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Abstract

The multiplication factor (keff ) and its uncertainty are critical design parameters in nuclear

reactors. The keff uncertainty must be considered for operation, safety, and economic reasons.

Consequently, reducing uncertainty in the keff has been of interest to the nuclear industry for

as long as nuclear reactors were designed. Two methods are currently in use to accomplish that:

Generalized Linear Least Squares (GLLS) and A General Monte Carlo-Bayes Procedure for Im-

proved Predictions of Integral Functions of Nuclear Data (MOCABA). Both methods can reduce

the keff uncertainty by reducing uncertainty in cross-sections by assimilating measured critical

systems’ or nuclear reactors’ operational data. However, GLLS is limited to linear models and

multivariate normal prior and posterior, while MOCABA can use any (non-linear) model but is

also limited to multivariate normal prior and posterior.

This work implements a universal and rigorous algorithm called Sequential Monte Carlo

– Approximate Bayesian Computation (SMC-ABC) for the same application. The algorithm

can calibrate parameters with any prior and any posterior distribution. The calculations were

conducted on select cross-sections from the 56-multigroup library based on the ENDF/B-VII.1

nuclear data library. It is found that despite the greater reliability of SMC-ABC, all three al-

gorithms give essentially the same results for the same problems. Therefore, it is not worth

using the computationally expensive SMC-ABC for neutron cross-section calibration.

A thorough study of the uncertainty sources in experimental keff is also presented. It is

investigated how the omission of the uncalibrated uncertain cross-sections during the Bayesian

assimilation impacts the results. The conclusion is that omitting uncalibrated parameters in

Bayesian calibration, often done by researchers, is an incorrect approach.

In the context of nuclear engineering inverse problems, a new validation technique is presen-

ted and applied for inverse problem-solving. The technique relies on so-called ”synthetic experi-

ments”. Synthetic experiments are computationally generated data used in place of experiments.

The method verifies whether there is a risk of overfitting the calibrated parameters (cross-sections

in the case of this work) during the data assimilation. Finally, the dissertation combines all the

findings of the work to establish a best-practices guide for calibrating neutron cross-sections

through the assimilation of experimental integral parameters’ values.
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Streszczenie

Opracowanie najlepszych praktyk

przy zmniejszaniu niepewności w wielogrupowych

przekrojach czynnych za pomocą metod Bayesowskich

Współczynnik multiplikacji (keff ) oraz jego niepewność obliczeniowa są kluczowymi para-

metrami związanymi z procesem projektowania reaktorów jądrowych. Niepewność współczyn-

nika keff musi być brana pod uwagę ze względu na aspekty eksploatacyjne, bezpieczeństwa oraz

ekonomiczne. Z tego powodu redukcja niepewności keff jest od wielu lat przedmiotem zaint-

eresowania energetyki jądrowej. Obecnie osiąga się ją za pomocą dwóch metod: Uogólnionej

Metody Najmniejszych Kwadratów (ang. Generalized Linear Least Squares, GLLS) oraz Uo-

gólnionej Metody Monte Carlo-Bayesowskiej Dla Polepszonych Przewidywań Funkcji Danych

Jądrowych (ang. A General Monte Carlo-Bayes Procedure for Improved Predictions of Integ-

ral Functions of Nuclear Data, MOCABA). Niepewność keff zostaje obniżona poprzez bardziej

precyzyjne poznanie wartości przekrojów czynnych. W tym celu asymiluje się dane ekspery-

mentalne układów w stanie krytycznym lub eksploatowanych reaktorów jądrowych. Metoda

GLLS jest ograniczona do modeli liniowych i wielowymiarowych rozkładów normalnych a priori

i a posteriori. Metoda MOCABA pozwala na użycie dowolnego modelu matematycznego (w tym

modeli nieliniowych), ale również jest ograniczona do wielowymiarowych rozkładów normalnych.

W ramach pracy zastosowano uniwersalny i niezawodny algorytm Przybliżonych Obliczeń

Bayesowskich w wersji Sekwencyjnej (ang. Sequential Monte Carlo – Approximate Bayesian

Computation, SMC-ABC). Celem było przetestowanie nowego algorytmu dla tego samego

rodzaju problemów. Metoda ta potrafi kalibrować parametry wejściowe z dowolnym rozkładem

a priori i otrzymywać dowolny rozkład a posteriori. Obliczenia przeprowadzono dla wybranych

przekrojów czynnych z 56-grupowej biblioteki opartej o zbiór danych jądrowych ENDF/B-VII.1.

Stwierdzono, że pomimo większej niezawodności SMC-ABC, wszystkie trzy algorytmy dają prak-

tycznie te same wyniki dla tych samych zagadnień w przypadku kalibracji przekrojów czynnych.

Wyciągnięto więc wniosek, że nie ma potrzeby używać w tym celu kosztownego obliczeniowo

SMC-ABC.

W rozprawie zaprezentowano także szczegółową analizę źródeł niepewności parametru keff .

Przedstawiono dowody na konieczność uwzględniania niepewności niekalibrowanych przekrojów

czynnych przy obliczeniach niepewności keff podczas Bayesowskiej asymilacji danych ekspery-

mentalnych. Wyciągnięto wniosek, że zignorowanie niepewności niekalibrowanych parametrów

wejściowych modelu jest nieprawidłowym zabiegiem, co jest częstą praktyką wśród badaczy.

Istotną częścią badań było przedstawienie techniki walidacyjnej polegającej na zastosowaniu

tzw. ”syntetycznych eksperymentów”. Metody tej dotychczas nie używano przy zagadnieniach

odwrotnych w fizyce jądrowej. Eksperymenty syntetyczne to generowane komputerowo sztuczne

wyniki eksperymentów używane zamiast rzeczywistych zestawów danych. Metoda pozwala na

18



sprawdzenie, czy istnieje ryzyko nadmiernego dopasowania (tzw. ”overfittingu”) analizowanych

parametrów. W podsumowaniu rozprawy zostały zebrane wszystkie ustalenia oraz zaproponow-

any został zbiór najlepszych praktyk, które mogą być wykorzystywane przy Bayesowskiej kalib-

racji przekrojów czynnych.
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1 Introduction

1.1 IV generation nuclear reactors

Generation IV reactors are advanced reactors in various stages of devel-

opment, ranging from conceptual design to small prototypes, depending

on the reactor type and the country or company that works on their de-

ployment. The interest in these reactors stems from their potential for

increasing thermal efficiency, utilization for industrial heat applications,

greatly improved fuel utilization, and reducing the volume and radiotox-

icity of waste [1]. These features may allow the generation IV reactors to

significantly aid in reducing carbon dioxide emissions, which is the goal of

the one hundred and ninety-three countries that signed the Paris Agree-

ment [2]. Each of the 4th generation nuclear reactors has unique features

and applications, contributing to the advancement of nuclear energy tech-

nology with a focus on safety, efficiency, and sustainability.

The list below presents 4th Generation Nuclear Reactors that were chosen

for further support in research and development by the OECD:

• Gas-Cooled Fast Reactor (GFR): A high-temperature reactor operat-

ing at 800-850°C. It uses helium as a coolant and can be used for power

generation, hydrogen production, or other process heat applications.

The GFR aims for breakeven breeding and employs robust nitride

or carbide fuels with plutonium content of 15 to 20%. It utilizes an

indirect cycle with helium for electricity generation. [3]

• Lead-Cooled Fast Reactor (LFR): A flexible fast neutron reactor that

can use depleted uranium or thorium fuel matrices. It operates at

temperatures up to 800°C and can enable thermochemical hydrogen

production. The LFR has various unit sizes, from small grids to large

plants. It utilizes liquid metal (Pb or Pb-Bi eutectic) cooling. [4]

• Molten Salt Reactor (MSR): MSR has two variants, one with fast
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neutron spectrum and fissile material dissolved in the circulation fuel

salt, and the other with solid particle fuel in graphite and salt as a

coolant. MSR systems have unique capabilities, lower fissile inventor-

ies, and offer efficient actinide burning. [5]

• Sodium-Cooled Fast Reactor (SFR): Utilizes liquid sodium as a coolant,

allowing high power density at low pressure. It can use depleted

uranium as fuel and has various design variants, including modular

types and pool-type versions. Sodium-cooled fast reactors have been

operational in several countries. [6]

• Supercritical Water-Cooled Reactor (SCWR): Operates with super-

critical water at high pressure and temperature, offering a thermal

efficiency one-third higher than current light water reactors. Fuel can

be uranium oxide, and it may use thermal neutron spectrum with light

or heavy water moderation. [7]

• Very High-Temperature Gas Reactor (VHTR): Utilizes graphite mod-

eration and helium cooling, operating at temperatures over 900°C. It

can be used for hydrogen production, electricity generation, or high-

efficiency gas turbine driving. VHTR uses TRISO fuel particles for

stability and safety. [8]

These design solutions are shown in Figure 1 (the figure comes from the re-

sources of the Generation IV International Forum (GIF) [9]) In 2013, four

nuclear research institutes and engineering firms representing the Visegrád

Group of Nations (V4) in Central Europe reached an agreement to estab-

lish a collaborative centre dedicated to research, development, and innov-

ation in Generation IV nuclear reactors. This initiative gave rise to the

V4G4 Centre of Excellence, a consortium comprising the Czech Repub-

lic’s scientific and research engineering company, ÚJV Řež AS, Hungary’s

Academy of Sciences Centre for Energy Research, Poland’s National Centre

for Nuclear Research, and Slovakia’s engineering company, VUJE AS. The
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primary focus of this collaborative effort is on the development of gas-

cooled fast reactors, with a particular emphasis on projects like Allegro [10].

The Polish GOSPOSTRATEG-HTR project was initiated to develop a 40

MWth High-Temperature Gas-cooled Reactor TeResa (HTGR) as a tech-

nology demonstrator. The publication [11] outlines the proposed thermal-

hydraulic and neutronic core design, a result of the National Centre for

Nuclear Research team’s studies in fluid mechanics, heat exchange, and re-

actor core design support analysis, aligning with Polish research programs

on non-electrical reactor applications.

In addressing the challenges posed by the multitude of Generation IV

reactor projects, each featuring diverse fuel types, moderators, and struc-

tural components, advanced computational techniques, including Bayesian

inference methods, play a significant role. These computational tools offer

the capability to significantly mitigate uncertainties and provide invaluable

support throughout the intricate reactor design process.
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Figure 1: Conceptual technical diagrams for 6 nuclear reactors of IV generations: These

include the: Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten

Salt Reactor (MSR), Supercritical Water-cooled Reactor (SCWR), Sodium-cooled Fast

Reactor (SFR) and Very High Temperature Reactor (VHTR). Figure from GIF Reports

[12].

1.2 Uncertainties in simulated dynamics of nuclear reactors

One of the obstacles to developing new nuclear reactors at the most op-

timal design and operating them safely at the lowest possible cost is the

uncertainty in the multiplication factor keff [13], [14], [15]. The multiplic-

ation factor is a crucial integral parameter describing the dynamics of a

nuclear reactor or other system containing a substantial amount of fissile

material. It tells us how the neutron count in a system changes in time.

Its definition is presented in Eq. 1.1.

keff =
number of neutrons incurrent generation

number of neutrons in preceding generation
(1.1)

When the keff is smaller than 1, then the reactor’s power decreases, and the

reactor is said to be subcritical; when it is equal to 1, then it stays constant,

and the reactor is said to be ”critical”; when it is greater than 1, then the

23



power increases and the reactor is said to be ”supercritical”. There are two

types of supercriticality: delayed and prompt. When the reactor is delayed-

supercritical, then it means that neutrons coming from fission alone are not

sufficient to make the keff greater than one. What makes the keff above

one in such a case comes from neutrons, which originate from the decay

of the fission products. The lifetime of a generation of delayed neutrons is

orders of magnitude longer than that of prompt neutrons produced during

the fission process. That’s why a delayed-supercritical reactor is manage-

able, with its power increasing steadily. A prompt-critical reactor would

immediately melt or explode due to its power increasing immediately by

orders of magnitude. The maximum keff for which delayed-supercriticality

is possible depends on fissile material and, depending on a reactor, is in

the range of 1.003 to 1.007. Preventing the reactor from achieving the

prompt-criticality is the primary safety concern when designing a nuclear

reactor. Having a low calculated keff uncertainty helps with this task.

One of the primary sources of keff uncertainty is neutron cross-section

uncertainties. A neutron cross-section is a measure of the likelihood that

an incident neutron of a specific kinetic energy will react with a nucleus in

a specific way. The cross-sections are expressed in barns, where a barn is

equal to 10−24cm2. The higher the cross-section, the higher the probability

of a reaction. The neutron cross-section can be defined as the area in cm2

for which the number of nuclei–neutron reactions taking place is equal to

the product of the number of incident neutrons that would pass through

the area and the number of target nuclei [16].

The possible reactions are fission, absorption, elastic scattering, inelastic

scattering (absorption and immediate emission of a neutron), absorption

and emission of an alpha particle, and many more. There are also para-

meters associated with neutron reactions, which considerably contribute

to the keff uncertainty. These are the probability of getting a fission neut-

ron of specific energy, denoted as chi, and the number of fission neutrons
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per fission, denoted as nubar. The latter of the two combines the para-

meters prompt nubar and delayed nubar. prompt nubar parameter tells

us how many neutrons are, on average, emitted during fission induced by

a neutron of a specific kinetic energy. delayed nubar parameter tells us

how many delayed neutrons are, on average, emitted from fission products

after fission induced by a neutron of a specific kinetic energy. Even though

chi and nubar parameters are not technically neutron cross-sections, this

thesis will sometimes refer to them with this term for conciseness.

Neutron cross-sections are measured experimentally, with measurement

methods depending on the reaction type. Each measurement type has

some limited precision, dependent on currently available technology. Tak-

ing U-235 as an example, its fission cross-sections are measured directly,

and their uncertainties are relatively small (<0.8 %) [17]. On the other

hand, the capture cross-sections are determined by measuring the ratio of

fission to capture. This leads to errors from fission and ratio measurement

uncertainty, resulting in larger relative uncertainty. Meanwhile, experi-

mental energy resolution limits determine elastic and inelastic scattering

uncertainties. Indirect methods have the potential to further reduce neut-

ron cross-section uncertainties. One of such methods depends depend on

solving so-called inverse problems. In such problems, a measurement of

integral quantity in an experiment is used to improve the knowledge of the

value of one or multiple model parameters that the calculation of the value

of the experimental measurement depends on. In the case of this thesis,

measurements of experimental keff values are used to improve knowledge

of neutron cross-sections.
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1.3 Overview of inverse Bayesian problems in nuclear engineer-

ing

For inverse problems where not only point estimates but uncertainties are

important, Bayesian statistics-based tools are used. Except for cases where

linear simulation models are applicable, these problems have only seen

broad interest in the context of nuclear engineering since the early 2010s

because they require considerable computation power. There are two gen-

eral types of applications of Bayesian statistics-based methods for inverse

problems: inverse uncertainty quantification (IUQ) and Bayesian calibra-

tion.

The aim of IUQ is to determine input parameters’ uncertainty for para-

meters with only point estimates available. IUQ methods have been com-

prehensively reviewed in [18] for thermal-hydraulics codes. As an example,

in one of the surveyed papers [19] in the publication mentioned above,

Markov Chain Monte Carlo (MCMC) supported by a polynomial surrog-

ate model for likelihood computations were used to determine the uncer-

tainty and calibrate some of TRACE [20] physical model parameters like

“wall drag coefficient” and “subcooled boiling heat transfer coefficient”.

The procedure used experimental data from the OECD/NEA BWR Full-

size Fine-Mesh Bundle Tests (BFBT) [21] benchmark. The other type of

application – Bayesian calibration, aims to calibrate parameters and re-

duce their known uncertainties rather than quantify uncertainties when

they are entirely unknown. This is intended to reduce the subsequent dif-

ference between simulation and observation. The differences between IUQ

and Bayesian calibration are subtle, except for how the prior distribution is

defined. In IUQ, the prior uncertainty is usually assumed to be an arbitrar-

ily wide uniform distribution, intended to be as uninformative as possible

and only limited by constraints of laws of physics.

On the other hand, Bayesian calibration has a more informative prior de-

scribed by, for example, a normal distribution. An example of work where
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input parameter uncertainty was reduced instead of quantified altogether

is [22]. The authors used the methodology of Cacuci and Ionescu-Bujor

to reduce uncertainty in input parameters and time-dependent boundary

conditions in a light water reactor thermal-hydraulic code FLICA4 [23],

which allowed for achieving reduced uncertainty of computed axial void

fraction distribution in forward computations.

A method called Approximate Bayesian Computation (ABC) is the most

appropriate tool for Bayesian calibration or IUQ when the likelihood func-

tion is difficult or impossible to calculate. In this spirit, in [24], it was used

to determine the occurrence of cracks in Advanced Gas-cooled nuclear Re-

actors’ (AGRs’) boiler spines based on the outcome of visual inspections

looking for this defect. In [25], applying ABC allowed for the reduction

of uncertainty in Centipede model parameters, a MOOSE framework [26]

code used to predict the diffusivity of uranium and xenon for the simula-

tion of fission gas in uranium oxide fuel. An example of the ABC method

applied in the context of IUQ can be found in [27], where it was used to

determine the uncertainty in model parameters for a Gamma Process de-

scribing pipe degradation in the primary heat transport system of Canada

Deuterium Uranium (CANDU) reactors. The ABC method is a versatile

tool that has been used by a variety of researchers with different models.

The publications [28] and [29] use the SMC-ABC method to identify the

source of the release, which may be important from the point of view of

nuclear safety.

Reducing uncertainty in keff has long been of interest to the nuclear

industry. Researchers and institutions use a couple of methods to apply

Bayesian calibration for cross-section uncertainty reduction. Oak Ridge

National Laboratory (ORNL) has developed the SCALE TSURFER soft-

ware [30], which implements the Generalized Linear Least Squares (GLLS)

[31] method. The GLLS approach considers potential variations in model

input parameters (such as cross-sections) and measured integral responses
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that minimize the differences in measured and calculated integral responses

(such as keff) for a set of experiments. The method assumes linearity of in-

tegral responses to model input parameters’ changes. Due to the method’s

approximate nature, it can only be used to reduce neutron cross-section

uncertainties under limited conditions [32]. In 2014, a method called A

General Monte Carlo-Bayes Procedure for Improved Predictions of Integ-

ral Functions of Nuclear Data (MOCABA) [33] was developed. It is a

generalization of GLLS to non-linear models. Since it uses more rigorous

mathematical models, it is more reliable. Like GLLS, it is limited to mul-

tivariate normal priors and only generates multivariate normal posteriors.

This thesis investigates another algorithm with the potential to reduce the

keff uncertainty and compares it to GLLS and MOCABA. The algorithm

is called Sequential Monte Carlo – Approximate Bayesian Computation

(SMC-ABC). The SMC-ABC is a universal, rigorous method of solving

Bayesian inference problems, as it accepts any prior distribution and can

produce any posterior distribution. This feature makes it more reliable and

widely applicable than MOCABA and GLLS.

1.4 Thesis objectives

The first objective of the thesis is to compare the algorithms GLLS, MOCABA,

and SMC-ABC and check whether the rigorousness and universality of

SMC-ABC are worth the additional computational power required to ex-

ecute the algorithm.

The second objective is to present a validation technique that hasn’t

been applied yet in nuclear engineering. The method is based on the so-

called “synthetic experiments”, which are computationally generated data

used in place of experiments. This artificial data is calculated using a

sample from the prior distribution of the parameters of interest (in the

case of this work, a sample of relevant cross-sections) as input. The para-

meters in this sample are called “synthetic parameters”. The artificial
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data is assimilated with a Bayesian calibration algorithm, and the result-

ing posterior is compared to the already-known synthetic parameters. The

method allows for verifying whether the data assimilation leads to overfit-

ting.

Some researchers decide to calibrate only some of the model parameters

because the others have a low influence on the results. The thesis also

investigates how uncalibrated model parameters should be treated.

The author conducted a comprehensive analysis of the concepts above

and formulated the following Thesis Statement:

There exist improvements in the methodology of conducting Bayesian cal-

ibration of neutron cross-sections, which allow for obtaining improved res-

ults with a more reliable validation.

1.5 Outline of the thesis

The dissertation consists of six chapters. The comprehensive scope of

work is outlined below. Section 1 introduces the dissertation, outlining

its thesis, objectives, and scope. In Section 2, three Bayesian calibration

methods are described, which will later be compared in terms of neut-

ron cross-section calibration performance. In Section 3, an overview of

the simulation software used for keff calculations is provided. Section 4

is dedicated to the application and comparison of the three algorithms

in calibrating 23 cross-sections that contribute significantly to keff uncer-

tainties in highly enriched uranium fast systems. Additionally, a synthetic

experiment validation procedure is presented and applied. In Section 5, the

most effective algorithm is applied to calibrate 1904 cross-sections across 34

thermal systems. Furthermore, an enhanced synthetic cross-section valid-

ation procedure is introduced, along with an examination of the influence

of uncalibrated cross-sections on Bayesian calibration results. The con-

sequences of neglecting the influence of uncalibrated parameters are also

investigated through the use of a toy inverse problem. Section 6 serves as a
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summary, where lessons learned from Sections 4 and 5 are summarized, and

a step-by-step procedure for Bayesian calibration of neutron cross-sections

is proposed, incorporating the best practices established in these sections.
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2 Bayesian Calibration algorithms

Bayesian calibration algorithms belong to a family of Bayesian inference

methods. Two approaches for reducing this uncertainty are currently in

use – Generalized Linear Least Squares (GLLS) [34] and a General Monte

Carlo-Bayes Procedure for Enhanced Predictions of Integral Functions of

Nuclear Data (MOCABA) [33]. Both techniques are capable of diminishing

uncertainty in cross-sections by assimilating operational data from meas-

ured critical systems or nuclear reactors. These algorithms necessitate the

simulation of experimental data and the description of calibrated paramet-

ers using specific statistical distributions. In this dissertation, a universal

and rigorous algorithm known as Sequential Monte Carlo – Approximate

Bayesian Computation (SMC-ABC) was proposed for this kind of prob-

lem. Bayesian calibration algorithms share several components needed to

perform successfully. These are experimental data with measurement un-

certainty, a mathematical model that can simulate the experiments, prior

distributions of calibrated model input parameters, and model discrepancy

estimates. The model discrepancy is the accuracy with which a model can

predict experimental results. The following is an introduction to Bayesian

theories for input parameter calibration. Then, in the following subsec-

tions, the algorithms used in the application part of this thesis are described

in detail (see Chapters 4 and 5).

The term “calibration” [35] must be formally defined to describe these

algorithms. Calibration is a process of adjusting a set of input parameters

(α) in a mathematical model (M) such that the agreement of model pre-

dictions (kα) with experimental data (m) is maximized.

All Bayesian calibration methods are based on the Bayes theorem. It states

that one can update their belief on the probability or distribution of (α)

considering some new observed data (m). The theorem is expressed as
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follows:

P (α|m) ∝ P (m|α)P (α), (2.1)

where: α - an A-dimensional vector of model parameters,

m - observed data in the form of an I-dimensional vector,

P (α) - prior probability distribution, belief about α without taking the

data m into account,

P (m|α) - likelihood, joint probability of data as a function of α,
P (α|m) - posterior probability distribution of α given observed data m.

To be able to apply Bayesian inference and determine the posterior distri-

bution, it is necessary to use procedures, either classic algorithms such as

GLLS or typical sampling methods, e.g. ABC.

2.1 General Linearized Least Squares (GLLS)

The following description of the GLLS algorithm is based on its imple-

mentation in SCALE [30] software.

The GLLS considers potential variations in a model’s input parameters

and measured integral responses that minimize the differences in measured

(experimental) and calculated integral responses. The method assumes lin-

earity of integral responses to the model’s input parameter variations. The

linear approximation of a considered model calibrated with GLLS relates

to the measured integral response and its calculated value, as shown in Eq.

2.2:

E = S(
α′ − α0

α0
− 1) ∗R +R + ϵ, (2.2)

where E is the measured quantity, S is the relative sensitivity vector, α0 is

the vector of the best estimate of prior input parameters, α′ is the vector

of perturbed input parameters, R is the integral response calculated with

the prior input parameters, and ϵ is the error term.

Sensitivity can be either absolute or relative. The absolute sensitivity

denotes the absolute change in response due to the relative change in input
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parameters:

S̃αi
= αi

∂R

∂αi
. (2.3)

The S̃αi
denotes the sensitivity to a single parameter αi. The relative

sensitivity is the absolute sensitivity divided by the prior response:

Sαi
=

αi

R

∂R

∂αi
. (2.4)

Further description of GLLS will be presented using the relative sensitiv-

ities. GLLS has the ability to assimilate experimental data from a series

of experimental measurements, which will be denoted as an m vector of

length I: m = {m1,m2, ...,mI}, while m0 designates the vector of prior

best estimates of m. The set of corresponding calculated responses will be

designated analogously as k = {k1, k2, ..., kI}, with k0 a vector of prior best
estimates of k. The prior covariance data for relative input parameters is

Cαα, where α is an A-long vector while Cmm is an I × I covariance mat-

rix describing relative experimental uncertainties. The k values are also

correlated due to correlated uncertainties in the model’s input parameters.

The resulting covariance matrix is designated Ckk. It can be computed

from the following propagation of error expression:

Ckk = SkαCkkS
T
kα, (2.5)

where Skα is the relative sensitivity matrix.

GLLS requires the computation of the discrepancy parameter d, equal to

the relative difference between calculated response k and measurement m.

The d vector is therefore

d =
k0 −m0

k0
= {k01 −m01

k01
,
k02 −m02

k02
, ...,

k0I −m0I

k0I
}. (2.6)

The covariance matrix corresponding to d is designated Cdd and calculated

with the expression:

Cdd = Ckk + Fm/kCmmFm/k, (2.7)
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where Fm/k is an I × I matrix with m/k on the diagonal and zeros off-

diagonal.

The essence of the GLLS method is varying the α and m values in such a

way that they are as consistent as possible with their uncertainty matrices,

Cαα and Cmm respectively. To do that, the chi-square presented in Eq. 2.8

is minimized.

χ2 = [
α′ − α0

α0
]TC−1

αα [
α′ − α0

α0
] + [

m′ −m0

m0
]TC−1

mm[
m′ −m0

m0
] =

[∆α]TC−1
αα [∆α] + [∆m]TC−1

mm[∆m],
(2.8)

where ∆α = α′−α0

α0
and ∆m = m′−m0

m0
. The minimization is subject to the

constraint k′ = m′ (the posterior calculated responses have to agree with

measurements) and the linearity condition ∆k = k′−k
k = Skα[∆α]. This is

achieved by applying the following variations:

∆α = −[CααS
T
kαC

−1
dd ]d, (2.9)

∆m = [CmmFm/kC
−1
dd ]d. (2.10)

It is visible that the adjustments are driven by the discrepancy d. The

uncertainties of α, m, and k are reduced by incorporating additional know-

ledge. This results in modified covariance matrices Cm′m′, Cα′α′, and Cd′d′,

which are given by:

Cα′α′ = Cαα − [CααS
T
kαC

−1
dd SkαCαα], (2.11)

Cm′m′ = Cmm − [CmmFm/kC
−1
dd Fm/kCmm], (2.12)

Ck′k′ = Ckk − [CkkC
−1
dd Ckk]. (2.13)

If the linearity assumption is valid, the ∆k value follows the relation:

∆k = Fm/k∆m− d = Skα∆α, (2.14)

which completes the GLLS calculations.
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2.2 Monte Carlo-Bayes procedure for improved predictions of

integral functions of nuclear data

MOCABA [33] combines Monte Carlo sampling and Bayesian updating

algorithms for improved prediction of integral responses by assimilating

integral experimental data. It was developed for nuclear reactor ana-

lysis problems, but just like GLLS, it has a wide range of applicability.

MOCABA assumes multivariate normal prior and posterior distributions

and can be applied to any mathematical model, not just the ones where the

linear approximation of the influence of input parameters is valid. Under

the approximation of the integral response vector by the first-order series

expansion about the best-estimate input parameter vector, the GLLS for-

mulas are obtained. Therefore, MOCABA can be interpreted as a gener-

alization of GLLS to problems where the linear approximation may not

be valid. The algorithm allows for calculating cases where the normality

assumption does not hold for the prior by transforming the prior k into

an approximately normally distributed vector z. There is also an option

of imposing constraints on k. First, the case with no transformations will

be presented in Section 2.2.1. Then, the case with transformations will be

explored in 2.2.2. The case with constraints will not be explored because

it is irrelevant to this thesis.

2.2.1 MOCABA without transformations or constraints

The updating of the prior distribution is based on Bayes theorem:

P (y|m) ∝ P (m|y)P (y), (2.15)

where y is a vector consisting of parameters α whose posterior distributions

we want to find and of calculated integral responses k, so y = {α, k} with

prior covariance matrix Cyy =

(
Cαα Cαk

CT
αk Ckk

)
. The best-estimate values of
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α and k are designated α0 and k0, respectively. The m denotes the vector

of measured values of integral responses, with m0 being the vector of the

best estimates of measurement outcomes. Since the prior P (y) and the

likelihood P (m|y) are multivariate normal distributions, we find that the
prior obeys the following relations:

P (y) = N(y0, Cyy) ∝ exp(−Q0/2),

Q0 = (y − y0)
TC−1

yy (y − y0),
(2.16)

while the likelihood can be described as follows:

P (m|y) ∝ exp(−Qm/2),

Qm = (k −m0)
TC−1

mm(k −m0).
(2.17)

The posterior distribution P (y|m) follows the expression:

P (y|m) = N(y′0, Cy′y′) ∝ exp(−Q′/2),

Q′ = Q0 +Qm = (y − y′)TC−1
y′y′(y − y′),

(2.18)

where y′ = {α′k′} and Cy′y′ =

(
Cα′α′ Cα′k′

CT
α′k′ Ck′k′

)
are respectively the maximum-

a-posteriori estimate and posterior covariance matrix of y. To calculate

these parameters, the Q′ has to be minimized, which leads to the following

relations:

α′ = α0 + Cαk(Ckk + Cmm)
−1(m0 − k0),

k′ = k0 + Ckk(Ckk + Cmm)
−1(m0 − k0),

Cα′α′ = Cαα − Cαk(Ckk + Cmm)
−1CT

αk,

Ck′k′ = Cαα − Cαk(Ckk + Cmm)
−1Ckk.

(2.19)

The practical implementation of the MOCABA algorithm depends on whether

we want to find the posterior distribution of input parameters or skip this

step and directly calculate the posterior distribution of some integral re-

sponse of interest. We denote any of the two sets of parameters as α. If

we wish to calibrate the input parameters, as in the case of this thesis,
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the first step is simplified, as there is no need to compute Cαα, since it is

known from the start. We only need to create a set of samples of α.

We define a sample as a single randomized set of input parameter values

for calculating all considered integral responses. If the number of input

parameters is A = 10, a sample consists of a vector of 10 numerical values

sampled from the prior distribution.

The algorithm starts by creating a set of samples of size N of input para-

meters α from their multivariate normal prior distribution P (α,Cαα), so

we obtain

α1:N ∼ P (α0, Cαα), (2.20)

where α1:N = {α1, α2, ..., αN}.
After the samples are created, the integral responses are computed with

the use of appropriate mathematical models, and we obtain:

k1:N = M(α1:N), (2.21)

where k1:N = {k1, k2, ..., kN} are calculated integral responses, and M de-
notes mathematical models used for calculating k. The number of math-

ematical models equals the number of integral responses I. The calculated

integral responses k form a multivariate normal distribution of their own,

with covariance data designated as Ckk.

Now the y0, and the covariance matrix Cαk can be calculated:

ȳ0 = {ᾱ0, k̄0} =
1

N

N∑
n=1

yn, (2.22)

C̄yy =

(
Cαα Cαk

CT
αk Ckk

)
=

1

N − 1

N∑
n=1

(yn − y0)(y
n − y0). (2.23)

The experimental measurements intended for assimilation are denoted by

I-longm vector. If the uncertainties of each experimental integral response

are independent, then the Cmm matrix is diagonal. The off-diagonal ele-

ments in Cmm come primarily from correlated systematic uncertainties,
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but this matrix must also take into account correlated uncertainty coming

from any uncalibrated input parameters. We compute the Cmm matrix by

sampling the systematic errors s from P (s0, Css) and uncalibrated para-

meters γ from P (γ0, Cγγ) L times and calculating the integral responses

with the models M :

γ1:L ∼ P (γ0, Cγγ),

s1:L ∼ P (s0, Css),
(2.24)

m1:L = M(γ1:L, s1:L), (2.25)

m̄mean =
1

N

N∑
n=1

mn, (2.26)

Cmm =
1

N − 1

N∑
n=1

(mn − m̄mean)(m
n − m̄mean). (2.27)

The Eqs.2.19 use the Cmm calculated in Eq.2.27, and a vector of the best

estimate of measurement values m0. Therefore, all of the RHS components

of Eqs.2.19 are found, and the procedure is completed.

2.2.2 MOCABA with transformations but without constraints

For the cases where prior k fails normality tests, a vector f can be in-

troduced, that transforms vector y into a vector z, where individual com-

ponents of z are approximately normally distributed. The entire general

procedure is described in detail in [36], the algorithm below is more tailored

to the dissertation needs. The z components are described as follows:

z = (z1, z2, ..., zH) = f(y) = (f1(y1), f2(y2), ..., fH(yH)), (2.28)

where H is the length of the vector equal to H = I +A. The f transform-

ation is invertible:

y = (y1, y2, ..., yH) = f−1(z) = (f−1
1 (z1), f

−1
2 (z2), ..., f

−1
H (zH)). (2.29)
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The z is described by a multivariate distribution:

P (z) = N(z0, Czz) ∝ exp(−Q0/2),

Q0 = (z − z0)
TC−1

zz (z − z0).
(2.30)

The components of the measurement vectorm also need to be transformed.

Each component needs to undergo the same transformation as the corres-

ponding k element.

mz = (mz1,mz2, ...,mzI) = f(m) = (f1(m1), f2(m2), ..., fI(mI)). (2.31)

Vector m has the same length I as the k vector. After the mz is ob-

tained, the equations 2.19 can be applied to find the posterior distribution

z′. Then, z′ needs to be inverted to find the posterior y′. It might be the

case that not all y components needed transformation. Then, the inverted

transformation y = f−1(z) only needs to be applied to the transformed

ones. After that inversion, the algorithm is complete.

There are many transformations that can transform a non-normal dis-

tribution into a normal one. The one that is used in this thesis is based on

the Johnson distribution. This distribution has four parameters: W , E,

U , and O, allowing the Johnson distribution [37] to fit into a wider range

of datasets. The Johnson distribution is particularly useful because it can

be transformed into a normal distribution with the use of the following

transformation:

zi = fi(ỹi) = sinh−1 ỹi −Wi

Ei
= sinh−1(ri),

where ri =
ỹi −Wi

Ei
.

(2.32)

The ỹi variable denotes the Johnson distribution fitted to the y distribution,

so it is effectively the same as y. The parametersW , E, U , and O are found

numerically. The yi probability distribution function is then related to zi
in the following manner:

P (yi) =
Ui

Ei
∗ [2π(1 + r2i )]

− 1
2 ∗ exp(−1

2
[Oi + Uisinh

−1(ri)]
2),

with Ui =
1

σ0i
, Oi = −z0i

σ0i
.

(2.33)
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After the Bayesian updating, the posterior y′ pdf is found by replacing U

and O with U ′ = 1
σ′
0i
and O′ = − z′0i

σ′
0i
.

2.3 Sequential Monte Carlo – Approximate Bayesian Computa-

tion

Approximate Bayesian Computation (ABC) [38], also called likelihood-free

inference methods, is a group of approaches developed for inferring pos-

terior distributions in cases where the likelihood function is intractable or

computationally expensive to evaluate. This does not mean that the like-

lihood function is not part of the analysis, but that we are approximating

the likelihood, and hence the term ”approximate” in the name of the al-

gorithm.

The Sequential Monte Carlo - Approximate Bayesian Computation (SMC-

ABC) uses a modified version of the Bayes theorem:

P (α|m) ∝ P (m|α)βP (α) (2.34)

β - SMC transition step parameter. The SMC part of the algorithm pro-

ceeds by gradually increasing the value of β from 0 to 1. At β = 1, the Eq.

2.34 is equivalent to the original Bayes theorem. The SMC-ABC algorithm

is described in detail in publications [39], [40]. A brief overview is given in

Alg. 1.

At first, after initializing β = 0 (step 1), the N samples αt
1:N are drawn

from the prior distribution P (α) (step 2). These samples are used as in-

put parameters for models M(α) (step 3). These models calculate integral

responses kt1:N . The responses must be sensitive to the sampled paramet-

ers. Otherwise, the resulting posterior distribution is equal to the prior

distribution. The results of calculations M(α∗) → k∗ for each sample are

compared with corresponding experimental data m0 by employment of a

distance function δ(m0, k
t
1:N) (step 4). In the case of this thesis, this is

the Wasserstein distance [43]. This distance approximates the likelihood,
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Algorithm 1 Sequential Monte Carlo – Approximate Bayesian Computation in parallel

version (The procedure is based on PyMC implementations [41] and [42], which are in the

original version in the publications [39], [40])

1. Initialize β = 0 and stage t = 1

2. Sample from the prior P (α) a set of samples αt
1:N ∼ P (α) of size N . When β = 0,

the tempered posterior is the prior.

3. Simulate a data set kt
1:N using a simulator M(αt

1:N) → k. This returns a data set of

the same dimensions as the observed data set m for each sample.

4. Compare the simulated dataset kt
1:N with the experimental data set m using a

distance function δ(m0, k
t
1:N). The distance function acts as a likelihood approximation.

while β < 1 do

5. Increase β to make the effective sample size (ESS) equal some predefined value.

6. Compute a set of importance weights ωt
1:N . The weights are computed as the

ratio of the likelihood approximations ( [42]).

7. Compute a weighted covariance matrix Ct
αα from αt

1:N and ω
t
1:N . Obtain a new

set of samples αt+1
1:N by resampling α

t
1:N according to ω

t
1:N .

for κ = 1 to K do

8. Run the perturbation step withN Markov Chains using a multivariate normal

proposal distribution based on the Ct
αα and α

t
1:N to generate a sample set α

∗
1:N .

9. Reject or accept each sample α∗
i to replace α

t
i after comparing the simulated

dataset M(α∗) → k∗ with the experimental data set m0 using a distance function

δ(m0, k
∗
1:N) and a tolerance threshold ϵt
10. Increase t := t+ 1

end for

end while

11. The final result is a collection of N samples from the posterior.
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which is later used to calculate new β in step 5 and the weights ωt
1:N in

step 6.

After steps 1-4 are complete, the algorithm loops through steps 5-10.

First, in step 5, new β is determined by keeping the Effective Sample Size

(ESS) at a predefined value (see [42]). Next, in step 6, a set of import-

ance weights ωt
1:N is computed, which is then used to generate a weighted

covariance matrix Ct
αα from αt

1:N and to resample the samples from αt
1:N

proportionally to these weights (step 7) (see ABC procedure [41]). From

this, a new resampled set denoted αt+1
1:N and the weighted covariance mat-

rix Ct
αα a multivariate normal proposal distribution is constructed. This

distribution is used in step 8 for sample perturbation.

A key element of the SMC part is to generate enough diversity by per-

turbation step 8 to explore the solution space and avoid getting stuck in

local minima. In SMC-type algorithms, different versions of the sample

perturbation model can ensure the appropriate level of samples’ diversity.

For the version implemented in the Python library PyMC [42], on which

the implementation of algorithm 1 is based, we set a number of inherently

parallel Markov chains (MC). At each stage, SMC will use independent MC

to explore the tempered posterior (steps 8, 9, and 10) using the multivari-

ate normal proposal distribution built in step 7 and applying the model

to generate data M(α∗) → k∗. The algorithm either rejects or accepts

proposal samples α∗
i by calculating the distance function δ(m0, k

∗
1:N) and

comparing it to ϵt, known as ”threshold”. The parameter ϵt is calculated

for each sample based on the input value Etot (see formula 6), which consti-

tutes the combined value of the model’s and observed data’s uncertainties,

other parameters determined algorithmically like β, and partially random-

ized. Only one Etot value is allowed for each set of simulations. Therefore,

if data from multiple measurements with varying errors is used, it needs to

be rescaled so that the sum of effects of measurement and discrepancy error

always have the same value equal to Etot, measured in one standard devi-
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ation. At every successive stage defined by β, the ϵt parameter decreases

from an artificially inflated value of ϵ1 to the final value ϵT . As a result,

we obtain a sample set of parameters α from the approximate distribution

π(α, δ(m0, k
t
1:N) ≤ ϵt for corresponding stages defined by β. The algorithm

finishes when the stage with β = 1 is completed. The final product of the

algorithm is a set of samples drawn from the target posterior distribution

π(α, δ(m0, k
T
1:N)) ≤ ϵT [40] (step 11).

The discussed algorithm is presented in a simplified form in Fig. 2. The

top subplot shows 4 theoretical proposal distributions at different stages

t, with a proposal at stage 2 highlighted as the currently sampled one.

The samples are represented by three colored dots. The bottom subplot

shows simulator phase M(α) → k of ABC procedure with acceptance or

rejection, which depends on the distance of the simulated data k from the

measurements m0. Notice how the two samples with the shortest distance

to m0 (green circles) are accepted and used to obtain a new posterior pro-

posal in the next stage t + 1. The value of β is updated to 1 when the

target posterior distribution is obtained.
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Figure 2: Illustration of SMC-ABC with an example with a uniform prior distribution.

The figure was prepared based on Figure 8 from [40].
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3 Criticality safety simulation software SCALE and

neutron cross-section libraries

To use Bayesian methods for calibration, simulation of the experimental

systems is necessary. To compare experimental data with model data,

access to the model M(α) is required. The model should correctly repro-

duce the physical phenomena of critical systems. In the case of multigroup

cross-sections, the appropriate program, or rather a set of modeling tools,

is SCALE (Standardized Computer Analysis for Licensing Evaluation).

SCALE is a comprehensive suite of tools for nuclear systems modeling and

simulation. It is used by numerous regulatory bodies, research institutions,

and industries across the globe. SCALE is employed for various nuclear

applications, such as reactor physics, criticality safety computations, radi-

ation shielding, radiological source term determination, radioactive waste

characterization, isotopic generation and depletion, and sensitivity and un-

certainty analysis concerning criticality safety computations. SCALE is

organized into modules, with each module dedicated to a different, specific

task. These modules can be executed in sequences, where the output from

one module feeds into another, facilitating complex simulations. This en-

ables users to employ the software for various nuclear engineering analyses.

This thesis presents the modules CSAS5, TSUNAMI, and TSURFER of

the SCALE program that were used in the calculations in chapters 4 and

5.

3.1 CSAS5 module

CSAS5 is a module within SCALE specifically developed for criticality

safety analyses. Its primary objective is to determine the neutron mul-

tiplication factor keff of nuclear systems. The module uses a geometry

processor, which is limited to combinations of several primitive structures

(spheres, cylinders, shells, cuboids, etc., cylindrical holes within any of
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these primitives). For more complex 3D geometries, the CSAS6 module is

required. CSAS6 has higher computational costs, so it should not be used

when it is not necessary. Each geometry component gets assigned isotopic

composition by a user, with the atomic density of each isotope defined and

the temperature of each component.

After the geometry and material composition are defined, the module

processes cross-sections if a multigroup library is used and solves the neut-

ron transport equation. There are two ways to do that: with a deterministic

or Monte Carlo solver. The deterministic solver assumes a neutron source

distribution, solves the transport equation, updates the neutron source dis-

tribution, and solves the transport equation again, repeating these steps

until convergence is achieved. The method is limited to simple geometries.

The Monte Carlo solver simulates random paths of individual neutrons as

they move through the system and interact with the material. On each

iteration, the neutron spatial distribution is updated. Over many such

simulated iterations, a statistically meaningful result of the multiplication

factor emerges. The Monte Carlo solver uses variance reduction methods

to ease the computational burden of the computations. It can be used for

complex geometries, making it more universal. The influence of delayed

neutron on the multiplication factor is calculated by default for any solver.

The SCALE’s CSAS5 module is used as the model (or simulator)M in the

SMC-ABC and MOCABA algorithms in Chapter 4 and in the MOCABA

algorithm in Chapter 5

3.2 Cross-section library types

Calculations of criticality safety require a neutron cross-section library to

be executed. Such a library contains energy-dependent cross-section val-

ues for a range of reactions and isotopes. Besides the cross-section reac-

tion data, the libraries store additional parameters describing the behavior

of neutrons. In SCALE-produced libraries, the chi parameter denotes the
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probability that a neutron created in a fission process has a specific energy.

The prompt nubar parameter describes the average number of neutrons

emitted during neutron-induced fission for the incident neutron’s specific

energy. The delayed nubar denotes the average number of neutrons emitted

from the decay of fission products after they were created by interaction

with an incident neutron of a specific energy. The neutron cross-section

libraries additionally contain photon interaction data, which play a much

more minor but not insignificant influence on the keff .

There are two types of neutron cross-section libraries: the Continu-

ous Energy (CE) and the Multigroup (MG) libraries. The CE libraries

contain continuous (not discretized) cross-section values as a function of

neutron energy. They are constructed by collecting direct measurements

of neutron cross-sections and their interpolation. Such libraries provide

the most accurate results when calculating keff , but at the cost of signific-

antly higher computational expense. The MG libraries are step functions

of neutron energy and are constructed by collapsing CE libraries into dis-

crete cross-section values in predefined energy ranges. The MG libraries

are approximations and are, therefore, less accurate than CE libraries but

require much fewer computational resources. The difference in runtime for

criticality calculation is not large on modern computers but becomes con-

siderable when uncertainty calculations are performed. Given the necessity

of performing uncertainty calculations for every reactor, the MG libraries

are still of significant interest.

The SCALE library used in this dissertation is ENDF/BVII.1 based 56-

group library, where ENDF/BVII.1 is the US version of a comprehensive

collection of nuclear data that has been evaluated, processed, and com-

piled by experts. The collection is maintained by Brookhaven National

Laboratory.
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Figure 3: Comparison of CE cross-sections (black line), MG cross-sections (dashed red

line), and self-shielded MG cross-sections (dashed and dotted green line)

3.3 Cross-section treatment for Multigroup library calculations

The collapse of CE cross-sections to a multigroup structure has several un-

favorable consequences that necessitate additional treatment for the cal-

culations to be reliable. In MG computations, the rates at which reac-

tions occur are heavily influenced by the unique energy distribution of

the flux specific to the problem at hand. This means that the generic

MG data in the library, which isn’t tailored to specific problems, should

be adjusted to reflect the actual flux spectrum of the problem instead of

the general spectrum provided in the library. The neutron energy distri-

bution is particularly affected by the amount and spatial distribution of

resonance absorbers. These absorbers can significantly decrease the flux

at the resonance peaks of a nuclide. This reduces reaction rate and ef-

fectively lowers effective averaged multigroup cross-section values. The

phenomenon is known as resonance self-shielding. Fig. 3 presents an illus-

tration of a phenomenon on a generic resonance peak. SCALE provides a
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sequence of modules that process the cross-section libraries to account for

the resonance self-shielding. This sequence is a part of CSAS5, CSAS6,

and TSUNAMI modules. The cross-section treatment starts by running

the BONAMI module. This module applies the Bondarenko approach us-

ing cross-sections pre-computed over a range of self-shielding conditions,

ranging from infinitely dilute to heavily self-shielded. Given the approxima-

tions used in the approach, the degree of self-shielding depends on a single

parameter called the background cross-section or ”sigma0” and Doppler

broadening temperature. The procedure is applied to all materials by de-

fault. The part of geometry for which spatial effects need to be considered

must be defined separately in an input block called ”celldata”. The geo-

metry in such a block must belong to a limited number of geometry types

for which SCALE has treatment prepared. These are arrangements of con-

centric spherical or cylindrical shells, fuel arrays of various configurations,

slabs, doubly heterogeneous materials (like HTGR pebbles with TRISO),

and others. BONAMI then analytically solves the neutron transport equa-

tion for this part of geometry and adjusts the MG cross-section values to

match the resulting neutron spectrum. After the BONAMI module fin-

ishes running and the MG cross-sections are generated for each part of

the geometry, either the Monte Carlo computations start or an additional

treatment of the MG library is applied through the CENTRM module,

whichever the user requests. CENTRM conducts a more rigorous compu-

tation compared to BONAMI by not using its main approximations, which

are the neglect of resonance interference, utilization of the intermediate res-

onance approximation, and the equivalence theory. Resonance interference

is the effect of resonances from various materials influencing each other’s

self-shielding in the same energy range. At the same time, the equival-

ence theorem calculates equivalent cross-sections for doubly heterogeneous

materials. CENTRM uses the ”celldata” geometry definition to solve the

neutron transport equation using MG cross-section for fast and thermal
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ranges to provide space-dependent slowing-down sources for CE calcula-

tions performed in the resonance range. This range covers the area where

approximations used by BONAMI are not reliable enough. All simulations

conducted as part of the research described in this thesis were made with

the CENTRM module included in the calculation sequence CSAS5.

3.4 TSUNAMI and TSURFER modules

There are two ways of quantifying keff uncertainty. The easiest way is

sampling the neutron cross-section library a few hundred times to calcu-

late keff for the system in question. This is followed by calculating the

standard deviation of the results. The method is reliable, but it does not

provide good information about the sources of the uncertainty. The other

way is running an adjoint calculation. SCALE has a module dedicated

to that called TSUNAMI (Tools for Sensitivity and Uncertainty Analysis

Methodology Implementation). It assumes that computational error is

primarily caused by neutron cross-section errors. TSUNAMI first calcu-

lates sensitivities. To do that, it solves the standard neutron equation

(also called forward equation) and adjoint equation. The exact proced-

ure is mathematically complex and is presented in detail in the SCALE

manual. Here, only the most general overview is provided. The forward

equation describes how neutrons move and interact in a medium. While

the forward equation describes how neutrons propagate from a source, the

adjoint equation describes how ”importance” propagates from a detector

or response. Mathematically, the adjoint equation looks similar to the for-

ward transport equation but with some terms transposed. The solution

to the adjoint equation is called the adjoint flux, which represents the im-

portance of a neutron to the desired response. After this flux is obtained,

the sensitivity of keff to each neutron cross-section is calculated. These

sensitivities are then used to propagate errors with the standard sandwich
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method:

E2 = SCST , (3.1)

where E is error measured in one standard deviation, S is sensitivity vec-

tor, C is covariance matrix, ST is the sensitivity vector transposed. The

final outputs of the TSUNAMI calculation are neutron cross-section sens-

itivities, keff uncertainty, and forward calculation result.

It is important to note that the sensitivities generated by TSUNAMI

are not guaranteed to be always calculated correctly, even if the model

does not contain errors. This is stressed numerous times by the SCALE

developers in the manual. To validate the sensitivities for a nuclide, the

sensitivity to the total cross-section, called the ”Sensitivity Coefficient for

Total Reaction” in TSUNAMI output, needs to be compared to the result

of the so-called direct perturbation. Direct perturbation procedure assumes

that a relative change in a nuclide’s density should have the same effect

on keff as the same relative change in the total cross-section. Calculating

this sensitivity is followed by calculating its uncertainty. If the TSUNAMI

sensitivity is within two standard deviations from the direct perturbation

sensitivity, the total sensitivity is validated. This provides more confidence

that individual sensitivities are also calculated correctly, although a scen-

ario where sensitivity errors compensate to give a correct result of total

sensitivity is possible.

The outputs of TSUNAMI are inputs for the GLLS calculations, along

with corresponding experimental data. GLLS procedure is conducted by

the SCALE TSURFER (Tool for Sensitivity/Uncertainty analysis of Re-

sponse Functionals using Experimental Results) module. The GLLS al-

gorithm is implemented in this thesis by first running the TSUNAMI for

each experiment model and collecting the outputs. These, along with the

experimental data, are then used as inputs to the TSURFER module. The

TSURFER returns relative values of calibrated cross-sections, their pos-

terior uncertainties, and estimates of the calculated posterior keff .
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4 Testing Bayesian calibration algorithms on fast en-

riched uranium systems

An ENDF/BVII.1 56-group library from the SCALE software package de-

veloped by Oak Ridge National Laboratory was chosen to test and compare

the robustness of Bayesian calibration algorithms. The calibration would

be conducted on fast systems. It is important to note that the 56-group

library is not intended for fast systems. However, it was the best choice

among other readily accessible MG libraries due to its low number of energy

groups. Three algorithms were selected for testing and comparison. These

were the multivariate-limited and based on linear approximation GLLS,

the multivariate-limited but allowing for non-linear models MOCABA and

the universal, non-linear SMC-ABC. The SMC-ABC’s advantage of being

able to update and produce as output any distribution type comes at a

cost. Due to a phenomenon called the “curse of dimensionality” [44], it

has much greater computational costs than GLLS and MOCABA. There-

fore, a limited number of cross-sections and other relevant quantities could

be calibrated. The number of calibrated parameters and the type and

number of assimilated experiments were dictated by SMC-ABC’s practical

usability. The implementation of SMC-ABC for reducing uncertainty was

carried out using the PyMC3 package [45]. However, the package had to

be adapted to the analyzed problem. It needed the ability to use SCALE

CSAS5 as the black box mathematical model and to be compatible with the

CIS cluster architecture [46]. The Chapter also introduces two novel con-

cepts in the field of nuclear engineering inverse problems: validation using

synthetic cross-sections in Algorithm 3 and influence of error from uncalib-

rated cross-sections in subsection 4.6.2. The calculations and analyses from

Chapter 4 were published in the article ”Applying approximate Bayesian

computation to reduce uncertainty in multigroup 235-U cross-sections us-

ing ICSBEP experimental data” Nuclear Engineering and Design.
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4.1 Relevant cross-sections and assimilated systems

A total of 23 cross-sections were selected to reduce uncertainty in a pure,

highly enriched uranium system called HEU-MET-FAST-001-001 [47] as

much as possible. It means that if these cross-sections were known exactly

(their standard error would be zero, and the covariance between them

and other cross-sections would be zero), then the uncertainty would de-

crease the most. It would be computationally too expensive to check every

combination of cross-sections to find the one that minimizes the error the

most. Therefore, 40 cross-sections individually contributing the most to

uncertainty were initially identified. They were sorted in order of uncer-

tainty contribution. First, the 15 top ones were selected for this research.

Then, from the remaining 25, 8 were selected by checking which combina-

tion contributes the most to the uncertainty reduction. All of the selected

cross-sections belonged to U-235. The list of cross-sections for calibration

is presented in Table 1. Following the SCALE library’s formalism, the

energy groups are counted from the fastest to the lowest.

Table 1: Calibrated perturbation factor list

Reaction type or

quantity and

energy group

Energy range [eV]

(n, gamma)4 (3.00E+06 - 1.85E+06)

(n, gamma)6 (1.50E+06 - 1.20E+06)

(n, gamma)7 (1.20E+06 - 8.61E+05)

(n, gamma)9 (7.50E+05 - 6.00E+05)

(n, gamma)10 (6.00E+05 - 4.70E+05)

(n, gamma)11 (4.70E+05 - 3.30E+05)

(n, gamma)12 (3.30E+05 - 2.70E+05)

(n, gamma)13 (2.70E+05 - 2.00E+05)

(n, gamma)14 (2.00E+05 - 5.00E+04)
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Table 1: Calibrated perturbation factor list

Reaction type or

quantity and

energy group

Energy range [eV]

(n, gamma)15 (5.00E+04 - 2.00E+04)

(n, gamma)17 (1.70E+04 - 3.74E+03)

(n, n’)4 (1.85E+06 - 1.50E+06)

(n, n’)7 (1.20E+06 - 8.61E+05)

(n, n’)9 (7.50E+05 - 6.00E+05)

(n, n’)10 (6.00E+05 - 4.70E+05)

(n, n’)11 (4.70E+05 - 3.30E+05)

(n, elastic)14 (2.00E+05 - 5.00E+04)

(n, fission)2 (6.43E+06 - 4.30E+06)

(n, fission)4 (3.00E+06 - 1.85E+06)

(n, fission)7 (1.20E+06 - 8.61E+05)

(n, fission)11 (4.70E+05 - 3.30E+05)

(n, fission)14 (2.00E+05 - 5.00E+04)

(chi)1 (2.00E+07 - 6.43E+06)

The cross-sections were not explicitly implemented for the calibration

algorithm; instead, their perturbation factors were. For each cross-section,

the perturbation factor started at 1. If the mean of the posterior distri-

bution of one of the cross-sections was 1.2, then to obtain the new cross-

section, one must multiply the old cross-section by the perturbation factor,

as shown in Equation 4.1

UCS = CS ∗ PF , (4.1)

where UCS stands for updated cross-section value, CS for cross-section,

and PF for perturbation factor. This work uses the terms “perturbation

factor” and “relative cross-section value” interchangeably.
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The experiments were selected for computational efficiency (simple geo-

metry, few materials present) and high keff sensitivity to cross-sections

of interest. A total of 24 experiments were selected from the Interna-

tional Criticality Safety Benchmark Evaluation Project (ICSBEP) Hand-

book [47]. These included experiments from Highly Enriched Uranium Fast

Metal Systems (HEU-MET-FAST) and Intermediately Enriched Uranium

Fast Metal Systems (IEU-MET-FAST). The list of experiments by their

identification and brief descriptions are presented in Table 2.

Given the number of experiments, there can’t be provided a more de-

tailed description for each one because each detailed specification takes

many pages in the ICSBEP report. As an example, below are short descrip-

tions along with photographic documentation of two experiments with dif-

ferent characteristics and geometry: HEU-MET-FAST-001-001 and IEU-

MET-FAST-001-004.

The experiment HEU-MET-FAST-001-001 consists of two halves of a sphere

of a 94 wt.% 235-U. It was conducted in the 1950s in Los Alamos to de-

termine the critical mass of this material.

Table 2: Assimilated experiment list

Experiment

identification
Description

HEU-MET-FAST-

001-001 shell
Bare, highly enriched uranium sphere

HEU-MET-FAST-

007-004

Uranium metal slabs Moderated with

Polyethylene

HEU-MET-FAST-

015-001

Unreflected Cylinder of Highly Enriched

Uranium

HEU-MET-FAST-

016-001

Beryllium-Reflected Cylinders of Highly

Enriched Uranium
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Table 2: Assimilated experiment list

Experiment

identification
Description

HEU-MET-FAST-

017-001

Beryllium-Moderated and Reflected Cylinder

of Highly Enriched Uranium

HEU-MET-FAST-

018-001 simplified
Bare Spherical Assembly of 235U(90%)

HEU-MET-FAST-

020-001 simplified

Polyethylene-Reflected Spherical Assembly of
235U(90%)

HEU-MET-FAST-

021-001 simplified

Steel-Reflected Spherical Assembly of
235U(90%)

HEU-MET-FAST-

022-001 simplified

Duralumin-Reflected Spherical Assembly of
235U(90%)

HEU-MET-FAST-

025-001
A Vanadium-Reflected HEU Cylinder

HEU-MET-FAST-

025-004
A Vanadium-Reflected HEU Cylinder

HEU-MET-FAST-

032-001

235U(94%) Sphere Surrounded by

Natural-Uranium Reflector

HEU-MET-FAST-

041-004

235U(94%) Sphere Surrounded by Graphite

Reflector

HEU-MET-FAST-

065-001

Unreflected Cylinder of Highly Enriched

Uranium

HEU-MET-FAST-

069-001 simplified

Oralloy 235U(93.2%) Metal Cylinder with

Beryllium Top Reflector

HEU-MET-FAST-

084-001
HEU Metal Cylinder Aluminium Reflector

HEU-MET-FAST-

085-005

Highly Enriched Uranium Metal Sphere

Surrounded by Copper Reflector
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Table 2: Assimilated experiment list

Experiment

identification
Description

IEU-MET-FAST-

001-004 idealized

Bare Cylindrical Configurations of Enriched

and Natural Uranium

IEU-MET-FAST-

002-001

Natural Uranium Reflected Assembly of

Enriched and Natural Uranium Plates

IEU-MET-FAST-

003-001 simplified
Bare Spherical Assembly of 235U(36%)

IEU-MET-FAST-

004-001 simplified

Graphite-Reflected Spherical Assembly of
235U(36%)

IEU-MET-FAST-

005-001 simplified

Steel-Reflected Spherical Assembly of
235U(36%)

IEU-MET-FAST-

006-001 simplified

Duralumin-Reflected Spherical Assembly of
235U(36%)

IEU-MET-FAST-

009-001

Spherical Assembly of 235U(36%) with a

5.75-cm Polyethylene Reflector
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Figure 4: A photo of the experimental setup in HEU-MET-FAST-001-001 experiment.
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Figure 5: A photo of the experimental setup in IEU-MET-FAST-001 experimental series.
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Fig. 4 presents the setup before the two halves are joined and become

critical. It is visible that the sphere halves are made of shells. Inside, there

is a neutron source. The benchmark model, for which keff is presented

in the document, simplifies the setup substantially, leaving just the sphere

and ignoring all other components, like walls and the steel diaphragm. The

authors of the document did not present detailed calculations of keff un-

certainty due to those simplifications but present its magnitude of 100 pcm

measured in one standard deviation. The photo of the second experiment,

named IEU-MET-FAST-001-004, is presented in Fig. 5. The experiment

is made of a stack of uranium disks alternating between highly enriched

and natural uranium. The disks had a thickness of 0.8 and 0.6 cm. The

benchmark model of the experiment has a number of simplifications, whose

influence was calculated by ICSBEP authors and added to the keff . Sim-

plifications were mostly applied to the support structure of the pile, like

replacing a notched aluminium boundary with a cylindrical surface. The

calculated keff uncertainty due to these simplifications amounted to 30

pcm measured in one standard deviation.

4.2 Prior distribution

Prior distribution P (α0, Cαα) takes the form of a vector of 23 perturba-

tion factors equal to 1, corresponding to cross-sections and quantities from

Table 1, and a covariance matrix consisting of appropriate variances and

covariances. These are taken from the 56-group relative covariance library

from the SCALE software package. Prior is, therefore, a multivariate nor-

mal distribution. Its covariance matrix is shown in Section 4.5, in Fig.

10.
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4.3 Mathematical Model and uncertainties

The software chosen for simulation of experiments in SMC-ABC andMOCABA

implementation was CSAS5 module in SCALE [48] (see Chapter 3). The

module calculates keff for given geometry, isotopic composition, and tem-

perature. Simulation runs until a predefined Monte Carlo uncertainty of

0.0003 is reached. GLLS was implemented using the SCALE TSURFER

module. The module requires cross-section sensitivities calculated before-

hand, which was done using the SCALE TSUNAMI module. The un-

certainty computation methodology presented throughout the rest of this

subsection applies to all three algorithms. As discussed in Section 2, all

sources of uncertainties must be quantified: the model discrepancy, meas-

urement uncertainty (i.e., benchmark experiment uncertainty), and error

stemming from uncertainty in unadjusted parameters.

Let’s start with model discrepancy. The Monte Carlo statistical error

is inherent in all Monte Carlo-type computations. In practical engineer-

ing applications, it is sufficient when the statistical error value of 0.0001

is reached. This kind of precision requires a substantial amount of com-

putational time. Therefore, the simulation stops for this research when

the statistical error reaches 0.0003. Another source of error is the uncer-

tainty coming from collapsing the continuous energy library to a 56-group

structure. Some uncertainty stems from averaging cross-sections across en-

ergy ranges, and some from imperfections in the resonance self-shielding

process. This discrepancy is difficult to estimate. It was decided on a con-

servative approach summarized Alg. 2.

The resulting average absolute difference in keff between CE and MG com-

putations was 0.0039 and will later be denoted as UMC - Uncertainty due

to Multigroup Collapse. The model discrepancy error is defined in Eq. 4.2:

MD =
√

MCU 2 + UMC2, (4.2)
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Algorithm 2 Model discrepancy estimation
1. Calculate keff for all experiments used in the Bayesian algorithms using the 56-group

library.

2. Calculate keff for all experiments used in Bayesian algorithms using a CE library.

3. Calculate the absolute difference in keff for each pair of results.

4. Calculate the average absolute difference in keff for all experiments combined.

5. Assume that the average absolute difference in keff is the model discrepancy com-

ponent, measured in one standard deviation.

where MD stands for the model discrepancy, MCU is Monte Carlo uncer-

tainty, and UMC is uncertainty due to multigroup collapse. Uncertainty

from unadjusted parameters (cross-sections and other quantities) comes

from the fact that only some cross-sections are calibrated. This uncer-

tainty can be computed using the standard error propagation “sandwich”

method [49], as shown in Eq. 3.1. The covariance matrix C is the covari-

ance matrix for 56-group library from SCALE software package, but with

variances and covariances coming from calibrated parameters assigned a

value of zero, as these cross-sections will be adjusted (calibrated). Sens-

itivity vectors were calculated using the SCALE TSUNAMI module (see

Chapter 3.4). The last source of uncertainty is benchmark experiment

uncertainty. This uncertainty comes from two sources. Firstly, a model

of any system will have some idealizations and simplifications. Therefore,

any model is not expected to reproduce the exact keff value measured

in a laboratory setting. The model is instead expected to predict keff
of a system resembling the real one but with influences from simplifica-

tions present. For example, mathematical models usually ignore the room

return phenomenon, inevitably underpredicting keff value. The effect of

these simplifications can be estimated along with its uncertainty with er-

ror propagation methods. The second source of benchmark experiment

uncertainty is input uncertainties. These can be, for example, the impreci-

sion with which uranium enrichment is known, geometrical uncertainties,

or imperfect knowledge of temperature and how it varies across geometry.
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The procedure of estimating how the keff for the model will be different

from the measured one and computing corresponding uncertainty, as well

as uncertainty coming from input uncertainties, was done for every exper-

iment in the ICSBEP handbook by the document’s authors.

Combining all the uncertainty sources, the total uncertainty for each

experiment is shown in Eq. 4.3.

Etot =
√

MD2 +BEU 2 + UCSU2 (4.3)

where BEU stands for benchmark experimental uncertainty, and UCSU

stands for uncalibrated cross-section uncertainty and is equal to E from

Eq. 3.1. It is important to note that this approach neglects the correla-

tions between experimental uncertainties. Since most experiments did not

have correlated systematic errors (except the two HEU-MET-FAST-025

experiments), this correlation mostly comes from uncalibrated paramet-

ers. The reason for this neglect is that SMC-ABC does not have an option

for considering such uncertainties. Sections 4.6.2 and 5.5.3 investigate the

potential influence of correlations on the results.

4.4 Bayesian algorithm settings

4.4.1 GLLS

In contrast to SMC-ABC, there are few adjustable settings because the

GLLS procedure consists of a couple of straightforward mathematical trans-

formations. Some options of low significance are available in its TSURFER

implementation, like the treatment of unavailable covariance data, min-

imum sensitivity criteria, or manually setting target chi-square for con-

sistency acceptance. These were not important for the research concerning

this thesis, so they were set to default, described in detail in [30]. The com-

putation of posterior distributions of the considered perturbation factors

takes a few seconds on a desktop computer with Intel Core i5-4690 CPU

and 8 GB RAM.
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4.4.2 MOCABA

There are two notable algorithm settings for MOCABA: the number of

sampled cross-section libraries and the transformation function f , in case

the prior k (i.e. the keff) is not normally distributed. It was decided to

create 2,000 samples since this number provided a low enough Monte Carlo

uncertainty. The computations took about 24,000 core hours using Intel

Xeon E5-2680 v2 processors. After these computations, a normalcy test

could be run on each generated keff distribution. It was determined with

D’Agostino’s K-squared normalcy test that over half of the distributions

were not normal. An example of such a distribution is the HEU-MET-

FAST-021-001S, for which the sampled distribution versus a fitted normal

distribution is presented in Fig. 6. It is visible that the prior keff distri-

bution for HEU-MET-FAST-021-001S is slightly skewed to the right.

Figure 6: The sampled keff distribution for HEU-MET-FAST-021-001S and a fitted nor-

mal distribution.
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4.4.3 SMC-ABC

Based on separate pre-calculations, it was decided to set N = 20, 000 par-

allel, K = 10 iterations long Markov chains for each β stage. Therefore,

samples in number 20,000 can be drawn simultaneously in one instance,

allowing for significant parallelization of the computations. Given 20,000

simultaneous samples and 24 SCALE inputs describing the 24 experiments,

480,000 simulations must be performed for each instance. These simula-

tions can be done in parallel, limited only by the number of available

CPU cores. They were conducted on the Świerk Computing Centre (CIŚ)

cluster. Simulation for each input took ∼3–5 min, depending on the core.
The algorithm went through 3 stages of β, resulting in 31 instances of

20,000 samples. A rough estimate of resources spent on computations is

744,000–1,240,000 core hours using Intel Xeon E5-2680 v2 processors.

4.5 Results

Figs. 7 and 9 show each cross-section’s perturbation factors and relative

standard deviations before and after the GLLS, MOCABA with transform-

ations, and SMC-ABC calibrations. Additionally, a plot with MOCABA

results without transformation will be presented in Fig. 8 to illustrate how

the neglect of the skew of the prior distribution affects the results.

65



Figure 7: Mean of prior and posterior perturbation factor values for GLLS, MOCABA

with transformations, and SMC-ABC.

Figure 9: Standard deviation of prior and posterior perturbation factor values for GLLS,

MOCABA without transformations, and SMC-ABC.
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Figure 8: Mean of prior and posterior perturbation factor values for GLLS, MOCABA

without transformations, and SMC-ABC.

It is visible, especially for the cross-sections (n, gamma)15 and (n,

gamma)17, that the neglect of transformations shifts the posterior means

a little in the direction away from SMC-ABC, which is considered the most

reliable among the methods. The finding reinforces the necessity of trans-

forming the prior distributions that don’t pass the normalcy test due to

even a relatively minor skew. The comparison will not be repeated for

the posterior uncertainties because, in that case, the difference is barely

noticeable.

The numbers beside the reactions denote the energy groups selected

from the 56 energy groups of the SCALE code library, where energy group

1 is the fastest neutron energy group (20 MeV - 6.4 MeV), and energy

group 56 is the slowest neutron energy group (4e-03 eV - 1e-05 eV), and

n’ means inelastic scattering. All of the cross-sections belong to the U-235

isotope. In general, cross-sections with high prior relative standard devi-

ations are significantly affected by calibration. For example, the relative
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difference between U-235 prior and posterior capture cross-section at 17

energy groups (17 keV - 3.7 keV), which has a maximum relative stand-

ard deviation of about 0.35, is about 25% for the mean and 71.5% for the

relative standard deviation, then it decreases as prior relative standard de-

viation decreases. On the other hand, calibration has negligible influences

on U-235 fission cross-sections since their prior relative standard deviations

are almost zero.

From Figs. 7 and 9, we can see that the posterior cross-section results

are consistent between the three applied methods and often practically the

same. The posterior uncertainty is also very similar. It is very slightly

underestimated by GLLS and MOCABA for the (n,gamma)14∼17 cross-
sections, which witnessed the most significant changes, and for (n,n’) re-

actions when GLLS is used. The differences reside, however, within the

Monte Carlo uncertainty of SMC-ABC calculations. The Monte Carlo

uncertainty for SMC-ABC was roughly estimated by running a simpli-

fied 1D version of the algorithm a couple of times with different starting

seeds. A somewhat baffling finding is that the linear GLLS method gives

the same posterior mean results as the non-linear SCALE-based MOCABA

and SMC-ABC, even though the skew in the prior keff values suggest slight

non-linearity of the sensitivities. This is most likely due to the sensitivities

corresponding to calibrated cross-sections being linear close to their prior

value and non-linear far away. Some cross-sections have large uncertainty,

and during MOCABA sampling, they could be randomized to be even twice

larger than the prior ones. These extreme samples are likely the origin of

the skew in prior keff seen in 4.4.2. This non-linearity in samples with

values far from the prior is not relevant, however, when GLLS is applied.

The standard deviation of the posterior distribution for each perturb-

ation factor presents incomplete information about posterior uncertainty.

Posterior covariance must also be considered. Since only 23 cross-sections

were calibrated while the rest stayed unchanged, a unique method had to
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Figure 10: Prior (on the left) and posterior (on the right) covariance of perturbation

factors.

be developed to calculate the posterior covariance between calibrated and

uncalibrated cross-sections. Given the formula for covariance shown in Eq.

4.4:

Covij = Corrij ∗ σi ∗ σj (4.4)

where Covij and Corrij are, respectively, covariance and correlation between

cross-sections i and j, and σi, σj are their standard deviations, the stand-

ard deviation of the calibrated cross-section changes while the rest of the

variables stay the same. The correlation component should also change

(its absolute value should decrease), but it is impossible to calculate it

with how the calibration was implemented. Keeping the correlation values

constant is a conservative approach to not underpredict the posterior un-

certainty of keff .
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Figure 11: Prior (on the left) and posterior (on the right) correlation matrix of perturb-

ation factors.

The prior and posterior covariance matrices of the SMC-ABC calibrated

perturbation factors (i.e., prior and posterior relative covariance matrix

of cross-sections) are presented in Fig. 10. The GLLS and MOCABA-

produced posterior covariance looks qualitatively the same as the SMC-

ABC-produced one. The prior covariance matrix has the multivariate dis-

tribution taken from the SCALE software package, where the diagonal

matrix elements are the squares of the prior relative standard deviations.

As can be seen in Fig. 10, the posterior covariance matrix elements are

smaller than the prior ones, and this is due to the reduction in the relat-

ive standard deviation. To deeply understand the influence of calibration

on the covariance matrix, which is the squares of the relative standard

deviations multiplied by the correlation matrix, the prior and posterior

correlation matrices are described in Fig. 11.

Before calibration, all reactions have positive correlations except the

elastic scattering at the 14 energy group, which is anticorrelated to all cap-

ture and inelastic cross-sections. It can be seen that the calibration con-

verts some weak positive correlations to anticorrelated ones, such as the

correlations between (n,gamma)14∼17 and (n,gamma)4∼7 cross-sections.
The calibration also changes some zero correlations to positive ones, such as
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the correlation between capture cross-sections and fission spectrum ‘chi’,

inelastic scattering, and fission cross-sections, where the correlation in-

creases as the number of energy groups increases. It can be concluded that

calibration does not only affect the relative standard deviations but also

disturbs the correlations between different reactions and energy groups.

Posterior distribution (solid lines) and fitted normal distributions (dotted

lines) are presented in Fig. 12 for three perturbation factors. The posterior

distributions resemble normal distributions but are less smooth. Given the

fixed number of samples from which the posterior is created (20,000), the

posterior distribution would be coarser if more cross-sections had been

calibrated or smoother if fewer cross-sections had been calibrated.
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Figure 12: Comparison between the posterior distribution and a fitted normal distribution

for the perturbation factor of: a) (n, gamma)14, b) (n,n’)9, c) (n,fission)7. for the SMC-

ABC posterior

4.6 Validation

4.6.1 Verifying whether goals of Bayesian calibration were accomplished

The goals of Bayesian calibration in the context of this work are successful

inference of true values of neutron cross-sections, subsequent reduction of

keff uncertainty, and improved ability to accurately predict benchmarks
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keff . Three procedures are applied to verify whether these goals have been

fulfilled:

(a) Comparing keff computed using cross-sections before and after

calibration for experiments not used in the SMC-ABC calibration

process.

(b) Checking if the calculated and experimental keff values lie within

3 standard deviations of each other for each system.

(c) Using so-called “synthetic experiments”, which are computation-

ally generated reference (“experimental”) results.

To conduct procedure (a), 17 new experiments (not used for calibration)

were chosen based on their dominant source of uncertainty. If a relative

uncertainty contribution from any reaction from any isotope other than U-

234, U-235, and U-238 was larger than 0.02 %, then the experiment was not

included in the comparison. The reason for this exclusion is the possibility

that the cross-section uncertainty effect on keff from uranium and other

elements could cancel each other out. This would lead to calculated keff

results closer to the experiment before calibration, despite calibrated cross-

sections’ values being improved. The comparison of keff results between

using the original (uncalibrated) and perturbed (calibrated) 56-group lib-

rary are presented in Fig. 13. The mean absolute difference between ex-

perimental and computational keff has been reduced from 0.0049 to 0.0025

(reduction of 49%). The average posterior uncertainty is lower than the

prior uncertainty by 47.6 %.

The calculated keff is expected to lie within three standard deviations

of calculated uncertainty from the experimental one 99.7 % of the time,

regardless of the system’s isotopic composition and geometry. A set of new

experiments was chosen to check whether this remains true after calibra-

tion. The keff and its uncertainty were calculated for each experiment
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Figure 13: Comparison of keff results obtained using unperturbed 56-group library (prior)

against perturbed 56-group library (posterior) and experiment for experiments with a very

small fraction of uncertainty coming from any isotopes other than U-234, U-235, U-238.

using posterior cross-sections and posterior covariance matrix. Model dis-

crepancy (discussed in Section 4.3) was added to the uncertainty to take

into account all computational errors. The comparison between experi-

mental and computed keff is presented in Fig. 14. Note that the plot in

Fig. 14 has an error expressed in three standard deviations, as opposed

to Fig. 13, where one standard deviation is used. The experimental keff

distribution overlapped significantly with the calculated one for every ex-

periment.

Procedure (a) shows that the goals of reducing keff uncertainty and

improvement of agreement of keff with experimental results have been

achieved. Step (b) provides additional confidence that there were no signi-
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Figure 14: Comparison of keff results obtained using unperturbed 56-group library (prior)

against perturbed 56-group library (posterior) and experiment for experiments with large

portions of uncertainties coming from other sources than in the case of the assimilated

ones.

ficant errors in the application of Bayesian calibration, for example, under-

estimation of the total experiment uncertainty Etot (see definition of Etot in

4.3). However, these procedures do not rule out the possibility that cross-

sections were overfitted. The improvement of results shown in Fig. 13

could be achieved by modification of many combinations of cross-sections.

The problem of potential overfitting or inability to infer true posterior val-

ues is referred to in the literature as a “non-identifiability problem” [50].

It may arise if experimental data is inadequate or not sensitive enough to

calibrate parameters. To check whether it is possible to infer true posterior

values of cross-sections, the authors of this paper implemented method (c).

This method uses so-called “synthetic experiments”. These are calculated
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values of measurable quantities using synthetically generated parameters.

In the current study, these are keff values computed using a synthetically

generated cross-section library.

A perturbed 56-group library from one of the SCALE SAMPLER mod-

ule libraries was used for this purpose. All the perturbation factors in

this library were created by taking a sample from a multivariate normal

distribution (the multivariate normal distribution is defined by a vector of

perturbation factors equal to one and 56-group covariance library).

To conduct the validation, a linear metamodel consisting of keff com-

puted with unperturbed cross-sections and sensitivities generated by the

TSUNAMI module was created. The metamodel has been proven to work

well by conducting the same SMC-ABC procedure as described in Sec-

tion 4.4.3. The results were very similar to the TSURFER ones, with the

difference within statistical uncertainty. Procedure (c) is described in Al-

gorithm 3. The algorithm is less computationally expensive since a linear

metamodel is used instead of SCALE CSAS5. It takes 20 min on a desktop

computer with Intel Core i5-4690 CPU and 8 GB RAM to finish. The com-

parison between the synthetic and posterior cross-sections is presented in

Fig. 15. It is visible in Fig. 15. that all the synthetic cross-sections are

very close to the SMC-ABC results.Most are within one standard deviation

of the posterior distribution, with one case 1.2 standard deviations away.

Fifteen cross-sections have shifted considerably in the direction of their

corresponding synthetic values.
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Algorithm 3 Validation using synthetic cross-sections.
1. Choose a 56-group library from SAMPLER libraries provided in the SCALE software

package.

2. Calculate keff for the 24 experiments using SCALE CSAS5 with the library chosen

in step (1).

3. Implement the resulting keff values in the SMC-ABC algorithm as observed data.

4. Assume the same uncertainties for keff in step (3) as for real experiments from

ICSBEP.

5. Collect sensitivity data for the 24 experiments from TSUNAMI results (using the

standard 56-group library).

6. Implement metamodel based on sensitivities to the SMC-ABC algorithm.

7. Set the same SMC-ABC algorithm parameters as described in Section 4.4.3.

8. Run the algorithm using the PyMC library version 3.11.4.

9. Compare the resulting posterior cross-sections with the cross-sections from step (1).

Figure 15: Comparison between synthetic cross-sections and calculated cross-sections.

The remaining eight have either stayed constant or minor overfit took

place. The largest overfitting occurred for U-235 (n, gamma)6, but it

is still within one standard deviation of the posterior distribution to the
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synthetic cross-section value. The degree to which posterior cross-sections

are close to synthetic cross-sections informs us whether the inference of

true cross-section values is possible given available experimental data. The

agreement between posterior and synthetic cross-sections presented in Fig.

15 is satisfactory, although it is likely that the assimilation of a larger

number of experiments with parameters other than keff would improve

this agreement.

4.6.2 Study of the potential influence of error correlations due to uncertainty

from uncalibrated cross-sections

PyMC implementation of SMC-ABC has no in-built capability to con-

sider correlations between errors in experimental data. Such correlations

can arise when only some of the input parameters are calibrated. Neg-

lecting these correlations comes with the risk of artificially reduced pos-

terior uncertainty. To investigate the effect of these correlations in this

work, TSURFER was run with settings described in 4.4.1, but correlations

between experiments errors were included. The reliability of TSURFER

for calibrating the considered cross-sections despite the assumption of lin-

ear responses was proven in Section 4.5. The correlations were computed

using the Monte Carlo method. For that, linear metamodels were used

to calculate the influence of sampled uncalibrated U-234, U-235, and U-

238 cross-sections, while independent uncertainty sources like benchmark

experiment uncertainty were set as random variables. Two thousand cal-

culations were made for each considered experiment. The resulting correl-

ations were in the range of -0.18 to 0.5. The comparison with SMC-ABC

results is presented in Fig. 16. The posterior uncertainties’ comparison is

presented in Fig. 17. The new posterior cross-sections have only slightly

different values. The posterior uncertainty values are also quite similar,

although SMC-ABC slightly underestimates the posterior uncertainty for

some cross-sections.
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Figure 16: Comparison between posterior cross-sections calculated by SMC-ABC without

correlations and by GLLS with correlations.

Figure 17: Comparison between posterior uncertainties calculated by SMC-ABC without

correlations and by GLLS with correlations.
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Figs. 16 and 17 prove that correlations between uncalibrated parameters

have an influence on results, and although this influence was not large

in this study, it could be when using a different set of experiments or if

another Bayesian calibration problem was being solved. A more thorough

analysis of the influence of the uncalibrated parameters’ uncertainties and

correlations from uncalibrated experiments is presented in Section 5.5.3.

4.7 Summary of the GLLS, MOCABA, and SMC-ABC compar-

ison

The comparison conducted in this chapter shows that the SMC-ABCmethod

is an effective but computationally expensive tool to reduce uncertainty in

select multigroup neutron-cross sections. The algorithm’s implementation

in the PyMC Python library also needs an improvement in the form of

the built-in capability to include correlations between experimental uncer-

tainties. The GLLS method implemented in the SCALE TSURFER code

is a much faster and similarly reliable tool for U-235-based fast systems.

The minor differences in posterior uncertainties of cross-sections are likely

due to SMC-ABC Monte Carlo error. MOCABA is also much faster than

SMC-ABC and gives practically the same results, with posterior uncer-

tainties within Monte Carlo error from each other. MOCABA also enables

the use of non-linear models and allows for the possibility of not relying on

sensitivity calculations. The adjoint-based sensitivity calculations are not

always reliable, as explained in Chapter 3.4. It was decided that for calcu-

lations concerning thermal systems in Section 5, the MOCABA procedure

would be used. It was shown that the posterior distributions are multivari-

ate normal anyway, so there is no need for SMC-ABC. On the other hand,

it is uncertain whether the GLLS’s linear approximation of cross-section

sensitivities is valid for thermal systems where resonances occur.
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5 Application of MOCABA to reduce uncertainty in

cross-sections relevant to HTGRs

After the comparison analyses of the algorithms in Chapter 4.7, the decision

was made to employ the MOCABA procedure for thermal system calcu-

lations for calibrating cross-sections relevant to HTGRs. It was demon-

strated that the posterior distributions are inherently multivariate normal.

However, there remains uncertainty regarding the validity of GLLS’s lin-

ear approximation of cross-section sensitivities in thermal systems with

resonances. Since MOCABA is not affected by the curse of dimensionality

as SMC-ABC, it was decided to calibrate many more cross-sections than

in Section 4.7. The MOCABA algorithm is based on the mathematical

description from Chapter 2.2. It was implemented in Python 3.8 by the

author of the dissertation.

5.1 Relevant cross-sections and assimilated systems

Since MOCABA is not affected by the curse of dimensionality as SMC-

ABC, it was decided to calibrate many more cross-sections than in Section

4. All the cross-sections belonging to U-234, U-235, U-238, graphite, B-10,

and B-11 were calibrated, along with the chi and nubar parameters of the

uranium isotopes. That makes a total of 1904 parameters. The list of

reactions with calibrated parameters for each isotope is presented in Table

3. As in Section 4, the cross-sections were not explicitly calibrated, but

their perturbation factors were defined in Eq. 4.1. The experiments for as-

similation were selected based on the occurrence of isotopes of interest and

the presence of thermal neutron spectrum. Thirty-four experiments from

three series of experiments were selected from the ICSBEP [47] Handbook.

The experiments are listed in Table 4.
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Table 3: List of reactions whose parameters were selected for calibration

U-234 U-235 U-238 B-10 B-11

elastic elastic elastic elastic elastic

n, n’ n, n’ n, n’ n, n’ n, n’

n, 2n n, 2n n, 2n n, gamma n, 2n

fission fission fission n, p n, gamma

n, gamma n, gamma n, gamma n, d n, p

nubar nubar nubar n, α n, t

chi chi chi n, α

Table 4: List of experiments selected for assimilation

System type Series
experiment

number

Highly Enriched Uranium

Thermal Solution Systems
HEU-SOL-THERM-001 001-010

Highly Enriched Uranium

Thermal Solution Systems
HEU-SOL-THERM-028 001-014

Low Enriched Uranium

Thermal Compound

Systems

LEU-COMP-THERM-039 001-010

The complete experimental designation is constructed by joining the

series’ name and number with a dash in between. The HEU-SOL-THERM-

001 is a series of experiments consisting of minimally reflected cylinders

of highly enriched uranyl nitrate solutions. They were performed in the

mid-1970s at the Rocky Flats Plant, which was operated at that time by

Rockwell International. The photo of the experimental setup is presented

in Fig. 18 .
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Figure 18: Photo of HEU-SOL-THERM-001 experimental setup, taken from ICSBEP [47]
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Figure 19: Schematic drawing of a cross-section of HEU-SOL-THERM-028 experimental

setup’s tank and solution, taken from ICSBEP
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The individual experiments differed by the solution composition and the

tank material. For each experiment, the critical height of the solution was

obtained by interpolating between the measurements of subcritical and su-

percritical states with keff very close to 1. The documentation outlines all

uncertainty sources and the correlations between measured errors for all

experiments. The uncertainties for individual experiments range from 380

to 600 pcm.

The HEU-SOL-THERM-028 series comprises uranium (89% 235-U) ni-

trate solutions with a central boron carbide absorber rod. The experiments

were conducted in the 1960s at the Solution Physical Facility of the Insti-

tute of Physics and Power Engineering, Obninsk, Russia. The schematic

drawing of the cross-section of the experimental setup is presented in Figs.

19 and 20, due to lack of photos. The individual experiments differed by

solution composition and tank dimensions. Some experiments had a boron

absorber rod placed in the middle of the tanks, while some did not. The

experiments’ descriptions contained sufficient descriptions of measurement

uncertainties and error correlations for the experiments to be appropriate

for Bayesian assimilation. The uncertainties of keff range from 230 to 580

pcm.

The LEU-COMP-THERM-039 series are experiments made of incom-

plete arrays of water-reflected 4.738-WT.%-enriched uranium dioxide fuel-

rod arrays. The experiments were carried out at Institut de Protection et

de Sûreté Nucléaire in C.E.A. in 1978. Figs. 21 and 22 present the arrays

submerged in a water tank and outside of the water tank.
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Figure 20: Schematic drawing of a cross-section of the whole HEU-SOL-THERM-028

experimental setup, including tank (1), water reflector (2) and surrounding concrete walls.

Drawing taken from ICSBEP.
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Figure 21: A photo of the experimental setup of LEU-COMP-THERM-039 series. A

complete array of fuel rods is visible, while the experiments had different configurations

of rods removed.
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Figure 22: A photo of the full fuel rod array removed from the water tank from the

experimental setup of LEU-COMP-THERM-039 series.
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5.2 Prior distribution

Prior distribution P (α0, Cαα) takes the form of a multivariate distribution

with prior means of perturbation factors made of a 1904-long vector of ”1”

values and the corresponding relative covariance matrix. Any non-zero co-

variances between cross-sections of different reactions (like between U-235

fission and U-238 (n, gamma)) were included. The covariances are taken

from the 56-group relative covariance library from the SCALE software

package (see Chapter 3.2).

5.3 Mathematical Model and uncertainties

The software chosen for the simulation of experiments was SCALE’s CSAS5.

Each simulation runs until a predefined Monte Carlo uncertainty of 0.0002

is reached. Similarly, as described in Section 4.3, the model discrepancy

consists of the Monte Carlo uncertainty (0.0002 in this case) and the un-

certainty from the usage of a multigroup library instead of a continuous

energy library. The uncertainty from the multigroup collapse is calculated

in accordance with Algorithm 2, but separately for each of the four series

of experiments. This approach was needed because the experiments in

individual series were similar in composition and geometry, leading to a

correlated model discrepancy. An ability to generate perturbed CE librar-

ies would be required to calculate the exact correlations between model

discrepancies of individual experiments. That was out of the scope of this

research. Instead, it was assumed that this error would be 70 % correlated

within each experimental series. The summary of the uncertainties due to

multigroup collapse is presented in Table 5.
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Table 5: Uncertainties due to multigroup collapse

Experimental series Uncertainty in ± 1 sd
HEU-SOL-THERM-001 0.00193

HEU-SOL-THERM-028 0.00141

LEU-COMP-THERM-039 0.00031

The uncertainty from the uncalibrated cross-sections is calculated with

the Monte Carlo method rather than the sandwich method described in

Section 4.3. This is because the correlations due to geometrical and iso-

topic uncertainties also had to be computed, and this could only be done

with the Monte Carlo method for the largest sources of such uncertainties.

They could have interacted non-linearly with the uncalibrated parameters’

uncertainties. Three hundred libraries and three hundred inputs with ran-

domized uncertain geometrical and isotopic components were generated for

this purpose. The uncertain input parameters with lower impacts on keff

or input parameters that would be too difficult to implement in the Monte

Carlo method were considered with a different procedure. Their influence

was modeled by simple randomization of errors with standard deviation

calculated by ICSBEP authors. These errors would also be randomized

300 times and added to the respective results of the three hundred simu-

lations.

To combine information on uncertainties from all components: the

model discrepancy, the benchmark experiment uncertainty, and uncer-

tainty from uncalibrated cross-sections, the model discrepancy was also

randomized and added to the three hundred results. The covariance and

correlation matrices were then computed analogously to Eq. 2.23. The

resulting covariance and correlation matrices are presented in Figs. 23 and

24. The abbreviated names of experiments are used; for example, HEU-

SOL-THERM-028-011 is designated as HST-028-011.

90



Figure 23: Covariance matrix of the HEU-SOL-THERM-001, HEU-SOL-THERM-028,

and LEU-COMP-THERM-039 experiments.

It is visible on the correlation plot that the LEU-COMP-THERM exper-

iments have very large correlations within their groups. It is also notable

that despite there being no correlated systematic uncertainties between

different experimental series, there are still correlations present between

them. Those correlations are due to uncalibrated cross-sections’ correlated

errors.
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Figure 24: Correlation matrix of the HEU-SOL-THERM-001, HEU-SOL-THERM-028,

and LEU-COMP-THERM-039 experiments.

5.4 Algorithm settings

Just as in Chapter 4, the only notable adjustable settings for the MOCABA

algorithm is the number of samples generated, as shown in Eq. 2.20 and

the transformation function in case that prior keff values are non-normal.

Based on pre-calculations with MOCABA using linear TSUNAMI-derived

sensitivity-based models, it was decided that 2,000 samples would be gen-

erated. The prior keff values calculated with SCALE CSAS5 passed the

normalcy test, so the transformation was not required. The direct perturb-

ation sensitivity validation (see Chapter 3.4) failed in the case of the sys-

tems HEU-SOL-THERM-001, HEU-SOL-THERM-028, and LEU-COMP-

THERM-039, but the calculated sensitivities could still be used as the
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basis for a metamodel used for the sole purpose of calculating the Monte

Carlo uncertainty. This failure also disables the possibility of conducting

the GLLS calculations and comparing the results with MOCABA.

5.5 Synthetic experiments study

5.5.1 Creation of good quality synthetic experiments and their application

The larger number of calibrated parameters and assimilated experiment

requires a slightly different approach to the result presentation than the

one applied in Section 4. There is no point showing 1904 calibrated cross-

sections without knowing which were calibrated well and which were prob-

ably overfitted. To achieve this, we first need to conduct synthetic experi-

ments. Fig. 25 shows the prior and posterior keff values after assimilation

of synthetic experiments. The synthetic experiments were generated using

the 56-MG SCALE SAMPLER library designated as ”Sample1”.

Figure 25: Comparison of keff results for prior simulation, posterior simulation, and

synthetic experiment.
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Figure 26: Comparison of keff results for prior simulation, posterior simulation, and

synthetic experiment with perturbed values.

In Fig. 25, the agreement between the prior and posterior benchmark

keff values is excellent, but this set of synthetic experiments is a little un-

realistic. Notice that if we created a continuous curve from prior values

and then separately did the same for experimental values, then the curves

would look almost as if they differed by a free constant. Experimental

measurements exhibit significantly greater levels of complexity and noise.

To make the synthetic experiments look more like real experiments, we

need to additionally perturb them by considering the experimental uncer-

tainties - geometrical, isotopic, etc. The comparison between prior and

posterior can then look as shown in Fig. 26. The posterior keff values

don’t differ by much, even though it is visible that some synthetic values

are significantly perturbed in some cases. Such a result is expected and is

evidence of the robustness of the Bayesian algorithms.
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5.5.2 Comparison of synthetic parameters with the calibration results

Now, we can investigate how the posterior cross-sections look in relation

to synthetic cross-sections. We shall start with the most significant con-

tributor to the keff uncertainty, the U-235(chi) parameter. The calibration

results are presented in Fig. 27. It is clearly visible in Fig. 27 that for

most of the energy groups, the posterior U-235(chi) is closer to the syn-

thetic U-235(chi), so in this instance, the calibration was successful. The

only exceptions are for the two fastest energy groups. This is likely due to

the larger groups having a low influence on keff of assimilated synthetic

experiments and these two parameters being partially anti-correlated to

the parameters from groups 5-32. The posterior relative uncertainty was

somewhat reduced.

The second largest contributor, the nubar parameter, will be investig-

ated. The calibration results are presented in Fig. 28.

Figure 27: Comparison of posterior U-235(chi) parameters with synthetic U-235(chi) val-

ues along with a comparison of corresponding prior and posterior uncertainties.
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Figure 28: Comparison of posterior U-235(nubar) parameters with synthetic nubar para-

meter values along with a comparison of corresponding prior and posterior uncertainties.

The results visible in Fig. 28 are overfitted. There was a slight reduction

in uncertainty for groups 20-56, but the posterior values moved away from

the synthetic one. The calibration of the nubar parameters was therefore

unsuccessful.

The third largest contributor to the keff uncertainty depends on the

experiment. For the low enriched uranium (LEU-COMP-THERM) exper-

iments, it is U-238(n, n’) reaction. The calibration results are presented

in Fig. 29. The calibration of the U-238(n, n’) cross-sections was mainly

successful. Nearly all of the posterior cross-sections are closer to the syn-

thetic ones. The exception to that are cross-section 10-15, which moved

in the opposite direction of the synthetic cross-section values. However,

the uncertainties for energy group 10-15 did not change, and the shift was

small.
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Figure 29: Comparison of posterior U-238(n, n’) cross-sections with synthetic U-238(n,

n’) values along with a comparison of corresponding prior and posterior uncertainties.

Next, the synthetic calibration results will be presented for the U-235(n,

gamma) reaction in Figs. 30 and 31. The results must be presented on

two figures due to the much lower relative uncertainty of the cross-sections

in the thermal region. The posterior cross-sections are overfitted for the

thermal neutron energy range. For the fast range, the cross-sections shifted

in the correct direction, but not enough to know whether the shift resulted

from overfitting or correct calibration.
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Figure 30: Comparison of posterior U-235(n, gamma) cross-sections with synthetic U-

235(n, gamma) values along with a comparison of corresponding prior and posterior un-

certainties.

Figure 31: Comparison of thermal posterior U-235(n, gamma) cross-sections with syn-

thetic thermal U-235(n, gamma) values along with a comparison of corresponding prior

and posterior uncertainties.
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So far, only the U-235(chi) and U-238(n, n’) parameters were shown to

have the potential to be calibrated correctly (i.e., not overfitted), and these

were the 1st and 3rd largest contributors to the keff uncertainties. The

lower the contribution to the uncertainty, the lower the chance of a cross-

section to be calibrated successfully. The U-235(n, gamma) already had a

much lower contribution to the keff uncertainties than the U-235(chi) and

U-238(n, n’). One more reaction will be analysed. If it is also proven to

be overfitted in the current calibration, then all the remaining ones will

also be assumed to be overfitted. We can see in Fig. 32 that the cross-

sections either stayed in place or shifted very little, with no tendency to

move more often in the direction of the synthetic values than away. The

U-238(n, gamma) cross-sections are therefore concluded to be calibrated

unsuccessfully.

It has been established that the only parameters whose posterior values

move in the direction of their true values are U-235(chi) and U-238(n, n’).

For the rest, if they shift towards their true value, it is by chance. The sub-

stantial reduction of the posterior uncertainty in the keff is due to many

cross-sections’ uncertainty being successfully reduced, despite being over-

fitted. Such an outcome will lead to the calculated keff values closer to the

experimental ones and with lower uncertainties but will likely negatively

influence other integral parameters. For example, if fission cross-sections

are overfitted, then the precision of fuel depletion calculations will be neg-

atively impacted despite more accurate keff prediction. It is, therefore,

desirable that either all or the vast majority of posterior cross-sections

move in the direction of their true values, not just that their uncertainty

gets reduced.
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Figure 32: Comparison of posterior U-238(n, gamma) cross-sections with synthetic U-

238(n, gamma) values along with a comparison of corresponding prior and posterior un-

certainties.

5.5.3 Study of the influence of inclusion of experimental uncertainty correl-

ations

Researchers attempting Bayesian calibration usually take into account the

experimental uncertainties and the correlations between the experimental

errors but fail to consider the correlations from uncalibrated parameters

(examples: [25], [33]). In this work, it will be shown that such an approach

might lead to a serious underestimation of the uncertainty of the calibrated

parameters. To illustrate how the neglected correlations from uncalibrated

parameters can influence the results, we will analyse a toy example. This

example is introduced because it is simple and can easily illustrate how the

treatment of uncalibrated input parameters affects the results. After its

presentation, the influence of uncalibrated cross-sections’ treatment will be

investigated.
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Consider the three following parameters described by normal distributions

with specified means and uncertainties:

a = 50± 5,

b = 40± 7,

c = 15± 3.

(5.1)

An experimenter builds three experiments with measurable quantities x1,

x2, x3. The measured quantities are related to the parameters as follows:

x1 = a+ 2 ∗ b+ 3 ∗ c,

x2 = 2 ∗ a+ 2 ∗ b+ 2 ∗ c,

x3 = 4 ∗ a+ b+ c.

(5.2)

The quantity c clearly has the lowest influence on the results, having the

lowest value. The experimenter decides that he wants to calibrate a and

b since they have the largest impact on uncertainty. The true values of

the parameters unknown to the experimenter are 43, 36, and 12 for a, b,

and c, respectively. The measurement device used to measure the x1, x2,

x3 integral parameters has 0.1 uncertainty. The measurement errors are

uncorrelated. The measurements yield the following values: 151.2, 181.9,

219.7 (the true experimental values, unknown to the experimenter, are 151,

182, 220). The experimenter neglects the influence of the c parameter on

experimental uncertainties, so his experimental covariance matrix CI
mm has

diagonal elements equal to 0.12 and off-diagonal elements equal to 0. He

applies the MOCABA algorithm and obtains the posterior values:

aI = 43.26± 0.032,

bI = 32.033± 0.0486.
(5.3)

Both of the posterior mean values are way further than 5 standard devi-

ations away from their true values, even though the posterior values of x1,

x2, x3 got much closer to the experimental measurement yielding 152.33,

180.57, 220.08 compared to their priors of 175, 210, 255. This is a clear
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example of overfitting, with the added unacceptable problem of underes-

timated posterior uncertainties.

What if the experimenter included the uncertainty and correlations coming

from c in the experimental values? By applying a Monte Carlo sampling,

the covariance now takes the form:

CII
mm =


92.18 61.41 30.72

61.41 40.92 20.46

30.72 20.46 10.25

 . (5.4)

The experimenter applies the MOCABA algorithm again and now obtains

the posterior values of:

aII = 42.92± 0.04,

bII = 35.80± 0.22.
(5.5)

Both of the posterior mean values lie within 3 standard deviations of their

true values, which is the desired result.

Another component that cannot be omitted is the correlations between

uncertainties. Consider the same scenario as in formula 5.4, but with off-

diagonal elements equal to zero. We would get the covariance matrix:

CIII
mm =


92.18 0 0

0 40.92 0

0 0 10.25

 . (5.6)

From such a covariance, we would arrive at the following results:

aIII = 43.03± 1.19,

bIII = 33.13± 3.06.
(5.7)

Even though the true values of the parameters are within three standard

deviations of the posterior mean values, the uncertainty is significantly in-

creased. Also, one parameter lies much further away from its true value

than if correlations were included. However, the example does not prove
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Figure 33: Comparison of posterior keff values for cases where uncalibrated parameter

uncertainty was included and neglected.

that the neglect of correlations between experiments will lead to less suc-

cessfully calibrated parameters. In other cases, it might lead to the under-

estimation of posterior uncertainty, just as it was shown in Section 4.6.2.

The effect of neglecting the influence of the uncalibrated parameters has

been analysed for the same synthetic experiments as in Section 5.5.1. Fig.

33 shows the comparison between the posterior with the influence of the

uncalibrated cross-sections included and the case where they were neg-

lected. The posterior uncertainty for both cases is obtained by applying

Eq. 2.19 and then adding the uncertainty from uncalibrated parameters

calculated with the Monte Carlo sampling. The synthetic experiment and

the prior values were made semi-transparent for clarity, but they are the

same as in Fig. 26. We can see that the posterior values are very sim-

ilar, but the posterior covariance is visibly different. The average posterior

uncertainty in simulated keff of the assimilated experiments is 421 pcm
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when uncalibrated parameter influence is included and 316 pcm when it is

neglected. It is a substantial difference.

Figs. 34 and 35 show how neglecting covariances influenced the pos-

terior cross sections for the U-235(chi) and nubar parameters. We can see

that in both of the figures, the posterior uncertainty is slightly lower for

the case where uncalibrated parameters’ influence is neglected. In Fig. 34,

the posterior values are slightly shifted towards synthetic values, while in

Fig. 35, they are shifted away from the synthetic parameters, although by

a minuscule amount. No conclusions can be drawn from these posterior

parameter shifts. The most important observation is the combined influ-

ence of all posterior parameter uncertainty underpredictions in keff of 24.9

% discussed below in Fig. 33. This observation further solidifies the con-

clusion of the necessity of inclusion of uncalibrated parameters’ variances

and covariances in the experimental data.

Figure 34: Posterior mean U-235(chi) values after real experiment assimilation, with

prior uncertainty presented alongside posterior uncertainty to illustrate the uncertainty

reduction.
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Figure 35: Posterior mean U-238(n, n’) values after real experiment assimilation, with

prior uncertainty presented alongside posterior uncertainty to illustrate the uncertainty

reduction.

5.6 Results using real experiments

Based on the conclusions from Section 5.5, the correct approach to calib-

rating real experiments would be to limit the calibration to the U-235(chi)

and U-238(n, n’) parameters while adding the uncertainty from the re-

maining cross-sections to the experimental uncertainties. However, such

an approach would require the repeat of the expenditure of large computa-

tional resources - namely, the generation of 2000 cross-section libraries and

calculating keff of the experiments chosen for assimilation. The already

finished MOCABA computations are good enough to let us estimate how

far the real U-235(chi) and U-238(n,n’) parameters are from the values cur-

rently used in the 56-MG cross-section library and whether the true values

are smaller or larger. There is no possibility to extract just these well-

calibrated perturbation factors for later use in other calculations. That
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is due to the fact that as a result of the MOCABA procedure, there are

now non-zero covariances between these parameters and all the others. So

either all should be extracted for later use, or none of them.

The results of the prior and posterior calculations are shown for the

experimental keff values in Fig. 36. It is visible that the currently avail-

able best estimates of the U-235(chi) values are lower than their real values,

while the U-238(n, n’) the best estimations are above their real values.Figs.

37 and 38 show the posterior perturbation factors for U-235(chi) and U-

238(n,n’) reactions.

Figure 36: Comparison of keff results for prior simulation, posterior simulation, and real

experiment.
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Figure 37: Posterior mean U-235(chi) values after real experiment assimilation, with

prior uncertainty presented alongside posterior uncertainty to illustrate the uncertainty

reduction.

Figure 38: Posterior mean U-238(n, n’) values after real experiment assimilation, with

prior uncertainty presented alongside posterior uncertainty to illustrate the uncertainty

reduction.
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Given the conclusions of the synthetic parameter study in Section 5.5,

where it was established that only the U-235(chi) and U-238(n, n’) para-

meters are fully successfully calibrated (both their uncertainty is reduced

and their posterior values get closer to their real values), it was decided not

to conduct further validation exercises. If the synthetic study concluded

that all or nearly all cross-sections are successfully calibrated, then further

validation should be conducted, just as in Section 4.6.1. Ideally, integral

parameters other than just keff should be used for validation. A non-

exhaustive list of examples of such integral parameters are reactor power

distribution measurements, fuel depletion, boron letdown curve in a pres-

surized water reactor, and neutron energy distribution at specified points

in critical systems.

5.7 Summary

In this chapter, the calibration of 1,904 neutron cross-sections with the

MOCABA algorithm is attempted. It was found by using an enhanced (in

comparison with Chapter 4.6) synthetic experiment validation procedure

that only the cross-sections contributing the most to keff uncertainty are

successfully calibrated. It was concluded that only the cross-sections that

can be successfully calibrated should undergo calibration, while the un-

certainty from the rest should be included in the experimental covariance

matrix. If a cross-section is chosen for calibration, all the cross-sections

correlated with it must also be calibrated. No reliable mathematical treat-

ment could be applied to find the posterior covariance between calibrated

and uncalibrated cross-sections. An accelerator-driven system could in-

crease the sensitivity of keff for some cross-sections, like for the fastest (n,

gamma) or fission energy groups, to make their calibration possible. This

might be too difficult for other cross-sections, such as (n, 2n’). The case for

including the uncertainty from uncalibrated cross-sections was made using

a toy example and a neutron cross-section calibration problem.
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6 Outline of best practices for neutron cross-section

calibration and conclusions

The findings gathered from the research described in Sections 4 and 5 allow

for the creation of a best-practices algorithm for reliable calibration of neut-

ron cross-sections. Successful calibration not only reduces the cross-section

uncertainties but also results in the means of their posterior distributions

being closer to the true cross-section values than their prior means. The

summary of these findings is presented in the next three paragraphs.

It is not necessary to use the rigorous but computationally expens-

ive SMC-ABC to calibrate neutron cross-sections through the assimila-

tion of measurements of integral parameters, as was shown in Section 4.5.

The posterior means and standard deviations look almost the same and

are within the Monte Carlo uncertainty with each other. It is necessary,

however, to include the non-linearity of responses of keff to cross-section

changes by using MOCABA, not GLLS. The non-linear behavior is not

present when small changes in cross-section take place, but it does happen

when its values are far away from the prior mean, as discussed in Chapter

4.5. The GLLS procedure also suffers from one major flaw. The method

for calculating sensitivities, which is based on adjoint calculations, is not

universally reliable, as it is mentioned in Chapter 3.4. Even if the total

sensitivities for isotopes generated by TSUNAMI pass the direct perturba-

tion test in CSAS5, it is not a guarantee that the sensitivities of individual

cross-sections are correct. Furthermore, the sensitivity validation proced-

ure is done by manually modifying CSAS5 inputs, so it is prone to human

error. Another important finding is related to MOCABA. It is found that

even a minor skew in the prior distribution from the normal one will result

in noticeable differences in posterior keff . It is, therefore, essential to run

a reliable normalcy test, not only visually gauge if the prior distribution of

the assimilated parameter looks normal. The application of the rigorous
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SMC-ABC to neutron cross-section calibration and comparison of it with

MOCABA and GLLS is novel.

The synthetic experiments validation has the ability to verify whether

the posterior cross-section means are closer to their true values or not. It

was shown both in Sections 4.6 and 5.5.1 that while the cross-section un-

certainties may be reduced during Bayesian calibration, it is not always

guaranteed that they will move towards their true values. To make sure

that we obtain the posteriors with means closer to their real values, a

diverse set of experiments backed by synthetic experiment validation is

required. It is likely that for some cross-sections, experiments from other

sources than ICSBEP are needed. For example, keff has low sensitivity

to the fastest groups because of the relatively low number of generated

neutrons in that range. It might be the case that accelerated-driven ex-

periments could be used for that purpose. The accelerator could increase

the relative number of neutrons in specific ranges, thus increasing the keff

sensitivity to corresponding cross-sections. The synthetic experiment val-

idation is novel in the context of nuclear engineering inverse problems. It

is an improvement on currently used validation procedures, which proves

part of the thesis statement presented in Chapter 1.4.

It is not possible to calibrate all cross-sections that influence the integ-

ral parameters of experiments. While accelerated-driven systems may be

a solution for some of the cross-sections’ successful calibration, the others’

influence is too low for any remedy. An example of that is the U-235(n,

2n’) reaction. In this case, the uncertainty from this cross-section must

be included in the experimental covariance matrix. Its neglect will, in the

best case, slightly underestimate the posterior uncertainty of the calibrated

cross-sections. In the worst case, it will underestimate this uncertainty so

much that the calibrated cross-section value will be more than 3 standard

deviations away from the true value. While it is unlikely that this would

happen during cross-section calibration, it was shown in the toy example
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in Section 5.5.3, that it is a possible outcome in Bayesian calibration prob-

lems. The practice of some authors in the field of Bayesian statistics of

neglecting the uncertainties of uncalibrated input parameters is incorrect.

The rigorous treatment of the uncalibrated input model parameters presen-

ted in 5.5.3 is novel. It provides improved results, which proves part of the

thesis statement presented in Chapter 1.4. In conjunction with the im-

proved validation with synthetic experiments, the entire thesis statement

is proven.

All the findings above are combined and presented in Algorithm 4 and

5, which shows how to conduct a successful calibration of neutron cross-

sections.

Algorithm 4 Step-by-step instruction on how to successfully calibrate neutron cross-

sections, Part 1
1. Make an initial decision on which cross-sections will be calibrated. The higher

the uncertainty contribution of a cross-section to accessible experiments, the easier

it is to calibrate it successfully. All cross-sections whose uncertainties are correlated

with a chosen cross-section must also be calibrated. There is no reliable mathematical

treatment that can compute the posterior correlation value when one of the initially

correlated parameters was calibrated and another was not, as discussed in Section 4.

2. Choose a set of experiments for assimilation. Create models calculating the measured

integral parameters.

3. Start the MOCABA algorithm. If possible, first make a few dozen runs on coarser, for

example, linear models to estimate how many libraries are needed to achieve desirably

low Monte Carlo error in posterior means. Create a sample of N neutron cross-section

libraries and run all models for every sampled library.

4. Calculate the uncertainties and their correlations (an error covariance matrix) for all

experimental integral quantities with the Monte Carlo method. Include the geometrical

and material sources, as well as the uncalibrated parameters’ contribution and model

discrepancy error. Make calculations for enough samples to have a desirably low Monte

Carlo uncertainty in calculated variances and covariances.

5. Generate a sample of synthetic cross-sections. Use them to generate synthetic

experiments. Perturb the generated synthetic integral quantity values in accordance

with the experimental covariance matrix described in step 4.
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Algorithm 5 Step-by-step instruction on how to successfully calibrate neutron cross-

sections, Part 2
6. Check if the prior distributions of the modeled integral parameters form normal

distributions. If they don’t, fit them into the Johnson distribution and transform them

into normal ones using the standard Johnson-to-normal transformation. Assimilate

the synthetic experiments with the MOCABA algorithm. Check if all of the posterior

cross-sections are closer to synthetic cross-sections. If they are not, find additional

experiments for assimilation, calculate their measured integral quantities with libraries

generated in step 3, compute the uncertainty and correlations by using the libraries gen-

erated in step 4, compute the synthetic integral parameter values with library generated

in step 5, and check if all cross-sections are closer to their synthetic values. Repeat step

6 until all cross-sections are closer to their synthetic values. Due to some cross-sections

having a very low influence on some integral parameters, like the fastest neutron group

chi parameter, accelerator-driven experiments might have to be designed and applied.

7. Check if any synthetic values are more than four posterior standard deviations

away from the posterior mean values. If so, some uncertainties were likely erroneously

calculated. If more than 1 in 400 is more than three standard deviations away, then

the same applies. In such a case, review the step 4 uncertainty calculations.

8. Once the calibration using synthetic experiments is proven to be successful, assim-

ilate real experiments.

9. Validate the posterior cross-sections generated in step 8 with the experiments not

used during assimilation. Use as many experiments as possible and check as many

integral parameters as possible. The calculated integral parameters must always be

within three standard deviations away from experimental values (more precisely 399

out of 400 within three standard deviations).

10. Once the validation is successful, the new library will consist of the updated cross-

sections and the uncalibrated cross-sections. The covariance library will be updated for

the calibrated cross-sections. Every calibrated neutron cross-section will have a non-

zero correlation to every other since they were calibrated together. After that, the new

library is ready for deployment in engineering applications.
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The cross-section Bayesian calibration has a great application potential

not only for the reduction of the uncertainty of the integral experiment

parameters like keff . It might be possible to use them for calibration of

the continuous energy neutron cross-section libraries. The results of mul-

tigroup calibration provide information on the integral average of neutron

cross-sections in specific energy ranges and its uncertainty, which might be

possible to incorporate in continuous energy library generation as a con-

straint. The author of this thesis plans to investigate this possibility in the

future.

The algorithms 4 and 5 can be slightly modified and applied to other

Bayesian calibration problems (for example with the use of SMC-ABC if

non-normal posterior distributions are expected). The Bayesian calibra-

tion algorithms see any mathematical models as black boxes, which is why

the same statistical tools are applied in fields even as distant as biology

and geology. As the computational power of computers and clusters grows

much quicker than the accuracy of direct measurement devices, the com-

putationally demanding indirect measurements, which is what Bayesian

calibration essentially is, will likely become more and more popular. It

is vital that researchers applying Bayesian calibration procedures do that

in a standardized, rigorous way. This thesis helps establish these stand-

ards, with a focus on the application of Bayesian calibration of neutron

cross-sections.
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