eq. (4.51). Then, from Eq. (4.46) and choosing to trade k for a derivative in w
for the extra contribution of k as compared to the rest of the S-matrix contributions,
one finds

Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q

= 2πδ(k+1 +k+2 −q+) ee f ϵλ
µ(q)

∫
d2v

∫
d2w

1
4q+k+1

∫ L+
2

− L+
2

dv+
∫ d3k

(2π)3

× 2πδ(k+−k+1 )ū(1)
{[
UF

(L+

2
, v+; v

)
×
(
[γi, γj]

4
gt · Fij(v)−

(kj
1−kj

2+qj)

2
←→Dvj − i

←−Dvj
−→Dvj

)

×UF

(
v+,−L+

2
; v
)
U †

F(w)

]
+

i
2

[
UF

(L+

2
, v+; v

)←→Dvj UF

(
v+,−L+

2
; v
)(

∂wjU †
F(w)

)]}
× γ+(/̌k+m)γµ(/̌k−/q+m)γ+v(2)[(

k− k+
q+ q

)2
+ m2 + k+(q+−k+)

(q+)2 Q2

] e−iv·(k1−k) e−iw·(k2+k−q) . (4.63)
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In order to obtain more compact expressions, let us introduce the notations

U (1)
F;j (v) =

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v

)←→DvjUF

(
v+,−L+

2
; v
)

(4.64)

U (2)
F (v) =

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v

)←−Dvj
−→DvjUF

(
v+,−L+

2
; v
)

(4.65)

U (3)
F;ij(v) =

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v

)
gt·Fij(v)UF

(
v+,−L+

2
; v
)

(4.66)

for the decorated Wilson lines appearing at NEik accuracy. Their Hermitian conju-
gate is

U (1)†
F;j (v) = −

∫ L+
2

− L+
2

dv+ U †
F

(
v+,−L+

2
; v
)←→DvjU †

F

(L+

2
, v+; v

)
(4.67)

U (2)†
F (v) =

∫ L+
2

− L+
2

dv+ U †
F

(
v+,−L+

2
; v
)←−Dvj

−→DvjU †
F

(L+

2
, v+; v

)
(4.68)

U (3)†
F;ij (v) =

∫ L+
2

− L+
2

dv+ U †
F

(
v+,−L+

2
; v
)

gt·Fij(v)U †
F

(L+

2
, v+; v

)
. (4.69)

With these notations, the expression Eq.(4.63) becomes

Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q

= 2πδ(k+1 +k+2 −q+) ee f ϵλ
µ(q)

1
4q+k+1

∫
d2v

∫
d2w

∫ d3k
(2π)3

× 2πδ(k+−k+1 ) e−iv·(k1−k) e−iw·(k2+k−q) ū(1)

[
[γi, γj]

4
U (3)

F;ij(v)− i U (2)
F (v)

+ U (1)
F;j (v)

(
− (kj

1−kj
2+qj)

2
+

i
2

∂wj

)]
U †

F(w)
γ+(/̌k+m)γµ(/̌k−/q+m)γ+v(2)[(
k− k+

q+ q
)2

+ m2 + k+(q+−k+)
(q+)2 Q2

] .

(4.70)

Following the same steps, one can rewrite the contribution with decoration on
the antiquark Wilson line Eq.(4.47) as

Sbef
q1 q̄2←γ∗

∣∣∣∣
dec. on q̄

= 2πδ(k+1 +k+2 −q+) ee f ϵλ
µ(q)

1
4q+k+2

∫
d2v

∫
d2w

×
∫ d3k

(2π)3 2πδ(k+−k+1 )
ū(1)γ+(/̌k+m)γµ(/̌k−/q+m)γ+[(
k− k+

q+ q
)2

+ m2 + k+(q+−k+)
(q+)2 Q2

] e−iw·(k2+k−q)

×
[
UF(v)

(
[γi, γj]

4
U (3)†

F;ij (w)−i U (2)†
F (w)+

(
i
2
←−
∂vj− (kj

2−kj
1+qj)

2

)
U (1)†

F;j (w)

)]
× v(2) e−iv·(k1−k) , (4.71)

Let us now consider specific polarizations of the photon in the S-matrix expres-
sions.
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Longitudinal photon case :
Introducing the longitudinal polarization vector in LC gauge given in Eq.(4.34),

one finds

ϵL
µ(q) γ+(/̌k+m)γµ(/̌k−/q+m)γ+ =

Q
q+

γ+(/̌k+m)γ+(/̌k−/q+m)γ+

=
Q
q+
{γ+, /̌k}γ+{/̌k−/q , γ+} = −4k+(q+−k+)

q+
Q γ+ . (4.72)

Inserting this result into Eq.(4.62)

Sbef
q1 q̄2←γ∗L

∣∣∣∣
L+ phase

= 2πδ(k+1 +k+2 −q+)ee f Qū(1)γ+v(2)
iL+

2q+

∫
d2v

∫
d2w

×
[
UF(v)U †

F(v)−1
]
δ(2)(v−w)e−iv·(k1+k2−q) = 0 . (4.73)

In order to calculate the cross section, it is sufficient to know the S-matrix element
for q = 0. Hence, we will assume q = 0 from now on, for simplicity. Then, inserting
the expression Eq.(4.72) into Eq.(4.60) and taking q = 0, one obtains

Sbef
q1 q̄2←γ∗L

∣∣∣∣
Gen. Eik

= −2Q
ee f

2π
ū(1)γ+v(2)

(q++k+1 −k+2 )(q
++k+2 −k+1 )

4(q+)2

× θ(q++k+1 −k+2 ) θ(q++k+2 −k+1 )
∫

d2v e−iv·k1

∫
d2w e−iw·k2

×K0
(
Q̂ |w−v|

) ∫
db− eib−(k+1 +k+2 −q+)

[
UF

(
v, b−

)
U †

F

(
w, b−

)
− 1
]

, (4.74)

where we used the relation∫ d2k
(2π)2

e−ik·r

(k2 + ∆)
=

1
2π

K0(
√

∆|r|) , (4.75)

where Kα(z) is the modified Bessel function of the second kind. In Eq. (4.74), we
have introduced the notation

Q̂ =

√
m2 +

(q++k+1 −k+2 )(q+−k+1 +k+2 )
4(q+)2 Q2 . (4.76)

Similarly, in the longitudinal photon case, Eq. (4.70) becomes

Sbef
q1 q̄2←γ∗L

∣∣∣∣
dec. on q

= 2πδ(k+1 +k+2 −q+)
ee f

2π
(−1)Q

k+2
(q+)2

×
∫

d2v e−iv·k1

∫
d2w e−iw·k2 K0 (Q̄ |w−v|) ū(1)γ+

×
[
[γi, γj]

4
U (3)

F;ij(v)− i U (2)
F (v) + U (1)

F;j (v)
(
(kj

2−kj
1)

2
+

i
2

∂wj

)]
U †

F(w) v(2) (4.77)
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and Eq. (4.71)

Sbef
q1 q̄2←γ∗L

∣∣∣∣
dec. on q̄

= 2πδ(k+1 +k+2 −q+)
ee f

2π
(−1)Q

k+1
(q+)2

×
∫

d2v e−iv·k1

∫
d2w e−iw·k2 K0 (Q̄ |w−v|) ū(1)γ+

×
[
UF(v)

(
[γi, γj]

4
U (3)†

F;ij (w)−i U (2)†
F (w)+

(
i
2
←−
∂vj − (kj

2−kj
1)

2

)
U (1)†

F;j (w)

)]
v(2) ,

(4.78)

where Q̄ is defined as7

Q̄ ≡
√

m2 + Q2 k+1 k+2
(q+)2 . (4.79)

Finally, integrating by part in k+, Eq. (4.61) leads to

Sbef
q1 q̄2←γ∗L

∣∣∣∣
dyn. target

= 2πδ(k+1 +k+2 −q+) iQ
ee f

2π
ū(1)γ+v(2)

(k+1 −k+2 )
(q+)2

∫
d2v e−iv·k1

×
∫

d2w e−iw·k2

[
K0 (Q̄ |w−v|)−

(
Q̄2−m2)

2Q̄
|w−v|K1 (Q̄ |w−v|)

]

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

, (4.80)

where we have discarded zero mode contributions at k+1 = 0 or k+2 = 0, which
would not contribute to the cross section of dijet production in the experimentally
meaningful range. We also have used both the relation Eq.(4.75) and

∫ d2k
(2π)2

e−ik·r

(k2 + ∆)2 =
1

4π

|r|√
∆

K1(
√

∆|r|) . (4.81)

Collecting all the results for the longitudinal polarization of the photon in the
S-matrix element, at NEik accuracy this is given by

Sq1 q̄2←γ∗L = Sbef
q1 q̄2←γ∗L

∣∣∣∣
Gen. Eik

+ Sbef
q1 q̄2←γ∗L

∣∣∣∣
dec. on q

+ Sbef
q1 q̄2←γ∗L

∣∣∣∣
dec. on q̄

+ Sbef
q1 q̄2←γ∗L

∣∣∣∣
dyn. target

(4.82)

where explicit expressions for each contribution are given in Eqs. (4.74), (4.77), (4.78)
and (4.80). We would like to remind that the contribution Eq.(4.73) vanishes, as well
as the the contribution from photon splitting inside the target Eq.(4.35).

By contrast, the strict Eikonal approximation for the S-matrix element can be
obtained from the Generalized Eikonal contribution Eq.(4.74) by setting the b− = 0

7Note that Q̂, as defined in Eq. (4.76), collapses to Q̄ if k+1 +k+2 = q+, which is the case in most terms,
apart from the generalized eikonal contribution (4.74). Still, we keep a separate notation for Q̄, since
that quantity is the one commonly used in the literature about dipole factorization for DIS processes
in the eikonal limit.
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dependence of the Wilson lines. In such a way, one recovers the standard result

Sbef
q1 q̄2←γ∗L

∣∣∣∣
Strict Eik

= 2πδ(k+1 +k+2 −q+) (−2)Q
ee f

2π
ū(1)γ+v(2)

k+1 k+2
(q+)2

∫
d2v e−iv·k1

×
∫

d2w e−iw·k2 K0 (Q̄ |w−v|)
[
UF(v)U †

F(w)− 1
]

. (4.83)

Transverse photon case :
Let us now consider the case of transverse photon polarization, with polarization

vectors as given in Eq.(4.36). The part of the Dirac structure associated with the
photon splitting before the target, is then

γ+(/̌k+m)/ϵλ(q)(/̌k−/q+m)γ+

= γ+
[
k+γ−−kjγj+m

] [
−εi

λγi + εi
λ

qi

q+
γ+

] [
(k+−q+)γ−−(kl−ql)γl+m

]
γ+

= γ+
[
− kjγj+m

] [
−εi

λγi
]
(k+−q+)γ−γ+ + γ+k+γ−

[
−εi

λγi
] [
− (kl−ql)γl+m

]
γ+

+ γ+k+γ−
[

εi
λ

qi

q+
γ+

]
(k+−q+)γ−γ+

= εi
λγ+

{
2(q+−k+)

[
− kjγj+m

]
γi + 2k+γi

[
(kj−qj)γj+m

]
− 4k+(q+−k+)

q+
qi
}

= 2q+εi
λγ+

{ [
(q+−2k+)

q+
δij +

[γi, γj]

2

] [
kj− k+

q+
qj
]
+ m γi

}
. (4.84)

Inserting this into the expression Eq. (4.60) for the generalized eikonal contribution,
taking q = 0, and using the identities Eq.(4.75) and

∫ d2k
(2π)2

e−ik·r

(k2 + ∆)
kj =

(−i)
2π

rj

|r|
√

∆ K1(
√

∆|r|) . (4.85)

one finds

Sbef
q1 q̄2←γ∗T

∣∣∣∣
Gen. Eik

=
ee f

2π
εi

λ θ(q++k+1 −k+2 ) θ(q++k+2 −k+1 )
∫

d2v e−iv·k1

∫
d2w e−iw·k2

×
{
− i

(wj−vj)

|w−v| Q̂ K1
(
Q̂ |w−v|

)
ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

+ K0
(
Q̂ |w−v|

)
m ū(1)γ+γiv(2)

} ∫
db− eib−(k+1 +k+2 −q+)

[
UF

(
v, b−

)
U †

F

(
w, b−

)
− 1
]

,

(4.86)
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In the same way, in the transverse photon case and for q = 0, the contribution
Eq.(4.70) becomes

Sbef
q1 q̄2←γ∗T

∣∣∣∣
dec. on q

= 2πδ(k+1 +k+2 −q+)
ee f

2π
εi

λ

1
2k+1

∫
d2v e−iv·k1

∫
d2w e−iw·k2 ū(1)γ+

×
[
[γl , γm]

4
U (3)

F;lm(v)− i U (2)
F (v) + U (1)

F;l (v)
(
(kl

2−kl
1)

2
+

i
2

∂wl

)]
U †

F(w)

×
{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|)
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
+ K0 (Q̄ |w−v|) m γi

}
v(2)

(4.87)

and the contribution Eq.(4.71) becomes

Sbef
q1 q̄2←γ∗T

∣∣∣∣
dec. on q̄

= 2πδ(k+1 +k+2 −q+)
ee f

2π
εi

λ

1
2k+2

∫
d2v e−iv·k1

∫
d2w e−iw·k2

× ū(1)γ+

{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|)
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
+ K0 (Q̄ |w−v|) m γi

}
×
[
UF(v)

(
[γl , γm]

4
U (3)†

F;lm(w)−i U (2)†
F (w)+

(
i
2
←−
∂vl − (kl

2−kl
1)

2

)
U (1)†

F;l (w)

)]
v(2) .

(4.88)

Using the expression Eq.(4.84), the contribution Eq.(4.62) can be simplified for trans-
verse photon and q = 0, as

Sbef
q1 q̄2←γ∗T

∣∣∣∣
L+ phase

= 2πδ(k+1 +k+2 −q+) ee f εi
λ

(−1)L+q+

8k+1 k+2
ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

×
∫

d2v e−iv·(k1+k2)
[
UF(v)

←→
∂vjU †

F(v)
]

, (4.89)

where, in all the final expressions, the derivatives act only within the square bracket,
on the Wilson lines.

Using Eq. (4.84) and taking q = 0, the contribution Eq.(4.61) associated with the
dynamics of the target can be evaluated as

Sbef
q1 q̄2←γ∗T

∣∣∣∣
dyn. target

= 2πδ(k+1 +k+2 −q+)
ee f

2π
εi

λ

∫
d2v e−iv·k1

∫
d2w e−iw·k2

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

ū(1)γ+

×
{
− (wi−vi) Q̄
|w−v| q+ K1 (Q̄ |w−v|) − i(k+2 −k+1 ) Q2 |w−v|

4(q+)2 Q̄
K1 (Q̄ |w−v|) m γi

− (k+2 −k+1 ) Q2

4(q+)2 (wj−vj)K0 (Q̄ |w−v|)
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]}
v(2) , (4.90)

where we used the identities Eqs.(4.81), (4.85) and

∫ d2k
(2π)2

e−ik·r

(k2 + ∆)2 kj =
(−i)
4π

rj K0(
√

∆|r|) . (4.91)
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All in all, at NEik accuracy, the S-matrix element for qq̄ production from a trans-
verse photon is given by

Sq1 q̄2←γ∗T = Sbef
q1 q̄2←γ∗T

∣∣∣∣
Gen. Eik

+ Sbef
q1 q̄2←γ∗T

∣∣∣∣
dec. on q

+ Sbef
q1 q̄2←γ∗T

∣∣∣∣
dec. on q̄

+ Sbef
q1 q̄2←γ∗T

∣∣∣∣
L+ phase

+ Sbef
q1 q̄2←γ∗T

∣∣∣∣
dyn. target

+ Sin
q1 q̄2←γ∗T

(4.92)

where explicit expressions for each contribution coming from the photon splitting
before reaching the target are given in Eqs. (4.86), (4.87), (4.88), (4.89), and (4.90). The
expression for the contribution coming from the photon splitting inside the target is
given in Eq. (4.38).

Again, the strict Eikonal approximation for the S-matrix element is obtained from
the Generalized Eikonal contribution Eq.(4.86) by neglecting the b− dependence of
the Wilson lines. In such a way, one recovers the standard result

Sbef
q1 q̄2←γ∗T

∣∣∣∣
Strict Eik

= 2πδ(k+1 +k+2 −q+)
ee f

2π
εi

λ

∫
d2v e−iv·k1

∫
d2w e−iw·k2

×
[
UF(v)U †

F(w)− 1
]{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|) ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
× v(2) + K0 (Q̄ |w−v|) m ū(1)γ+γiv(2)

}
. (4.93)

4.3.3 NEik DIS dijet production cross-section

In this subsection we compute the cross-section for the DIS dijet production at NEik
from the expressions for the S-matrix elements computed previously in this section
for both the longitudinal and the transverse polarization of the photon.

In the standard CGC framework, where the eikonal limit is adopted, the back-
ground field is independent of x−. Therefore, the light-cone "+" momentum cannot
be exchanged with the target. The scattering amplitude in this case is defined as

Sq1 q̄2←γ∗L

∣∣∣∣
x− indep.

= (2q+) 2π δ(k+1 +k+2 −q+) iMq1 q̄2←γ∗L , (4.94)

and the cross-section yields

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣
x− indep.

= (2q+) 2π δ(k+1 +k+2 −q+) ∑
hel. , col.

|Mq1 q̄2←γ∗L |
2 , (4.95)

with

dP.S. =
d2k1

(2π)2
dk+1

2k+1 (2π)

d2k2

(2π)2
dk+2

2k+2 (2π)
, (4.96)

and the summation in Eq. (4.95) is over the colors and light-front helicities of the
produced quark and anti-quark.

When performing a strict expansion of the S-matrix element into Eikonal contri-
bution, NEik contribution and so on, the gradient expansion of the background field
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with respect to x− would be performed entirely. In that case, not all the terms would
be of the form Eq.(4.94): some NEik corrections would include δ′(k+1 +k+2 −q+) in-
stead. It is not possible to calculate the contribution of such terms to the cross section
without introducing wave-packets, which is a major inconvenience. This is the mo-
tivation which has led us to introduce the Generalized Eikonal approximation, in
which the dependence of the Wilson lines on a common x− is kept at the S-matrix
level.

We would like to mention that, at the accuracy considered in the present study,
this modified procedure is necessary only to compute the contribution of the squared
Generalized Eikonal amplitude to the cross section. For the rest of the contributions
that are explicitly NEik order, the x− dependence of the background field can be ne-
glected, and one can go back to the standard procedure from eikonal CGC to obtain
the cross section.

Following this argument, the cross section at NEik accuracy for DIS dijet for lon-
gitudinal photon can be written as

dσγ∗L→q1 q̄2

dP.S.
=

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

+
dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
NEik corr.

+ O(NNEik) . (4.97)

The Generalized Eikonal contribution to the cross section that depends on a common
∆b− is then given by

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= 2q+
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)

× ∑
hel. , col.

〈(
MGen. Eik

q1 q̄2←γ∗L

(
− ∆b−

2

))†
MGen. Eik

q1 q̄2←γ∗L

(∆b−

2

)〉
(4.98)

where we average over the background field of the target. The relation between the
S-matrix and the scattering amplitude b−-dependent is

Sq1 q̄2←γ∗L

∣∣∣∣
Gen. Eik

= 2q+
∫

db−eib−(k+1 +k+2 −q+)iMGen. Eik
q1 q̄2←γ∗L

(b−) . (4.99)

The NEik correction terms in the cross-section Eq. (4.97), are computed by multi-
plying the amplitudes for generalized eikonal and explicit NEik ones. This is due to
the fact that squaring two NEik amplitudes would yield a cross-section at NNEik or-
der instead of NEik. Thus, the revised Generalized Eikonal contribution is Eq.(4.74)
and the NEik corrections Eqs.((4.77), (4.78) and (4.80) in the longitudinal photon
case). In that case, and at the NEik accuracy, the Generalized Eikonal contribution
Eq.(4.74) can be replaced by the strict Eikonal contribution Eq.(4.83) in order to ob-
tain a final result at NEik accuracy. Then, the x−-dependence of the background
field can be dropped, and relations of the type Eqs. (4.94) and (4.95) can be used,
leading to

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
NEik corr.

= (2q+) 2πδ(k+1 +k+2 −q+) ∑
hel. , col.

2Re
〈(
Mstrict Eik

q1 q̄2←γ∗L

)†
MNEik corr.

q1 q̄2←γ∗L

〉
.

(4.100)
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Generalized eikonal cross-section via longitudinal photon :
By comparing Eqs. (4.74) and (4.99), one can read off the b−-dependent amplitude

iMGen. Eik
q1 q̄2←γ∗L

(b−) = −Q
ee f

2π
ū(1)γ+v(2)

(q++k+1 −k+2 )(q
++k+2 −k+1 )

4(q+)3 θ(q++k+1 −k+2 )

× θ(q++k+2 −k+1 )
∫

d2v e−iv·k1

∫
d2w e−iw·k2 K0

(
Q̂ |w−v|

) [
UF(v, b−)U †

F(w, b−)−1
]

.

(4.101)

Inserting Eq. (4.101) into Eq. (4.98), one arrives at8

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= 2q+
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)

(
ee f Q

2π

)2

θ
(

q++k+1 −k+2
)

× θ
(

q+−k+1 +k+2
) k+1 k+2

2(q+)6 (q
++k+1 −k+2 )

2(q+−k+1 +k+2 )
2
∫

v,v′,w,w′
eik1·(v′−v)

× eik2·(w′−w)K0(Q̂|w′ − v′|)K0(Q̂|w− v|)
〈

Tr

[(
UF

(
w′,−∆b−

2

)
U †

F

(
v′,−∆b−

2

)
− 1
)

×
(
UF

(
v,

∆b−

2

)
U †

F

(
w,

∆b−

2

)
− 1
)]〉

. (4.102)

where we used for the Dirac numerator:

N1L ≡ ∑
h1,h2=± 1

2

(
ū(1)γ+v(2)

)† ū(1)γ+v(2)

= (2k+1 ) TrD

[
{γ+, /̌k2}

2

]
= (2k+1 )

(2k+2 )
2

TrD [1] = 8k+1 k+2 (4.103)

Splitting the color operators, one can define the following dipole and quadrupole
operators

d
(
v, w

)
=
〈 1

Nc
Tr
[
UF(v)U †

F(w)
]〉

(4.104)

Q
(

w′, v′, v, w,
∆b−

2

)
=
〈 1

Nc
Tr
[
UF

(
w′,

∆b−

2

)
U †

F

(
v′,

∆b−

2

)
×UF

(
v,−∆b−

2

)
U †

F

(
w,−∆b−

2

)]〉
, (4.105)

and we rewrite the expression Eq. (4.102) as

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= Nc
αem

π
e2

f Q2 θ
(

q++k+1 −k+2
)

θ
(

q+−k+1 +k+2
) k+1 k+2
(q+)5 (q++k+1 −k+2 )

2

× (q+−k+1 +k+2 )
2
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)K0(Q̂|w′ − v′|)K0(Q̂|w− v|)

×
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)
{

Q
(

w′, v′, v, w,
∆b−

2

)
− d
(
w′, v′

)
− d
(
v, w

)
+ 1
}

(4.106)

8Here we introduce a compact notation for the transverse coordinate integrals
∫

x · · · ≡
∫

d2x · · · .



4.3. DIS-dijet production at NEik accuracy 73

with αem = e2/(4π).

Explicit NEik cross-section via longitudinal photon :
The strict eikonal and full NEik correction amplitudes are related to their corre-

sponding S-matrix elements as in Eq. (4.94). From Eq. (4.83). The strict Eikonal
amplitude is

iMstrict Eik
q1 q̄2←γ∗L

= −Q
ee f

2π
ū(1)γ+v(2)

k+1 k+2
(q+)3

∫
d2v e−iv·k1

×
∫

d2w e−iw·k2 K0 (Q̄ |w−v|)
[
UF(v)U †

F(w)− 1
]

. (4.107)

The NEik correction to the amplitude can be written as

iMNEik corr.
q1 q̄2←γ∗L

= iMdec. on q
q1 q̄2←γ∗L

+ iMdec. on q̄
q1 q̄2←γ∗L

+ iMdyn. target
q1 q̄2←γ∗L

, (4.108)

with the three terms obtained from Eqs. (4.77), (4.78) and (4.80) as

iMdec. on q
q1 q̄2←γ∗L

= −Q
ee f

2π

k+2
2(q+)3

∫
d2v e−iv·k1

∫
d2w e−iw·k2 K0 (Q̄ |w−v|)

× ū(1)γ+

[
[γi, γj]

4
U (3)

F;ij(v)− i U (2)
F (v) + U (1)

F;j (v)
(
(kj

2−kj
1)

2
+

i
2

∂wj

)]
×U †

F(w) v(2) , (4.109)

iMdec. on q̄
q1 q̄2←γ∗L

= −Q
ee f

2π

k+1
2(q+)3

∫
d2v e−iv·k1

∫
d2w e−iw·k2 K0 (Q̄ |w−v|)

× ū(1)γ+

[
UF(v)

(
[γi, γj]

4
U (3)†

F;ij (w)−i U (2)†
F (w)+

(
i
2
←−
∂vj − (kj

2−kj
1)

2

)
U (1)†

F;j (w)

)]
× v(2) , (4.110)

and

iMdyn. target
q1 q̄2←γ∗L

= iQ
ee f

2π
ū(1)γ+v(2)

(k+1 −k+2 )
2(q+)3

∫
d2v e−iv·k1

∫
d2w e−iw·k2

×
[

K0 (Q̄ |w−v|)−
(
Q̄2−m2)

2Q̄
|w−v|K1 (Q̄ |w−v|)

]

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

. (4.111)

In these NEik amplitudes, we encounter that the terms with a Fij decoration lead
at the cross-section level to a Dirac structure that ends up vanishing, therefore they
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do not contribute at the cross-section level. This vanishing Dirac structure is

N2L ≡ ∑
h1,h2=± 1

2

(
ū(1)γ+v(2)

)† ū(1)γ+[γi, γj]v(2)

= ∑
h1,h2=± 1

2

v̄(2)γ+u(1)ū(1)γ+[γi, γj]v(2) = TrD

[
γ+(/̌k1 + m)γ+[γi, γj](/̌k2 −m)

]
=TrD

[
γ+
{

/̌k1, γ+
}
[γi, γj]/̌k2

]
= (2k+1 ) TrD

[
γ+[γi, γj]/̌k2

]
= (2k+1 ) TrD

[
{γ+, /̌k2}

2
[γi, γj]

]
= (2k+1 )

(2k+2 )
2

TrD

[
[γi, γj]

]
= 0 (4.112)

where TrD
[
[γi, γj]

]
= 0.

The rest of the terms at NEik have the same Dirac algebra as the one performed
in Eq. (4.103) and contribute to the cross-section as follows. From Eq. (4.109) we
encounter, after multiplying with the eikonal amplitude

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q

NEik corr.

= (2q+) 2πδ(k+1 +k+2 −q+) 8k+1 k+2 Q2
(

ee f

2π

)2 k+1 k+2
(q+)3

k+2
2(q+)3

× 2Re
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)K0

(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

× Tr
〈[
UF(w′)U †

F(v
′)− 1

][
− i U (2)

F (v) + U (1)
F;j (v)

(
(kj

2−kj
1)

2
+

i
2

∂wj

)]
U †

F(w)

〉
.

(4.113)

Similarly, the contribution from Eq. (4.110) at cross section level is

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q̄

NEik corr.

= (2q+) 2πδ(k+1 +k+2 −q+) 8k+1 k+2 Q2
(

ee f

2π

)2 k+1 k+2
(q+)3

k+1
2(q+)3

× 2Re
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)K0

(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

× Tr
〈[
UF(w′)U †

F(v
′)− 1

][
UF(v)

(
−i U (2)†

F (w)+

(
i
2
←−
∂vj − (kj

2−kj
1)

2

)
U (1)†

F;j (w)

)]〉
.

(4.114)

Finally, the contribution from Eq. (4.111) at cross section level is

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dyn. target

NEik corr.

= (2q+) 2πδ(k+1 +k+2 −q+) 8k+1 k+2 Q2
(

ee f

2π

)2

× k+1 k+2
(q+)3

(k+1 −k+2 )
2(q+)3 2Re (−i)

∫
v,v′,w,w′

eik1·(v′−v) eik2·(w′−w)

×
[

K0 (Q̄ |w−v|)−
(
Q̄2−m2)

2Q̄
|w−v|K1 (Q̄ |w−v|)

]

×K0
(
Q̄ |w′−v′|

)
Tr

〈[
UF(w′)U †

F(v
′)− 1

] [
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

〉
.

(4.115)
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As in the previous case for generalized eikonal cross-section, we introduce the
different types of decorated dipole and quadrupole operators.

d(1)j (v∗, w) =

〈
1

Nc
Tr
[
U (1)

F;j (v)U †
F(w)

]〉
(4.116)

d(2)(v∗, w) =

〈
1

Nc
Tr
[
U (2)

F (v)U †
F(w)

]〉
(4.117)

Q(1)
j (w′, v′, v∗, w) =

〈
1

Nc
Tr
[
UF(w′)U †

F(v
′)U (1)

F;j (v)U †
F(w)

]〉
(4.118)

Q(2)(w′, v′, v∗, w) =

〈
1

Nc
Tr
[
UF(w′)U †

F(v
′)U (2)

F (v)U †
F(w)

]〉
(4.119)

d̃(v∗, w∗) =

〈
1

Nc
Tr

[(
UF(v, b−)

←→
∂−U †

F(w, b−)
)∣∣∣

b−=0

]〉
, (4.120)

Q̃(w′, v′, v∗, w∗) =

〈
1

Nc
Tr

[
UF(w′)U †

F(v
′)
(
UF(v, b−)

←→
∂−U †

F(w, b−)
)∣∣∣

b−=0

]〉
.

(4.121)

where the star indicates the position of the decoration.

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q

NEik corr.

= 2πδ(k+1 +k+2 −q+) 8Nc
αem

π
e2

f Q2 (k+1 )
2(k+2 )

3

(q+)5

× 2Re
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)K0

(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

×
{[ (kj

2−kj
1)

2
+

i
2

∂wj

][
Q(1)

j (w′, v′, v∗, w)− d(1)j (v∗, w)
]

− i
[

Q(2)(w′, v′, v∗, w)− d(2)(v∗, w)
]}

, (4.122)

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q̄

NEik corr.

= 2πδ(k+1 +k+2 −q+) 8Nc
αem

π
e2

f Q2 (k+1 )
3(k+2 )

2

(q+)5

× 2Re
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)K0

(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

×
{[
− (kj

2−kj
1)

2
+

i
2

∂vj

]
[

Q(1)
j (v′, w′, w∗, v)

†
− d(1)j (w∗, v)

†]
− i
[

Q(2)(v′, w′, w∗, v)
† − d(2)(w∗, v)

†]}
(4.123)
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and

dσγ∗L→q1 q̄2

dP.S.

∣∣∣∣∣
dyn. target

NEik corr.

= 2πδ(k+1 +k+2 −q+) 8Nc
αem

π
e2

f Q2 (k+1 )
2(k+2 )

2(k+1 −k+2 )
(q+)5

× 2Re (−i)
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)

[
Q̃(w′, v′, v∗, w∗)− d̃(v∗, w∗)

]
× K0

(
Q̄ |w′−v′|

) [
K0 (Q̄ |w−v|)−

(
Q̄2−m2)

2Q̄
|w−v|K1 (Q̄ |w−v|)

]
. (4.124)

All in all, the NEik correction to the cross section for longitudinal photon beyond the
generalized Eikonal contribution Eq. (4.106) is given by the sum of the contributions
Eqs. (4.122), (4.123) and (4.124).

Generalized eikonal cross-section via transverse photon :
For the case of the transverse polarization of the photon, we proceed in the same

manner as in the last two cases. The generalized eikonal contribution is obtained as

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= 2q+
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)

× 1
2 ∑

λ
∑

hel. , col.

〈(
MGen. Eik

q1 q̄2←γ∗T

(
− ∆b−

2

))†
MGen. Eik

q1 q̄2←γ∗T

(∆b−

2

)〉
,

(4.125)

which includes an averaging over the polarization λ of the incoming transverse pho-
ton. The b− dependent amplitude involved in Eq. (4.125) is defined in the same way
as in Eq. (4.99), and can be read off from the generalized eikonal expression from the
S-matrix Eq. (4.86) in the transverse photon case. In such a way, one finds

iMGen. Eik
q1 q̄2←γ∗T

(b−) =
ee f

2π
εi

λ

1
2q+

θ(q++k+1 −k+2 ) θ(q++k+2 −k+1 )
∫

d2v e−iv·k1

∫
d2w

× e−iw·k2

{
− i

(wj−vj)

|w−v| Q̂ K1
(
Q̂ |w−v|

)
ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

+ K0
(
Q̂ |w−v|

)
m ū(1)γ+γiv(2)

}[
UF

(
v, b−

)
U †

F

(
w, b−

)
− 1
]

. (4.126)

This yields the following generalized eikonal cross-section
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dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= 2q+
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)
(

ee f

2π

)2 1
(2q+)2 θ(q++k+1 −k+2 )

× θ(q++k+2 −k+1 )
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)

×
{

8k+1 k+2 m2 K0
(
Q̂ |w′−v′|

)
K0
(
Q̂ |w−v|

)
+ 4k+1 k+2

[
1 +

(
k+2 −k+1

q+

)2]

× Q̂2 (w′−v′)·(w−v)
|w′−v′||w−v| K1

(
Q̂ |w′−v′|

)
K1
(
Q̂ |w−v|

) }

×
〈

Tr

[(
UF

(
w′,−∆b−

2

)
U †

F

(
v′,−∆b−

2

)
− 1
)(
UF

(
v,

∆b−

2

)
U †

F

(
w,

∆b−

2

)
− 1
)]〉

.

(4.127)

simplifying as in the case of the longitudinal polarization of the photon, we finally
obtain

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
Gen. Eik

= Nc
αem

π
e2

f
2k+1 k+2

q+
θ(q++k+1 −k+2 ) θ(q++k+2 −k+1 )

×
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)

{
2 m2 K0

(
Q̂ |w′−v′|

)
K0
(
Q̂ |w−v|

)
+

[
1 +

(
k+2 −k+1

q+

)2]
Q̂2 (w′−v′)·(w−v)
|w′−v′||w−v| K1

(
Q̂ |w′−v′|

)
K1
(
Q̂ |w−v|

) }

×
∫

d(∆b−)ei∆b−(k+1 +k+2 −q+)
{

Q
(

w′, v′, v, w,
∆b−

2

)
− d
(
w′, v′

)
− d
(
v, w

)
+ 1
}

.

(4.128)

Explicit NEik cross-section via transverse photon :
The NEik correction to the transverse photon cross-section, up to the averaging

over λ, as

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
NEik corr.

= (2q+) 2πδ(k+1 +k+2 −q+)

× 1
2 ∑

λ
∑

hel. , col.
2Re

〈(
Mstrict Eik

q1 q̄2←γ∗T

)†
MNEik corr.

q1 q̄2←γ∗T

〉
. (4.129)

It amounts to calculating the interference between the strict Eikonal amplitude
and the NEik correction to the amplitude, normalized as in Eq. (4.94). From Eq. (4.93),
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the strict eikonal amplitude for transverse photon is found to be

iMstrict Eik
q1 q̄2←γ∗T

=
ee f

2π
εi

λ

1
2q+

∫
d2v e−iv·k1

∫
d2w e−iw·k2

[
UF(v)U †

F(w)− 1
]

×
{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|) ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

×+K0 (Q̄ |w−v|) m ū(1)γ+γiv(2)
}

. (4.130)

By contrast, the NEik correction to the amplitude is the sum of five contributions

iMNEik corr.
q1 q̄2←γ∗T

= iMin
q1 q̄2←γ∗T

+ iMdec. on q
q1 q̄2←γ∗T

+ iMdec. on q̄
q1 q̄2←γ∗T

+ iML+ phase
q1 q̄2←γ∗T

+ iMdyn. target
q1 q̄2←γ∗T

,

(4.131)

corresponding to the contributions Eqs. (4.38), (4.87), (4.88), (4.89) and (4.90) to the
S-matrix element respectively. We thus have

iMin
q1 q̄2←γ∗T

= ee f εi
λ

1
8k+1 k+2

ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

1
2
[γi, γj]

]
v(2)

×
∫

d2z e−i(k1+k2)·z
∫ L+/2

−L+/2
dz+

[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]
,

(4.132)

iMdec. on q
q1 q̄2←γ∗T

=
ee f

2π
εi

λ

1
2q+

1
2k+1

∫
d2v e−iv·k1

∫
d2w e−iw·k2 ū(1)γ+

×
[(

[γl , γm]

4
U (3)

F;lm(v)− i U (2)
F (v) + U (1)

F;l (v)
(
(kl

2−kl
1)

2
+

i
2
−→
∂wl

))
U †

F(w)

]
×
{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|)
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
+ K0 (Q̄ |w−v|) m γi

}
v(2) , (4.133)

iMdec. on q̄
q1 q̄2←γ∗T

=
ee f

2π
εi

λ

1
2q+

1
2k+2

∫
d2v e−iv·k1

∫
d2w e−iw·k2 ū(1)γ+

×
{
− i

(wj−vj)

|w−v| Q̄ K1 (Q̄ |w−v|)
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
+ K0 (Q̄ |w−v|) m γi

}
×
[
UF(v)

(
[γl , γm]

4
U (3)†

F;lm(w)−i U (2)†
F (w) +

(
i
2
←−
∂vl− (kl

2−kl
1)

2

)
U (1)†

F;l (w)

)]
v(2) ,

(4.134)

iML+ phase
q1 q̄2←γ∗T

= ee f εi
λ

(−1)L+

16k+1 k+2
ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

×
∫

d2z e−iz·(k1+k2)
[
UF(z)

←→
∂zj U †

F(z)
]

(4.135)
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and

iMdyn. target
q1 q̄2←γ∗T

=
ee f

2π
εi

λ

1
2(q+)2

∫
d2v e−iv·k1

∫
d2w e−iw·k2

×
[
UF

(
v, b−

)←→
∂b−U †

F

(
w, b−

)]∣∣∣∣
b−=0

× ū(1)γ+

{
− (wi−vi) Q̄
|w−v| K1 (Q̄ |w−v|) − i(k+2 −k+1 ) Q2 |w−v|

4q+ Q̄
K1 (Q̄ |w−v|) m γi

− (k+2 −k+1 ) Q2

4q+
(wj−vj)K0 (Q̄ |w−v|)

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]}
v(2) . (4.136)

After computing the cross-sections and introducing the following notation for
the remaining decorated dipole and quadrupole

d(3)ij (v∗, w) =

〈
1

Nc
Tr
[
U (3)

F;ij(v)U †
F(w)

]〉
(4.137)

Q(3)
ij (w′, v′, v∗, w) =

〈
1

Nc
Tr
[
UF(w′)U †

F(v
′)U (3)

F;ij(v)U †
F(w)

]〉
. (4.138)

At the cross-section level one finds the following Dirac structures

N1T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+

×
[
(k+2 −k+1 )

q+
δi′ j′ +

[γi′ , γj′ ]

2

]
v(2)

)†

ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

(4.139)

N2T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+γi′v(2)

)†
ū(1)γ+γiv(2) (4.140)

N3T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+γi′v(2)

)†
ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
v(2)

(4.141)

N4T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+

[
(k+2 −k+1 )

q+
δi′ j′ +

[γi′ , γj′ ]

2

]
v(2)

)†

ū(1)γ+γiv(2) .

(4.142)

and in the case of the Flm decoration inserted on the antiquark line, at w, we
have



80Chapter 4. DIS dijet production at NEik accuracy: including dynamics of the target

N1′′T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+

[
(k+2 −k+1 )

q+
δi′ j′ +

[γi′ , γj′ ]

2

]
v(2)

)†

× ū(1)γ+

[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
[γl , γm]v(2) (4.143)

N2′′T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+γi′v(2)

)†
ū(1)γ+γi[γl , γm]v(2) (4.144)

N3′′T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+γi′v(2)

)†
ū(1)γ+

×
[
(k+2 −k+1 )

q+
δij +

[γi, γj]

2

]
[γl , γm]v(2) (4.145)

N4′′T ≡
1
2 ∑

λ
∑

h1,h2=± 1
2

εi′∗
λ εi

λ

(
ū(1)γ+

[
(k+2 −k+1 )

q+
δi′ j′ +

[γi′ , γj′ ]

2

]
v(2)

)†

× ū(1)γ+γi[γl , γm]v(2) . (4.146)

The transverse polarization vectors obey the completeness relation

∑
λ

εi′∗
λ εi

λ = δi′i . (4.147)

and after computing all this Dirac algebra we arrive at

N1T = 4k+1 k+2 δj′ j

[
1 +

(k+2 −k+1 )
2

(q+)2

]
. (4.148)

N2T = 8k+1 k+2 . (4.149)
N3T = 0 (4.150)
N4T = 0 (4.151)

and also

N1′′T =
16k+1 k+2 (k

+
1 −k+2 )

q+
[
δj′ l δjm−δjl δj′m

]
(4.152)

N2′′T = 0 (4.153)
N3′′T = 0 (4.154)
N4′′T = 0 . (4.155)

In the calculation of the contribution of Eq. (4.134) at cross section level, the Dirac
algebra can be performed using the relations Eqs. (4.148), (4.149), (4.150) and (4.151),
apart from the terms involving the longitudinal chromomagnetic background field
Flm, which lead to the Dirac structures calculated in Eqs. (4.153), (4.154), (4.155),
(4.152).



4.3. DIS-dijet production at NEik accuracy 81

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
in

NEik corr.

= 2πδ(k+1 +k+2 −q+) Nc αem e2
f

[
1 +

(
k+2 −k+1

q+

)2]

× 2Re (i)
∫

z,v′,w′
eik1·(v′−z) eik2·(w′−z)

× (w′ j−v′ j)
|w′−v′| Q̄ K1

(
Q̄ |w′−v′|

) ∫ L+/2

−L+/2
dz+

〈
1

Nc
Tr
[
UF(w′)U †

F(v
′)− 1

]
×
[
UF

(L+

2
, z+; z

)←→DzjU †
F

(L+

2
, z+; z

)]〉
, (4.156)

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
L+ phase

NEik corr.

= 2πδ(k+1 +k+2 −q+) Nc αem e2
f

[
1 +

(
k+2 −k+1

q+

)2]

× 2Re (−i)
L+

2

∫
z,v′,w′

eik1·(v′−z) eik2·(w′−z)

× (w′ j−v′ j)
|w′−v′| Q̄ K1

(
Q̄ |w′−v′|

) 〈 1
Nc

Tr
[
UF(w′)U †

F(v
′)− 1

][
UF(z)

←→
∂zj U †

F(z)
]〉

,

(4.157)

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q

NEik corr.

= 2πδ(k+1 +k+2 −q+) Nc
αem

π
e2

f
2k+2
q+

2Re
∫

v,v′,w,w′
eik1·(v′−v)

× eik2·(w′−w)

{[(
(kj

2−kj
1)

2
+

i
2

∂wj

)(
Q(1)

j (w′, v′, v∗, w)−d(1)j (v∗, w)
)

− i
(

Q(2)(w′, v′, v∗, w)−d(2)(v∗, w)
) ]

×
[

1
2

(
1 +

(
k+2 −k+1

q+

)2)
(w′−v′)·(w−v)
|w′−v′||w−v| Q̄2 K1

(
Q̄ |w′−v′|

)
K1 (Q̄ |w−v|)

+ m2 K0
(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

]
+

(k+1 −k+2 )
q+

(w′i−v′i)(wj−vj)

|w′−v′||w−v|

× Q̄2 K1
(
Q̄ |w′−v′|

)
K1 (Q̄ |w−v|)

(
Q(3)

ij (w′, v′, v∗, w)−d(3)ij (v∗, w)
)}

, (4.158)
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dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
dec. on q̄

NEik corr.

= 2πδ(k+1 +k+2 −q+) Nc
αem

π
e2

f
2k+1
q+

2Re
∫

v,v′,w,w′

× eik1·(v′−v) eik2·(w′−w)

{[
1
2

[
1 +

(
k+2 −k+1

q+

)2]
(w′−v′)·(w−v)
|w′−v′||w−v| Q̄2

×K1
(
Q̄ |w′−v′|

)
K1 (Q̄ |w−v|) + m2 K0

(
Q̄ |w′−v′|

)
K0 (Q̄ |w−v|)

]

×
{[
− (kj

2−kj
1)

2
+

i
2

∂vj

][
Q(1)

j (v′, w′, w∗, v)
†
− d(1)j (w∗, v)

†]
− i
[

Q(2)(v′, w′, w∗, v)
† − d(2)(w∗, v)

†]}
+

(k+1 −k+2 )
q+

(w′i−v′i)(wj−vj)

|w′−v′||w−v|

× Q̄2 K1
(
Q̄ |w′−v′|

)
K1 (Q̄ |w−v|)

[
Q(3)

ij (v′, w′, w∗, v)
†
− d(3)ij (w∗, v)

†]}
.

(4.159)

and finally

dσγ∗T→q1 q̄2

dP.S.

∣∣∣∣∣
dyn. target

NEik corr.

= 2πδ(k+1 +k+2 −q+) Nc
αem

π
e2

f
k+1 k+2 (k+2 −k+1 )

(q+)3

× 2Re (−i)
∫

v,v′,w,w′
eik1·(v′−v) eik2·(w′−w)

[
Q̃(w′, v′, v∗, w∗)− d̃(v∗, w∗)

]
×
{

1
2

[
1 +

(
k+2 −k+1

q+

)2]
(w′−v′)·(w−v)
|w′−v′|

× Q̄ K1
(
Q̄ |w′−v′|

)
Q2 K0 (Q̄ |w−v|) + m2 Q2 K0

(
Q̄ |w′−v′|

) |w−v|
Q̄

×K1 (Q̄ |w−v|) + 2
(w′−v′)·(w−v)
|w′−v′||w−v| Q̄2 K1

(
Q̄ |w′−v′|

)
K1 (Q̄ |w−v|)

}
,

(4.160)

4.4 Conclusions

To sum up, in this chapter we computed the DIS dijet production cross section at full
next-to-eikonal accuracy in a dynamical gluon background field in the Color Glass
Condensate framework. In order to achieve this level of accuracy we have relaxed
all the eikonal assumptions and computed first the quark and antiquark propagators
at full NEik accuracy in the gluon background field, and taking these results we
computed the cross-section. This cross-section is computed for both polarizations of
the photon, longitudinal and transverse.

The cross sections for both transverse and longitudinal photon are written as
a generalized eikonal contribution and explicit NEik corrections. The generalized
eikonal contribution includes the average z− dependence of the background gluon
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field at the amplitude level. Therefore, it goes beyond the strict eikonal approxima-
tion by including “+” - momentum exchange with the target. On the other hand, ex-
plicit NEik contributions are independent of this effect since it brings further power
suppression at high energy.

Beyond the generalized eikonal approximation, the z− dependence of the back-
ground field provides a new type of explicit NEik correction (Eq. (4.124) for longitu-
dinal and Eq. (4.160) for transverse photon polarization) that encodes the relative z−

dependence of the quark and antiquark at amplitude level. This correction gives a
new type of decorated dipole Eq. (4.120) and quadrupole Eq. (4.121) operators that
include a derivative of the Wilson lines along the “−” light-cone direction.
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5
Photon + jet production at
next-to-eikonal accuracy

DISCLAMER: The material presented in this Chapter is a work in-progress (Ref.
[75] of this thesis) in collaboration with Tolga Altinoluk, Nestor Armesto and
Guillaume Beuf. My contribution to this material can be summarized as fol-
lows. I have contributed to computation of the quark propagator from before
to inside the medium at NEik accuracy. I have also contributed in the computa-
tion of the production cross section of photon+(quark jet) at partonic level. I have
presented these results in the “DIS2023: XXX International Workshop on Deep-
Inelastic Scattering and Related Subjects” (Michigan, USA in March-April 2023).

In this final chapter, we study photon + jet production in forward pA collisions
at full next-to-eikonal accuracy in the gluon background field. We first compute the
quark propagators that contribute to this process at NEik order.

5.1 Quark propagators at NEik accuracy

In order to compute the photon + jet production at NEik accuracy we need to con-
sider all types of quark propagators contributing to this process and compute them
at full NEik accuracy in the gluon background field. The first type of propagator that
contributes to this process is the one where the quark traverses through the whole
medium. This propagator was computed in the previous chapter (see Eq. (4.17)). In
this process, we also need the quark propagator in vacuum as opposed to the previ-
ously discussed observables in chapters 3 and 4. Finally, in this process, we also get
contribution from the quark propagator with one point inside and one part outside
of the targer. For this contribution we have two cases: one when the quark propa-
gator starts before the medium and ends inside of it, and the other case where the
quark propagator starts inside of the medium and ends after it.1

The integrated quark propagator in vacuum is

1Throughout this Chapter we take the following momenta configuration for all possible diagrams:
p0 is the incoming momenta of the quark and p1 is the final momenta of the quark. The photon
emitted has momentum p2 and, k0 and k′0 are the momenta just before and just outside the medium,
respectively. For the case of the quark propagating in the vacuum we keep a generic k1 that we change
accordingly to our diagrams later.
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S̃q
F0(z)βα = (1)βαθ(k+1 )e

ik1·zū(1)γ+ ( /̌k1 + m)

(2k+1 )
(5.1)

Let us now show the propagator for the case when the quark starts inside the
medium and ends after it. This kind of contribution has been derived already in
Chapter 4. We can rewrite this propagator inserting our kinematics for this process,
where x+ > L+/2 and Ł+/2 < z+ < L+/2, thus from Eq.(4.26) one can write

SF(x, z)
∣∣∣∣IA, q

Eik.
=

∫ d3k1
(2π)3

θ(k+1 )
2k+1

e−ix·ǩ1

× ( /̌k1 + m) UF(x+, z+; z)
[

1− γ+γi

2k+1
i
←−Dzi

]
eiz−k+1 e−iz·k1 .(5.2)

The second case we consider, is when the quark starts before the medium and
ends inside of it.We refer to this contribution as ’before-in’. This corresponds to
y+ < −L+/2 and z+ belongs to the support [−L+/2, L+/2]. Therefore, we use
Eq. (2.16), where the instantaneous term vanishes and we neglect the phase factor

e−iz+ ǩ′
−

. The result is given by

SF(z, y)βα0

∣∣∣∣BI,q

pure A−, Eik.
=
∫ d3k′

(2π)3

∫ d3k
(2π)3

∫
dv−eiv−(k′+−k+)eiy·ǩe−iz−k′++iz·k′

× (/̌k′ + m)

2k′+
γ+ (/̌k + m)

2k+

∫
d2v e−iv·(k′−k)

×θ(k′+)θ(k+)θ(y+−z+)UF(z+,−L+/2; v, v−)βα0 (5.3)

simplifying and re-expressing the Dirac structure, one obtains

SF(z, y)βα0

∣∣∣∣BI,q

pure A−, Eik.
=
∫ d3k′

(2π)3

∫ d3k
(2π)3

θ(k′+)
2k+

θ(y+−z+)
∫

dv−eiv−(k′+−k+)

×eiy·ǩe−iz−k′++iz·k′
∫

d2v e−iv·(k′−k)

[
1 +

γ+γ−i
−→
∂v−

2k′+
− γ+γii

−→
∂vi

2k′+

]

×(/̌k + m)UF(z+,
−L+

2
; v, v−)βα0 (5.4)

Here the v− dependence of the Wilson line can be dropped and the derivative
∂v−UF(z+, −L+

2 ; v, v−) vanishes. It is now possible to perform the integral over v−

in addition to the integral over k′. We thus get

SF(z, y)βα0

∣∣∣∣BI,q

pure A−, Eik.
=
∫ d3k

(2π)3
θ(k+)
2k+ θ(y+−z+) eiy·ǩe−iz−k+ eizk

[
1− γ+γii

−→
∂zi

2k+

]
×(/̌k + m)UF(z+, −L+

2 ; z)βα0 (5.5)

In addition to this pure A− contribution, the quark propagator in the before-after
kinematics also receives a next-to-eikonal contribution from a single interaction with
the transverse component of the background field. This contribution takes the fol-
lowing final form:
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δSF(z, y)βα0

∣∣∣∣BI

single A⊥
=

∫ d3k
(2π)3

θ(k+)
2k+ θ(y+−z+) γ+γj

2k+ e−ik+z− [g t Aj(z)]

×eiy·ǩeizk(/̌k + m)UF(z+, −L+

2 ; z) (5.6)

Thus, we get for the quark propagator in the before-inside kinematics

SF(z, y)βα0

∣∣∣∣BI,q

Eik.
=
∫ d3k

(2π)3
θ(k+)
2k+ θ(y+−z+) eiy·ǩe−iz−k+ eizk

[
1− γ+γii

−→Dzi
2k+

]
×(/̌k + m)UF(z+, −L+

2 ; z)βα0 (5.7)

5.2 S-matrix element

In the previous section we computed the missing propagator corresponding to the
before-inside kinematics, as well as we re-derived the quark propagator for inside-
after in order to have all propagators with the same notation. We now have all
propagators that are needed in order to compute the photon-jet production at NEik
order. The next step is computing the S-matrix elements and amplitude for each
case. We use the general expression for the S-matrix element in this process

Sq1 γ2←q0 = lim
y+→−∞

∫
d2y

∫
dy−e−iy· p̌0 lim

x+→+∞

∫
d2x

∫
dx−e+ix· p̌1

× (−i)e e f

∫
d4z e+iz· p̌2 ū(1)γ+ [SF(x, z)]α1β /ϵλ(p2)

∗ [SF(z, y)]βα0
γ+u(0) (5.8)

5.2.1 Photon emission after the medium

In this case, the propagator [SF(x, z)]α1β is the free propagator of the quark with
no interaction with the medium, and [SF(z, y)]βα0

is the full NEik quark propagator
traversing through the whole medium ( see Fig .5.1). Introducing both expressions
into Eq.(5.8) we get:

FIGURE 5.1: Diagrammatical representation of the photon emission
after the medium
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Saft
q1 γ2←q0

= lim
y+→−∞

(−i)e e f ϵλ
µ(p2)

∗
∫

d2y
∫

dy−
∫

d4z
∫ d3k0

(2π)3
d3k′0
(2π)3 (1)α1βθ(p+1 )

× θ(k+0 )θ(k
′
0
+)eiz· p̌2 e−iz·ǩ′0 ei p̌1·z

∫
dv−eiv−(k′0

+−k+0 )
∫

d2v e−iv·(k′0−k0) e−iy−(p+0 −k+0 )eiy(p0−k0)

× e−iy+( p̌0
−−ǩ0

−
)ū(1)γ+ ( /̌p1 + m)

(2p+1 )
γµ ( /̌k′0 + m)

2k′0+
γ+

{
UF

(L+

2
,−L+

2
; v, v−

)
− (k′0

j+kj
0)

2(k′0+ + k+0 )

∫ L+
2

− L+
2

dv+
[
UF

(L+

2
, v+; v, v−

)←→Dvj UF

(
v+,−L+

2
; v, v−

)]
− i

(k+0 + k′0+)

∫ L+
2

− L+
2

dv+
[
UF

(L+

2
, v+; v, v−

)←−Dvj
−→Dvj UF

(
v+,−L+

2
; v, v−

)]
+

[γi, γj]

4(k′0+ + k+0 )

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

)
gt·Fij(v)UF

(
v+,−L+

2
; v, v−

)}
βα0

× ( /̌k0 + m)

2k+0
γ+u(0) (5.9)

Simplifying the Dirac algebra with

ū(1)γ+( /̌p1 + m) = ū(1)2p+1
γ+( /̌k0 + m)γ+ = 2k+0 γ+ (5.10)

and integrating over y− and y first, then over k0 and finally performing the integrals
over z, z−, we arrive to

Saft
q1 γ2←q0

= (−i)e e f ϵλ
µ(p2)

∗
∫ +∞

L+/2
dz+

∫ d3k′0
(2π)3 (1)α1βθ(p+1 )θ(k

′
0
+)θ(p+0 )

× (2π)2δ2(p1 + p2 − k′0)(2π)δ(p+1 + p+2 − k′0
+)
∫

dv−eiv−(k′0
+−p+0 )

∫
d2v e−iv·(k′0−p0)

× eiz+·( p̌1
−+ p̌2

−−ǩ′0
−
)ū(1)γµ ( /̌k′0 + m)

2k′0+
γ+

{
UF

(L+

2
,−L+

2
; v, v−

)
+

1
(p+0 + k′0+)

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+k′0

j)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v, v−

)}
βα0

u(0) (5.11)

Upon integration over k′0 using the delta functions and we can perform the z+ inte-
gral

∫ +∞

L+/2
dz+e

iz+·
(

p̌1
−+ p̌2

−− (p1+p2)
2+m2

2(p+1 +p+2 )

)
= i

(
p̌1
− + p̌2

− − (p1 + p2)2 + m2

2(p+1 + p+2 )

)−1

− L+

2
(5.12)
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which leads to

Saft
q1 γ2←q0

= (−i)e e f ϵλ
µ(p2)

∗ (1)α1βθ(p+1 )θ(p+1 + p+2 )θ(p+0 )

×
[
i
(

p̌1
− + p̌2

− − (p1 + p2)2 + m2

2(p+1 + p+2 )

)−1

− L+

2

]
∫

dv−eiv−(p+1 +p+2 −p+0 )
∫

d2v e−iv·(p1+p2−p0) ū(1)γµ ( /̌p1 + /̌p2 + m)

2(p+1 + p+2 )
γ+

×
{
UF

(L+

2
,−L+

2
; v, v−

)
+

1
(p+0 + p+1 + p+2 )

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v, v−

)}
βα0

u(0) (5.13)

The Dirac algebra can be performed in two different manners where we can
choose for our convenience that each of the resulting forms multiplies different con-
tributions. First, let us perform the Dirac algebra that will multiply the first term in
Eq.(5.12):

ū(1)/ϵλ(p2)( /̌p1 + /̌p2 + m)γ+

= ū(1)({/ϵλ(p2), /̌p1}+ {/ϵλ(p2), /̌p2} − ( /̌p1 −m)/ϵλ(p2)− /̌p2/ϵλ(p2))γ
+

= 2(p1 · ϵλ(p2))ū(1)γ+ − ū(1) /̌p2/ϵλ(p2))γ
+

= 2(p1 · ϵλ(p2))ū(1)γ+ + ū(1)
(

/̌p2 −
p+2
p+1

( /̌p1 −m)

)
γ+/ϵλ(p2))

= 2(p1 · ϵλ(p2))ū(1)γ+ + ū(1)
(
−
(

pj
2 −

p+2
p+1

pj
1

)
γj +

p+2
p+1

m
)

γ+/ϵλ(p2))

= ϵi
λ(p2)ū(1)γ+

((
pj

2 −
p+2
p+1

pj
1

)(
2

p+1
p+2

δij − γjγi
)
− p+2

p+1
mγi

)
(5.14)

The second form we can find from the Dirac algebra corresponds to the second
term in Eq.(5.12). At NEik accuracy, this term L+/2, multiplies only the generalized
eikonal term. The corresponding Dirac structure is

ū(1)/ϵλ(p2)( /̌p1 + /̌p2 + m)γ+u(0)
= ū(1)/ϵλ(p2)( /̌p1 + /̌p2 − /̌p0 + m + /̌p0)γ

+u(0)

= ū(1)/ϵλ(p2)[(p+1 + p+2 − p+0 )γ
−γ+ − (pi

1 + pi
2 − pi

0)γ
iγ+ + 2p+0 ]u(0)

= ū(1)/ϵλ(p2)[2p+0 + i
−→
∂v−γ−γ+ + i

−→
∂v γiγ+]u(0) (5.15)

Plugging now both Dirac structures multiplying their corresponding terms that
come from the z+ integration inside Eq. (5.13) and further simplify ignoring the v−

dependence on the NEik terms. When integrating over v− we get 2πδ(p+1 + p+2 −
p+0 ) and we can separate the expression in generalized eikonal and NEik terms as
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Saft
q1 γ2←q0

= (−i)e e f ϵk
λ(p2)(1)α1βθ(p+1 )θ(p+0 )

∫
d2v e−iv·(p1+p2−p0)ū(1)

×
[

i∆γ+

((
pl

2 −
p+2
p+1

pl
1

)(
2

p+1
p+2

δkl − γlγk
)
− p+2

p+1
mγk

){
1

2(p+1 + p+2 )

×
∫

dv−eiv−(p+1 +p+2 −p+0 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 + p+2 − p+0 )
(2p+0 )2

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

βα0

− 2πδ(p+1 + p+2 − p+0 )γ
k
[

1 + i
−→
∂v

γiγ+

2p+0

]
L+

2
UF

(L+

2
,−L+

2
; v
)]

u(0)

(5.16)

Simplifying the notation we introduced ∆ =
(

p̌−1 + p̌2
− − (p1+p2)

2+m2

2(p+1 +p+2 )

)−1
.

5.2.2 Photon emission before the medium

The diagram corresponding to this case is shown in Fig. 5.2 In this case, the prop-
agator [SF(z, y)]βα0

is the free propagator of the quark with no interaction with the
medium and [SF(x, z)]α1β corresponds to the full NEik expression for a quark going
through the whole medium. Introducing both expressions into Eq.(5.8)

FIGURE 5.2: Diagrammatical representation of the photon emission
before the medium
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Sbef
q1 γ2←q0

= lim
x+→+∞

(−i)e e f ϵλ
µ(p2)

∗
∫

d2x
∫

dx−
∫ −L/2

−∞
dz+

∫
d2z

∫
dz−

∫ d3k0
(2π)3

d3k′0
(2π)3

× (1)βα0 θ(p+0 )θ(k
+
0 )θ(k

′
0
+)eiz· p̌2 e−ix·ǩ′0 ei p̌1·xe−iz· p̌0 eiz·ǩ0

∫
dv−eiv−(k′0

+−k+0 )
∫

d2v e−iv·(k′0−k0)

× ū(1)γ+ ( /̌k′0 + m)

2k′0+
γ+

{
UF

(L+

2
,−L+

2
; v, v−

)
− (k′0

j+kj
0)

2(k′0+ + k+0 )

∫ L+
2

− L+
2

dv+
[
UF

(L+

2
, v+; v, v−

)←→Dvj UF

(
v+,−L+

2
; v, v−

)]
− i

(k+0 + k′0+)

∫ L+
2

− L+
2

dv+
[
UF

(L+

2
, v+; v, v−

)←−Dvj
−→Dvj UF

(
v+,−L+

2
; v, v−

)]
+

[γi, γj]

4(k′0+ + k+0 )

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

)
gt·Fij(v)UF

(
v+,−L+

2
; v, v−

)}

× ( /̌k0 + m)

(2k+0 )
γµ ( /̌p0 + m)

2p+0
γ+u(0) (5.17)

We integrate over x− and x and then over k′0 and k′0
+. Integrating also over z−

and z we arrive at

Sbef
q1 γ2←q0

= (−i)e e f ϵλ
µ(p2)

∗
∫ −L/2

−∞
dz+

∫ d3k0
(2π)3 (1)βα0 θ(p+0 )θ(p+1 )θ(k

+
0 )

× (2π)2δ2(p2 − p0 + k0)2πδ(p+2 − p+0 + k+0 )e
iz+·(ǩ0

−
+ p̌2

−− p̌0
−)
∫

dv−eiv−(p+1 −k+0 )

×
∫

d2v e−iv·(p1−k0) ū(1)γ+

{
UF

(L+

2
,−L+

2
; v, v−

)
+

1
(p+1 + k+0 )

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

) [ [γi, γj]

4
gt·Fij(v) −

(pj
1+kj

0)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v, v−

)}
βα0

( /̌k0 + m)

(2k+0 )
γµ ( /̌p0 + m)

2p+0
γ+u(0) (5.18)

Simplifying the Dirac algebra as

( /̌p0 + m)γ+u(0) = 2p+0 u(0) (5.19)
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performing now the integrals over k0 we get

Sbef
q1 γ2←q0

= (−i)e e f ϵλ
µ(p2)

∗
∫ −L/2

−∞
dz+ (1)βα0 θ(p+0 )θ(p+1 )θ(p+0 − p+2 )

× e
iz+·

(
(p0−p2)

2+m2

2(p+0 −p+2 )
+ p̌2

−− p̌0
−
) ∫

dv−eiv−(p+1 −p+0 +p+2 )
∫

d2v e−iv·(p1−p0+p2) ū(1)

×
{
UF

(L+

2
,−L+

2
; v, v−

)
+

1
(p+1 + p+0 − p+2 )

∫ L+
2

− L+
2

dv+ UF

(L+

2
, v+; v, v−

)
×
[
[γi, γj]

4
gt·Fij(v) −

(pj
1+pj

0 − pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v, v−

)}
βα0

γ+ ( /̌p0 − /̌p2 + m)

2(p+0 − p+2 )
γµu(0) (5.20)

now the z+ integral becomes

∫ −L+/2

−∞
dz+e

iz+·
(

(p0−p2)
2+m2

2(p+0 −p+2 )
+ p̌2

−− p̌0
−
)
= i

(
p̌0
− − p̌2

− − (p0 − p2)2 + m2

2(p+0 − p+2 )

)−1

− L+

2
(5.21)

We proceed in the same manner as in the previous section, and we rewrite the
Dirac structure in two different manners depending on which term they multiply
from Eq.(5.21). The Dirac structure that multiplies the first term can be rewritten as:

γ+( /̌p0 − /̌p2 + m)/ϵλ(p2)u(0)
= γ+({/ϵλ(p2), /̌p0} − {/ϵλ(p2), /̌p2} − /ϵλ(p2)( /̌p1 −m) + /ϵλ(p2) /̌p2)u(0)
= 2(ϵλ(p2) · p0)γ

+u(0) + γ+/ϵλ(p2) /̌p2u(0)

= 2(ϵλ(p2) · p0)γ
+u(0) + /ϵλ(p2)γ

+

(
− /̌p2 +

p+2
p+0

( /̌p0 −m)

)
u(0)

= 2(ϵλ(p2) · p0)γ
+u(0) + /ϵλ(p2)γ

+

((
pj

2 −
p+2
p+0

pj
0

)
γj − p+2

p+0
m
)

u(0)

= ϵi
λ(p2)γ

+

((
pj

2 −
p+2
p+0

pj
0

)(
2

p+0
p+2

δij − γiγj
)
+

p+2
p+0

mγi
)

u(0) (5.22)

The second term in Eq.(5.21) will be multiplied by the Dirac structure rewritten
in a different, more convenient way for this term. The generalized eikonal term is
the only one that gives contribution at NEik accuracy multiplying the L+/2 term.
The Dirac structure in this case is written as follows

ū(1)γ+( /̌p0 − /̌p2 + m)/ϵλ(p2)u(0) = ū(1)(2p+1 − i
−→
∂ v−γ+γ− − i

−→
∂ vγ+γi)/ϵλ(p2)u(0)

(5.23)

Ignoring the v− dependence in all the NEik terms and also simplifying notation

with ∆′ =
(

p̌0
− − p̌2

− − (p0−p2)
2+m2

2(p+0 −p+2 )

)−1
we rewrite
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Sbef
q1 γ2←q0

= (−i)e e f ϵk
λ(p2)(1)βα0 θ(p+0 )θ(p+1 )

∫
d2v e−iv·(p1−p0+p2)ū(1)

×
[

i∆′
{

1
2(p+0 − p+2 )

∫
dv−eiv−(p+1 −p+0 +p+2 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 − p+0 + p+2 )
(2p+1 )2

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
1+pj

0 − pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

γ+

((
pl

2 −
p+2
p+0

pl
0

)(
2

p+0
p+2

δkl − γkγl
)
+

p+2
p+0

mγk
)

− 2πδ(p+1 − p+0 + p+2 )
[

1− i
−→
∂ v

γ+γi

2p+1

]
γk L+

2
UF

(L+

2
,−L+

2
; v
)]

u(0) (5.24)

where we used the delta functions to express the common denominator

5.2.3 Photon emission inside the medium

The remaining case is the photon emission inside the medium. This corresponds to
the diagram in Fig. 5.3

FIGURE 5.3: Diagrammatical representation of the photon emission
inside the medium

The case of the integrated propagator coming from before and ending inside the
medium reads

S̃BI
F (z)βα0 = lim

y+→−∞

∫
d2y

∫
dy−e−iy· p̌0

∫ d3k
(2π)3 eiy·ǩeik·ze−ik+z− θ(k+)θ(z+ − y+)

×
[

1− 1
2k+

iγ+γi−→D zi

]
ββ′

UF

(
z+,
−L+

2
; z
)

β′α0

(/̌k + m)

(2k+)
γ+u(0). (5.25)

Computing the integrals over y and y− and then over k, we get

S̃BI
F (z)βα0 = eip0·ze−ip+0 z− θ(p+0 )

[
1− 1

2p+0
iγ+γi−→D zi

]
ββ′

×UF

(
z+,
−L+

2
; z
)

β′α0

( /̌p0 + m)

(2p+0 )
γ+u(0). (5.26)
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The Dirac algebra gives ( /̌p0 + m)γ+u(0) = (2p+0 − γ+( /̌p0 − m))u(0) = 2p+0 u(0),
which leads to

S̃BI
F (z)βα0 = eip0·ze−ip+0 z− θ(p+0 )

[
1− 1

2p+0
iγ+γi−→D zi

]
ββ′

UF

(
z+,
−L+

2
; z
)

β′α0

u(0)

(5.27)

Following the same procedure, the inside-after propagator can be written

S̃IA
F (z)α1β = ū(1)e−ip1·zeip+1 z− θ(p+1 )UF

(L+

2
, z+; z

)
α1α′1

(
1− 1

2p+1
iγ+γi←−D zi

)
α′1β

(5.28)

Plugging Eqs.(5.27) and (5.28) in the expression of the S-matrix given in Eq.(5.8), we
get

Sin
q1 γ2←q0

= (−i)e e f ϵλµ(p2)
∗
∫

d4z θ(p+0 )θ(p+1 )e
+iz· p̌2 e−ip1·zeip+1 z− eip0·ze−ip+0 z−

ū(1)UF

(L+

2
, z+; z

)
α1α′1

(
1− 1

2p+1
iγ+γj←−D zj

)
α′1β

γµ
(

1− 1
2p+0

iγ+γi−→D zi

)
ββ′

×UF

(
z+,
−L+

2
; z
)

β′α0

u(0) (5.29)

First, we perform the Dirac algebra:(
1− 1

2p+1
iγ+γj←−D zj

)
γµ
(

1− 1
2p+0

iγ+γi−→D zi

)
= γµ − iγ+γjγµ←−D zj

2p+1
+

iγµγiγ+−→D zi

2p+0
+

γ+γjγµγiγ+←−D zj
−→
D zi

4p+0 p+1
, (5.30)

to rewrite the S-matrix given in Eq.(5.29) as

Sin
q1 γ2←q0

= (−i)e e f ϵλµ(p2)
∗
∫

d4z θ(p+0 )θ(p+1 )e
+iz· p̌2 e−ip1·zeip+1 z− eip0·ze−ip+0 z−

× ū(1)UF

(L+

2
, z+; z

)
α1α′1(

γµ − iγ+γjγµ←−D zj

2p+1
+

iγµγiγ+−→D zi

2p+0
+ 2gµ+ γjγ+γi←−D zj

−→
D zi

4p+0 p+1

)
α′1β′

×UF

(
z+,
−L+

2
; z
)

β′α0

u(0) (5.31)

Upon trivial z− integration, and using the polarization of the photon as in Eq.(4.36)
and setting the phase eiz+· p̌−2 = 1 to one at NEik accuracy, we finally obtain

Sin
q1 γ2←q0

= (−i)e e f ϵλk(p2)
∗
∫

dz+
∫

d2z 2πδ(p+1 + p+2 − p+0 )θ(p+0 )θ(p+1 )e
−iz·(p2+p1−p0)

× ū(1)UF

(L+

2
, z+; z

)(
γk − iγ+γiγk←−D zi

2p+1
+

iγkγiγ+−→D zi

2p+0

)
UF

(
z+,
−L+

2
; z
)

u(0).

(5.32)
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5.2.4 Final expressions for the S-matrix

In Appendix.B we computed the final version for the S-matrix elements. There we
show that one can get rid of the explicit L+/2 terms that appeared so far in our
S-matrix expressions by combining the terms from the different contributions. We
have used the notation S′ for the final S-matrix, and they read as follows:

S
′aft
q1 γ2←q0

= (−i)e e f ϵk
λ(p2)(1)α1βθ(p+1 )θ(p+0 )

∫
d2v e−iv·(p1+p2−p0)ū(1)i∆̄γ+

×
((

pl
2 −

p+2
p+1

pl
1

)(
2δkl − p+2

p+1
γlγk

)
−
(

p+2
p+1

)2

mγk

)

×
{ ∫

dv−eiv−(p+1 +p+2 −p+0 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 + p+2 − p+0 )
(2p+0 )

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

βα0

u(0) (5.33)

,

S
′bef
q1 γ2←q0

= (−i)e e f (1)βα0 θ(p+0 )θ(p+1 )
∫

d2v e−iv·(p1−p0+p2)ū(1)(−i∆̄′)

×
{ ∫

dv−eiv−(p+1 −p+0 +p+2 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 − p+0 + p+2 )
2p+1

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
1+pj

0 − pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

ϵk
λ(p2)γ

+

×
((

pl
2 −

p+2
p+0

pl
0

)(
2δkl − p+2

p+0
γkγl

)
+

(
p+2
p+0

)2

mγk

)
u(0) (5.34)

and

S
′in
q1 γ2←q0

= (−i)e e f ϵλk(p2)
∗
∫

d2z 2πδ(p+1 + p+2 − p+0 )θ(p+0 )θ(p+1 )e
−iz·(p1+p2−p0)

× ū(1)
∫ L+/2

−L+/2
dz+UF

(L+

2
, z+; z

) [ iγ+γiγk

2p+1
+

iγkγiγ+

2p+0

]
1
2
←→DziUF

(
z+,
−L+

2
; z
)

u(0)

(5.35)

Where in Appendix B we have introduced also:

1((
p2 − p1

p+2
p+1

)2
+ m2

(
p+2
p+1

)2
) = ∆̄ (5.36)
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and

1((
p2 − p0

p+2
p+0

)2
+ m2

(
p+2
p+0

)2
) = ∆̄′ (5.37)

5.3 Photon + jet partonic cross-section

In this section we compute the cross-section for the photon+jet production using the
S-matrix elements that are computed for the three types of diagrams contributing to
this process. We separate the cross section into two parts. A generalized eikonal con-
tribution and a part with the explicit NEik corrections. The general form to compute
the cross-section reads

dσq1 γ2←q0

dP.S.
≃ S

′
q1 γ2←q0

(
S
′
q1 γ2←q0

)†
. (5.38)

where S′ is the effective S-matrix computed in Appendix B after getting rid of the
explicit L+ terms.

5.3.1 Generalized eikonal contribution to the cross-section

The first contribution to the cross-section is the generalized eikonal cross-section
where the v−, w− dependence are kept in the Wilson lines. If one sets these coordi-
nates to be zero, one can perform the trivial integration over v− and w− and obtain
the "+" momentum conservation, recovering the standard eikonal result. The explicit
expression for this contribution reads
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dσq1 γ2←q0

dP.S.

∣∣∣∣∣
Gen.Eik

=

[
S
′aft
q1 γ2←q0

(
S
′aft
q1 γ2←q0

)†
+ S

′bef
q1 γ2←q0

(
S
′bef
q1 γ2←q0

)†

+ S
′aft
q1 γ2←q0

(
S
′bef
q1 γ2←q0

)†
+ S

′bef
q1 γ2←q0

(
S
′aft
q1 γ2←q0

)†
]

G−Eik

= (e e f )
2ϵk

λ(p2)ϵ
r
λ(p2)

∫
d2v

∫
d2w

∫
dv−

∫
dw−e−i(v−w)·(p1+p2−p0)ei(v−−w−)(p+1 +p+2 −p+0 )

× θ(p+1 )θ(p+0 )ū(1)

[
θ(p+1 + p+2 )(∆̄)

2γ+

((
pl

2 −
p+2
p+1

pl
1

)(
2δkl − p+2

p+1
γlγk

)
−
(

p+2
p+1

)2

mγk

)

× u(0)ū(0)

((
ps

2 −
p+2
p+1

ps
1

)(
2δrs − p+2

p+1
γrγs

)
−
(

p+2
p+1

)2

mγr

)
γ+

+ θ(p+0 − p+2 ) (∆̄′)
2γ+

((
pl

2 −
p+2
p+0

pl
0

)(
2δkl − p+2

p+0
γkγl

)
+

(
p+2
p+0

)2

mγk

)

× u(0)ū(0)

((
ps

2 −
p+2
p+0

ps
0

)(
2δrs − p+2

p+0
γsγr

)
+

(
p+2
p+0

)2

mγr

)
γ+

− 2θ(p+1 + p+2 )θ(p+0 − p+2 )∆̄′∆̄γ+

((
pl

2 −
p+2
p+0

pl
0

)(
2δkl − p+2

p+0
γkγl

)
+

(
p+2
p+0

)2

mγk

)

× u(0)ū(0)

((
ps

2 −
p+2
p+1

ps
1

)(
2δrs − p+2

p+1
γrγs

)
−
(

p+2
p+1

)2

mγr

)
γ+

]

×UF

(L+

2
,−L+

2
; v, v−

)
U †

F

(L+

2
,−L+

2
; w, w−

)
u(1) (5.39)

One can now sum over the polarization taking into account ∑ ϵk
λ(p2)ϵr

λ(p2) = δrk

and after performing the Dirac algebra on all possible γ-structures and setting p0 =
0, we get the following generalized eikonal contribution

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
Gen.Eik

= (e e f )
2
∫

d2v
∫

d2w
∫

dv−
∫

dw−e−i(v−w)·(p1+p2)ei(v−−w−)(p+1 +p+2 −p+0 )θ(p+1 )θ(p+0 )

×
{

θ(p+1 + p+2 )(∆̄)
2

[
16
(

p2 −
p+2
p+1

p1

)2

p+0

(
2p+1 + 2p+2 +

(
p+2
p+1

)2

p+1

)

+ 16
(

p+2
p+1

)4

m2 p+1 p+0

]
+ θ(p+0 − p+2 ) (∆̄′)

2

[
16 (p2)

2 p+1

(
2p+0 + 2p+2 +

(
p+2
p+0

)2

p+0

)

+ 16
(

p+2
p+0

)4

m2 p+1 p+0

]
− 2θ(p+1 + p+2 )θ(p+0 − p+2 )∆̄∆̄′

[
16
(

p2 −
p+2
p+1

p1

)
· (p2)

×
(
2p+1 p+0 + p+1 p+2 + p+0 p+2

)
− 16

(
p+2
p+1

)2 ( p+2
p+0

)2

m2 p+1 · p+0

]}

×UF

(L+

2
,−L+

2
; v, v−

)
U †

F

(L+

2
,−L+

2
; w, w−

)
(5.40)
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5.3.2 Explicit NEik contribution to the cross-section

For the NEik terms we take the generalized eikonal terms but we ignore the v−-
dependence so that we recover the "+" momentum conservation. As in the general-
ized eikonal contribution, we set p0 = 0.

The explicit NEik corrections to the cross-section is the sum of the following con-
tributions:

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
NEik

=
dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft− aft.

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
bef− bef

+
dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Dep.

+
dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Ind.

+
dσq1 γ2←q0

dP.S.

∣∣∣∣∣
in− (aft+bef))

+ O(NNEik) . (5.41)

in order to simplify notation here we have used UF

(
L+

2 ,− L+

2 ; v
)
= UF

(
v
)

. Then,
each of the above contributions to the cross-section can be computed leading to the
following results:

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft− aft.

=

[
Saft

q1 γ2←q0

(
Saft

q1 γ2←q0

)†
]

NEik

= (e e f )
2θ(p+1 )θ(p+1 + p+2 )θ(p+0 )

∫
d2v

∫
d2w

× e−i(v−w)·(p1+p2)(∆̄)22πδ(p+1 + p+2 − p+0 )

×
[

16
(

p2 −
p+2
p+1

p1

)2

p+0

(
2p+1 + 2p+2 +

(
p+2
p+1

)2

p+1

)
+ 16

(
p+2
p+1

)4

m2 p+1 p+0

]
1

2p+0

×
[ ∫ L+

2

− L+
2

dw+ UF

(
v
)
U †

F

(
w+,−L+

2
; w
)( (pn

1 +pn
2)

2
←→Dwn + i

←−−Dwn
−−→Dwn

)

×U †
F

(L+

2
, w+; w

)
+
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

)
×
(
− (pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

)
UF

(
v+,−L+

2
; v
)
U †

F

(
w
)]

, (5.42)
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dσq1 γ2←q0

dP.S.

∣∣∣∣∣
bef− bef

=

[
Sbef

q1 γ2←q0

(
Sbef

q1 γ2←q0

)†
]

NEik

= (e e f )
2 θ(p+0 )θ(p+1 )θ(p+0 − p+2 )

∫
d2v

∫
d2w

× e−i(v−w)·(p1+p2)(∆̄′)22πδ(p+1 − p+0 + p+2 )
1

2p+1

×
[

16 (p2)
2 p+1

(
2p+0 + 2p+2 +

(
p+2
p+0

)2

p+0

)
+ 16

(
p+2
p+0

)4

m2 p+1 p+0

]

×
[
UF

(
v
) ∫ L+

2

− L+
2

dw+ U †
F

(
w+,−L+

2
; w
)( (pn

1− pn
2)

2
←→Dwn + i

←−−Dwn
−−→Dwn

)

×U †
F

(L+

2
, w+; w

)
+
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

)
×
(
− (pj

1− pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

)
UF

(
v+,−L+

2
; v
)
U †

F

(
w
)]

(5.43)

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Dep.

=

[
Saft

q1 γ2←q0

(
Sbef

q1 γ2←q0

)†
+ Sbef

q1 γ2←q0

(
Saft

q1 γ2←q0

)†
]

NEik-Hel.Dep

= (e e f )
2θ(p+1 )θ(p+0 )θ(p+0 − p+2 )θ(p+1 + p+2 )

∫
d2v d2w e−i(v−w)·(p1+p2)

× (8∆̄∆̄′)(2π)2δ(p+1 + p+2 − p+0 )

[
− p+2 p+0

p+1
+ 2p+2 −

p+1 p+2
p+0

]

×
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− L+
2

dv+ UF

(L+

2
, v+; v

) (
pi

2

)(
pj

2 −
p+2
p+1

pj
1

)
gtFij(v)UF

(
v+,−L+

2
; v
)

×U †
F

(
w
)
+ CC. (5.44)

and
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dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Ind.

=

[
Saft

q1 γ2←q0

(
Sbef

q1 γ2←q0

)†
+ Sbef

q1 γ2←q0

(
Saft

q1 γ2←q0

)†
]

NEik-Hel.Ind

= (e e f )
2θ(p+1 )θ(p+0 )θ(p+0 − p+2 )θ(p+1 + p+2 )

×
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×
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(
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v
)
U †

F

(
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2
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)

×
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(pn
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2
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←−−Dwn
−−→Dwn

]
U †

F

(L+

2
, w+; w
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+

1
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2
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2
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2
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) [
− (pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
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U †

F

(
w
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+ CC. (5.45)

for the interferences with the inside terms

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
in− (aft+bef))

=

S
′in
q1 γ2←q0

(
S
′aft
q1 γ2←q0

+ S
′bef
q1 γ2←q0

)†
+
(

S
′aft
q1 γ2←q0

+ S
′bef
q1 γ2←q0

) (
S
′in
q1 γ2←q0

)†

= 8(e e f )
2θ(p+0 )θ(p+1 )
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dv+

∫
d2v

∫
d2w

× e−i(v−w)·(p2+p1)(2π)2δ(p+1 + p+2 − p+0 )UF

(L+

2
, v+; v

)
×
[

θ(p+0 − p+2 )∆̄′
(

pi
2

)( p+1
p+0

(p+0 + p+2 ) + p+0

)

− θ(p+1 + p+2 )∆̄
(

pi
2 −

p+2
p+1

pi
1

)(
p+0
p+1

(p+1 + p+2 ) + p+1

)]

×
←→
D vi

2
UF

(
v+,
−L+

2
; v
)
U †

F

(
w
)
+ CC. (5.46)

Let us now simplify the expressions above by introducing the decorated Wilson
lines, defined in Eqs. (4.64) (4.65), (4.66), (4.67), (4.68) and (4.69)
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dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft− aft.

= (e e f )
2θ(p+1 )θ(p+1 + p+2 )θ(p+0 )

×
∫

d2v
∫
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(
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U (1)
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]
(5.47)

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
bef− bef.

= (e e f )
2 θ(p+0 )θ(p+1 )θ(p+0 − p+2 )

×
∫

d2v
∫

d2w e−i(v−w)·(p1+p2)(∆̄′)22πδ(p+1 − p+0 + p+2 )

× 1
2p+1

(
16 (p2)

2 p+1

(
2p+0 + 2p+2 +

(
p+2
p+0

)2

p+0
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+ 16

(
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p+0

)4

m2 p+1 p+0

)
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UF(v)

(
− (pn

1− pn
2)

2
U (1)†

F;j (w) + iU (2)†
F;j (w)
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(pj

1− pj
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2
U (1)

F;j (v) + iU (2)
F;j (v)

)
U †

F(w)

]
(5.48)

The Eq. (5.44) can be rewritten as

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Dep.

= (e e f )
2θ(p+1 )θ(p+0 )θ(p+0 − p+2 )θ(p+1 + p+2 )

×
∫

d2v d2w e−i(v−w)·(p1+p2)(8∆̄∆̄′)(2π)2δ(p+1 + p+2 − p+0 )

× (−1)(p+2 )
3

p+0 p+1

(
pi

2

)(
pj

2 −
p+2
p+1

pj
1

)
U (3)

F;ij(v)U †
F(w) + CC. (5.49)

and
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dσq1 γ2←q0

dP.S.

∣∣∣∣∣
aft−bef Hel.Ind.

= (e e f )
2θ(p+1 )θ(p+0 )θ(p+0 − p+2 )θ(p+1 + p+2 )

×
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+ CC. (5.50)

and finally

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
in− (aft+bef))

= 8(e e f )
2θ(p+0 )θ(p+1 )

∫
d2v

∫
d2w e−i(v−w)·(p2+p1)
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(
θ(p+0 − p+2 )∆̄′

(
pi

2

)( p+1
p+0

(p+0 + p+2 ) + p+0

)

− θ(p+1 + p+2 )∆̄
(

pi
2 −

p+2
p+1
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1
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p+0
p+1

(p+1 + p+2 ) + p+1

))U (1)
F;i (v)

2
U †

F(w) + CC.

(5.51)

Then we can write the final cross-section as follows:

dσq1 γ2←q0

dP.S.
=

dσq1 γ2←q0

dP.S.

∣∣∣∣∣
Gen.Eik

+
dσq1 γ2←q0

dP.S.

∣∣∣∣∣
NEik

(5.52)

where the first term corresponds to Eq.(5.40) and the second term is the sum of Eqs.
(5.47), (5.48), (5.49), (5.50) and (5.51).

5.4 Conclusions

Thus in this chapter we have derived the photon + jet production at full NEik accu-
racy in the gluon background field, expressing our final cross-section as two main
contributions. One is the generalized eikonal contribution and a sum of explicit
NEik corrections. The generalized eikonal contribution does not contain the con-
servation of the "+" momentum since the Wilson lines are still dependent on the "-"
coordinates.

We have expressed the explicit NEik corrections to the cross-section in terms of
decorated Wilson lines and we can see from our result that we get contributions that
are helicity dependent as well as helicity independent. The helicity dependent terms
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vanish for all cross-section terms except for the interference of the quark emission
before with the quark emission after the medium.

Finally, we would like to mention that this is an ongoing work. As the next
step, we are planning to rewrite our cross-section in terms of total momenta and the
momentum imbalance of the produced photon and quark jet which are defined as:

k⊥ = p1 + p2 (5.53)

P⊥ =
p+2 p1 − p+1 p2

p+1 + p+2
. (5.54)

This will allow us to establish the connection between the standard TDM fac-
torisation and the CGC computation for this observable beyond eikonal accuracy.
We expect to see the interplay between the NEik corrections and the higher-twist
corrections for the dipole TMD.
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6
Conclusions

The high energy limit of QCD, corresponding to the Regge-Gribov limit which is
also referred to as small-x limit, is conveniently described by the Color Glass Con-
densate effective theory. The basics of CGC is decribed in Chapter 1, and all the work
presented afterwards in this thesis is performed within this effective theory. In the
CGC one of the key approximations that is adopted is the eikonal approximation.
As discussed in Chapter 2, this approximation amounts to taking three assumptions
that keep contributions only leading in energy, neglecting all energy suppressed cor-
rections. The three assumptions can be expressed as:

Aµ
a (x) ∝ δ(x+) (6.1)

Aµ
a (x) ≃ δµ−A−a (x) (6.2)

Aµ
a (x) ≃ Aµ

a (x+, x) (6.3)

The three assumptions are, to take an infinitely thin "shockwave" as the target medium
(shockwave approximation)Eq. (6.1), to account only for the leading component of
the background field, A− Eq. (6.2), and to neglect the dynamics of the target Eq.
(6.3). Therefore, the eikonal approximation amounts toAµ

a (x−, x+, x) ≈ δµ−δ(x+)A−a (x).
This eikonal approximation has been proven to be very reliable, specially in the
range of very high energies, such as the ones reached at the LHC experiment. The
phenomenological studies performed at the LHC are in very good agreement with
the computations performed within the eikonal limit. However, experiments such
as RHIC or the future EIC have lower scattering energies compared to the LHC.
Therefore, one should take into account power suppressed corrections in order to
increase the precision in the calculation of observables that are the focus of these
experiments. Computing these corrections was the main focus of this thesis.

In particular, we focus on a quark propagator in a gluon background field. In
Chapter 2, we provide the derivation of a quark propagator at Eikonal accuracy and
discuss the power counting for eikonal and next-to-eikonal contributions. As a first
step towards providing the derivation of a quark propagator at NEik accuracy in a
gluon background field, in Chapter 3, we relaxed the first two assumptions of the
eikonal approximation to calculate the quark propagator. This amounts to taking a
finite width of the target instead of a infinitely thin ’shockwave’, thus allowing us
to have transverse motion in the medium. Relaxing the second assumption we now
take into account the interaction with the transverse component of the background
field, and not only with A−. With this quark propagator, we studied quark target
scattering and computed the production cross-section.
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The remaining NEik effect that should be accounted for is the dynamics of the
target which amounts to relaxing Eq.(6.3). This effect was first considered in [43]
at the level of quark and scalar propagators at NEik accuracy. In Chapter 4, we in-
clude the effects of dynamical target in the derivation of the quark propagator. With
this effect accounted for, we provide the quark propagator at full NEik accuracy
in the gluon background field. In the rest of Chapter 4, we used this propagator
to compute DIS dijet production cross-section at NEik accuracy both for transverse
and longitudinal polarization of the incoming photon. Since this observable will
be studied at the future EIC, and therefore at moderate energies, we hope that the
NEik corrections computed in this work will provide a better precision in the future
phenomenology studies. The result for the DIS dijet cross-section is shown as two
separate contributions. the first one is what we call generalized eikonal contribu-
tion, which contains the z− dependence on the Wilson lines and therefore, does not
include the "+" momentum conservation, however we recover the standard eikonal
result upon taking z− = 0. The second contribution to the cross-section is the explicit
NEik contribution and it is described in terms of decorated Wilson lines.

In Chapter 5, we used the full NEik quark propagator in a gluon background
field to study photon+jet production in forward pA collisions. This is still an on-
going work, but the main results for the partonic cross-section at NEik accuracy is
provided in Chapter 5. This cross-section is divided into a generalized eikonal con-
tribution and an explicit NEik contribution.

In conclusion, in this thesis, we focused on deriving the next-to-eikonal correc-
tions to the quark propagator in a gluon background field. This was achieved by
relaxing all the three assumptions that are taken in the eikonal approximation. The
resulting quark propagator at NEik accuracy was used to compute different observ-
ables. The cross-sections for these observables are given at NEik accuracy, thus,
include first order correction to the high energy limit. These corrections are hoped
to provide better precision in the phenomenological studies of future EIC. The main
feature of NEik corrections is the appearance of decorated Wilson lines at the am-
plitude level and decorated dipole/quadrupole operators at the cross-section level.
Even though there are no models that can that can define these decorated operators,
as opposed to eikonal limit (like GBW or MV models), we expect to obtain these
models in the near future.
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A
Light-Cone coordinates

In this appendix we introduce the so-called light-cone coordinates. These coordinates
are introduced by Dirac and simplify greatly the dynamics in high energy collisions.
Throughout this whole thesis we use these coordinates, hence we dedicate this ap-
pendix to define them more carefully. Let xµ = (x0, x1, x2, x3) ≡ (x0, x, x3) be the 4-
vector in Cartesian a representation of the Minkowski metric gµν = diag(1,−1,−1,−1).
The light-cone coordinates are thus defined as follows:

x+ =
x0 + x3
√

2
(A.1)

x− =
x0 − x3
√

2
(A.2)

where the transverse coordinates are left unchanged, x = (x1, x2). This change is
equivalent to rotate the Cartesian system by 45o, placing the axis x0, x3 on top of the
light-cone. the four-momentum kµ follows the same convention for its components.
The product of two 4-vectors in this notatios is

xµyµ = x+y− + x−y+ − x · y. (A.3)

The complete metric in this light-cone frame is

gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 (A.4)

this implies that

x+ = x− (A.5)
x− = x+ (A.6)

The derivatives are given by
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∂− ≡ ∂

∂x+
=

1√
2

(
∂

∂x0 +
∂

∂x3

)
(A.7)

∂+ ≡ ∂

∂x−
=

1√
2

(
∂

∂x0 −
∂

∂x3

)
(A.8)

Furthermore, throughout the calculations in this thesis from section 2.3 on, we
have used the following notation

x = (x+, x) (A.9)

and

ǩµ = (k+, k, ǩ−) (A.10)

where ǩ− is on-shell,

ǩ− =
k2 + m2

2k+
(A.11)
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B
Derivation of final expressions for
the S-matrix in Photon+jet
production

In this appendix we derive the final expressions for the S-matrix element that con-
tribute to the photon + jet production at NEik accuracy presented in chapter 5.

Let us focus first on the terms that contain the L+ explicitly in Eqs. (5.16), (5.24)
and the contribution from the inside term with γk.

(−i)e e f ϵλ
k (p2)

∗ (1)βα0

∫
d2v e−iv·(p1+p2−p0)ū(1)

[(
2πδ(p+1 − p+0 + p+2 )

(
− L+

2

)
+ 2πδ(p+1 + p+2 − p+0 )

(
− L+

2

))
UF

(L+

2
,−L+

2
; v
)

+ 2πδ(p+1 + p+2 − p+0 )
∫ L+/2

−L+/2
dv+UF

(L+

2
, v+; v

)
UF

(
v+,
−L+

2
; v
)]

γku(0)

= (−i)e e f ϵλ
k (p2)

∗ (1)βα0

∫
d2v e−iv·(p1+p2−p0)2πδ(p+1 + p+2 − p+0 )ū(1)

×
[
− L+

2
− L+

2
+ L+

]
UF

(L+

2
,−L+

2
; v
)

γku(0) = 0

(B.1)

We also rewrite
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1
2(p+1 +p+2 )

(
p̌−1 + p̌2

− − (p1+p2)
2+m2

2(p+1 +p+2 )

)−1
= 1(

2(p+1 +p+2 )(
p2

1+m2

2p+1
+

p2
2

2p+2
)−(p1+p2)2−m2

)
= 1(

p2
2

(
p+1
p+2

+1−1
)
−2p1p2+p2

1

(
1+

p+2
p+1
−1
)
+m2 p+2

p+1

)
= 1(p2

√
p+1
p+2
−p1

√
p+2
p+1

)2

+m2 p+2
p+1


= 1

p+1
p+2

((
p2−p1

p+2
p+1

)2

+m2
(

p+2
p+1

)2
) = ∆̄ p+2

p+1
(B.2)

and

1
2(p+0 −p+2 )

(
p̌−0 − p̌2

− − (p0−p2)
2+m2

2(p+0 −p+2 )

)−1
= 1(

2(p+0 −p+2 )(
p2

0+m2

2p+0
− p2

2
2p+2

)−(p0−p2)2−m2
)

= 1(
p2

2

(
− p+0

p+2
+1−1

)
+2p0p2+p2

0

(
1− p+2

p+0
−1
)
−m2 p+2

p+0

)
= 1−(p2

√
p+0
p+2
−p0

√
p+2
p+0

)2

−m2 p+2
p+0


= 1

p+0
p+2

(
−
(

p2−p0
p+2
p+0

)2

−m2
(

p+2
p+0

)2
) = −∆̄′ p+2

p+0
(B.3)

Now taking into account the vanishing of the L+ terms discussed before and
the new expressions for ∆̄ and ∆̄′ we get the new S-matrix elements for the cases of
splitting before and after the medium

S
′aft
q1 γ2←q0

= (−i)e e f ϵk
λ(p2)(1)α1βθ(p+1 )θ(p+0 )

∫
d2v e−iv·(p1+p2−p0)ū(1)

[
i∆̄γ+

×
((

pl
2 −

p+2
p+1

pl
1

)(
2δkl − p+2

p+1
γlγk

)
−
(

p+2
p+1

)2

mγk

)

×
{ ∫

dv−eiv−(p+1 +p+2 −p+0 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 + p+2 − p+0 )
(2p+0 )

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

βα0

− 2πδ(p+1 + p+2 − p+0 )γ
ki
−→
∂v

γiγ+

2p+0

L+

2
UF

(L+

2
,−L+

2
; v
)]

u(0)

(B.4)

and
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S
′bef
q1 γ2←q0

= (−i)e e f (1)βα0 θ(p+0 )θ(p+1 )
∫

d2v e−iv·(p1−p0+p2)ū(1)

[
(−i∆̄′)

×
{ ∫

dv−eiv−(p+1 −p+0 +p+2 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 − p+0 + p+2 )
2p+1

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
1+pj

0 − pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

ϵk
λ(p2)γ

+

((
pl

2 −
p+2
p+0

pl
0

)(
2δkl − p+2

p+0
γkγl

)
+

(
p+2
p+0

)2

mγk

)

+ 2πδ(p+1 − p+0 + p+2 )i
−→
∂ v

γ+γi

2p+1
γk L+

2
UF

(L+

2
,−L+

2
; v
)]

u(0) (B.5)

At this point we try to put together the terms that still contain the L+/2 explicitly
with the inside terms. One can thus change the inside terms as

∫ L+/2

−L+/2
dz+

∫
d2ze−iz·(p1+p2−p0)UF

(L+

2
, z+; z

)
×
(
− iγ+γiγk

2p+1

←−
D zi +

iγkγiγ+

2p+0

−→
D zi

)
UF

(
z+,
−L+

2
; z
)

=
∫ L+/2

−L+/2
dz+

∫
d2ze−iz·(p1+p2−p0)UF

(L+

2
, z+; z

)
×
{
− iγ+γiγk

2p+1

[
1
2
(
←−
D zi −−→D zi) +

1
2
(
←−
D zi +

−→
D zi)

]

+
iγkγiγ+

2p+0

[
1
2
(
−→
D zi −←−D zi) +

1
2
(
−→
D zi +

←−
D zi)

]}
UF

(
z+,
−L+

2
; z
)

=
∫ L+/2

−L+/2
dz+

∫
d2ze−iz·(p1+p2−p0)

{
UF

(L+

2
, z+; z

) [1
2

iγ+γiγk

2p+1

←→Dzi +
1
2

iγkγiγ+

2p+0

←→Dzi

]

×UF

(
z+,
−L+

2
; z
)
− 1

2
iγ+γiγk

2p+1

−→
∂ zUF

(L+

2
,−L+

2
; z
)
+

1
2

iγkγiγ+

2p+0

−→
∂ zUF

(L+

2
,−L+

2
; z
)}

=
∫

d2ze−iz·(p1+p2−p0)

{ ∫ L+/2

−L+/2
dz+UF

(L+

2
, z+; z

) [1
2

iγ+γiγk

2p+1

←→Dzi +
1
2

iγkγiγ+

2p+0

←→Dzi

]

×UF

(
z+,
−L+

2
; z
)
− L+

2
iγ+γiγk

2p+1

−→
∂ zUF

(L+

2
,−L+

2
; z
)
+

L+

2
iγkγiγ+

2p+0

−→
∂ zUF

(L+

2
,−L+

2
; z
)}

(B.6)

so that in the full inside contribution is
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S
′in
q1 γ2←q0

= (−i)e e f ϵλk(p2)
∗
∫

d2z 2πδ(p+1 + p+2 − p+0 )θ(p+0 )θ(p+1 )e
−iz·(p1+p2−p0)ū(1)

×
{ ∫ L+/2

−L+/2
dz+UF

(L+

2
, z+; z

) [1
2

iγ+γiγk

2p+1

←→Dzi +
1
2

iγkγiγ+

2p+0

←→Dzi

]
UF

(
z+,
−L+

2
; z
)

− L+

2
iγ+γiγk

2p+1

−→
∂ zUF

(L+

2
,−L+

2
; z
)
+

L+

2
iγkγiγ+

2p+0

−→
∂ zUF

(L+

2
,−L+

2
; z
)}

u(0)

(B.7)

now we can compare the last line of this inside contribution with the contributions
with splitting before and after the medium, the explicit L+/2 terms in the last lines
of both Eqs.(B.4) and (B.5) and we see that they cancel exactly so we are left with the
following three final contributions

S
′aft
q1 γ2←q0

= (−i)e e f ϵk
λ(p2)(1)α1βθ(p+1 )θ(p+0 )

∫
d2v e−iv·(p1+p2−p0)ū(1)i∆̄γ+

×
((

pl
2 −

p+2
p+1

pl
1

)(
2δkl − p+2

p+1
γlγk

)
−
(

p+2
p+1

)2

mγk

)

×
{ ∫

dv−eiv−(p+1 +p+2 −p+0 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 + p+2 − p+0 )
(2p+0 )

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
0+pj

1 +pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

βα0

u(0) (B.8)

,

S
′bef
q1 γ2←q0

= (−i)e e f (1)βα0 θ(p+0 )θ(p+1 )
∫

d2v e−iv·(p1−p0+p2)ū(1)(−i∆̄′)

×
{ ∫

dv−eiv−(p+1 −p+0 +p+2 )UF

(L+

2
,−L+

2
; v, v−

)
+

2πδ(p+1 − p+0 + p+2 )
2p+1

×
∫ L+

2

− L+
2

dv+ UF

(L+

2
, v+; v

) [ [γi, γj]

4
gt·Fij(v) −

(pj
1+pj

0 − pj
2)

2
←→Dvj − i

←−Dvj
−→Dvj

]

×UF

(
v+,−L+

2
; v
)}

ϵk
λ(p2)γ

+

((
pl

2 −
p+2
p+0

pl
0

)(
2δkl − p+2

p+0
γkγl

)
+

(
p+2
p+0

)2

mγk

)
u(0)

(B.9)
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S
′in
q1 γ2←q0

= (−i)e e f ϵλk(p2)
∗
∫

d2z 2πδ(p+1 + p+2 − p+0 )θ(p+0 )θ(p+1 )e
−iz·(p1+p2−p0)

× ū(1)
∫ L+/2

−L+/2
dz+UF

(L+

2
, z+; z

) [ iγ+γiγk

2p+1
+

iγkγiγ+

2p+0

]
1
2
←→DziUF

(
z+,
−L+

2
; z
)

u(0)

(B.10)

the corresponding conjugate amplitudes read

(
SLO-aft

q1 γ2←q0

)†
= ie e f ϵr

λ(p2)(1)α1βθ(p+1 )θ(p+0 )
∫

d2w eiw·(p1+p2−p0)ū(0)(−i)∆̄

×
{ ∫

dw−e−iw−(p+1 +p+2 −p+0 )U †
F

(L+

2
,−L+

2
; w, w−

)
+

2πδ(p+1 + p+2 − p+0 )
2p+0
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2
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2

dw+

×U †
F

(
w+,−L+

2
; w
) [ [γn, γm]

4
gt·Fmn(w) +

(pn
0+pn

1 +pn
2)

2
←→Dwn + i

←−−Dwn
−−→Dwn

]
×U †

F

(L+

2
, w+; w

)}
βα0
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2 −
p+2
p+1

ps
1

)(
2δrs − p+2

p+1
γrγs

)
−
(

p+2
p+1

)2

mγr

)
γ+u(1)

(B.11)

(
SLO-bef

q1 γ2←q0

)†
= ie e f ϵr

λ(p2)(1)βα0 θ(p+0 )θ(p+1 )
∫

d2w eiw·(p1−p0+p2)ū(0)i∆̄′

×
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ps
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p+0

ps
0

)(
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p+0
γsγr

)
+

(
p+2
p+0

)2
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{
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2
,−L+

2
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)
+

2πδ(p+1 − p+0 + p+2 )
2p+1
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2

dw+ U †
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(
w+,−L+

2
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)
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[γn, γm]

4
gt·Fmn(w) +

(pn
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2)

2
←→Dwn + i

←−−Dwn
−−→Dwn

]
×U †

F

(L+

2
, w+; w

)}
u(1) (B.12)

and(
S
′LO-in
q1 γ2←q0

)†
= ie e f ϵλr(p2)

∫
d2v 2πδ(p+1 + p+2 − p+0 )θ(p+0 )θ(p+1 )e

iv·(p1+p2−p0)ū(0)

×
∫ L+/2

−L+/2
dv+U †

F

(
v+,
−L+

2
; v
) [ iγrγlγ+

2p+1
+

iγ+γlγr

2p+0

]
U †

F

(L+

2
, v+; v

)1
2
←→Dvl u(1)

(B.13)


