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NATIONAL CENTRE FOR NUCLEAR RESEARCH

Abstract
κ-deformed scalar field

Andrea Bevilacqua

In the following work we will introduce and discuss in detail a particular model of
complex κ-deformed scalar field, whose behaviour under C, P , T transformation is
particularly transparent from both a formal and phenomenological point of view. We
will begin by introducing the key mathematical structure at the basis of our investiga-
tion, namely the κ-Poincaré (Hopf) algebra and the κ-Minkowski spacetime. We will
then investigate the behaviour of general two-particle states under deformed boost.
After this we will introduce the action of our κ-deformed complex scalar field. From
it, we will derive the equations of motion, as well as the Noether charges due to the
continuous symmetries. The peculiar features of κ-deformation in general, and of our
model in particular, allow for very non-trivial interaction between discrete and con-
tinuous symmetries, of which we will investigate the phenomenological consequences
(particularly in terms of difference of lifetime of decaying particles). To conclude, we
will obtain the κ-deformed propagator of the κ-deformed complex scalar field, and the
imaginary part of the 1-loop contribution to it, ending with additional phenomeno-
logical consequences. The third chapter is new, unpublished work.
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Streszczenie
κ-deformed scalar field

Andrea Bevilacqua

W niniejszej pracy wprowadzimy i przedyskutujemy w szczegółach model zespolonego,
κ-zdeformowanego pola skalarnego, którego zachowanie pod wpływem transforma-
cji C, P i T można jasno przedstawić, zarówno z formalnego, jak z fenomenolo-
gicznego punktu widzenia. Zaczniemy od wprowadzenia struktur matematycznych,
leżących u podstaw naszych badań, a mianowicie algebry κ-Poincarego (Hopfa) oraz
czasoprzestrzeni κ-Minkowskiego. Następnie zbadamy zachowanie ogólnych stanów
dwucząstkowych pod wpływem zdeformowanego pchnięcia Lorentza. Potem wprowa-
dzimy działanie κ-zdeformowanego, zespolonego pola skalarnego, po czym wyprowa-
dzimy równania ruchu i ładunki Noether odpowiadające symetriom ciągłym. Pewne
szczególne własności κ-deformacji, zarówno te ogólne, jak i dotyczące tylko naszego
modelu, umożliwiają na istnienie nietrywialnch związków między symetriami dyskret-
nymi i ciągłymi, z których wyprowadzimy konsekwencje fenomenologiczne i poddamy
je badaniom (szczególnie konsekwencje dotyczące różnic czasów życia niestabilnych
cząstek i antycząstek). Obliczymy także κ-zdeformowany propagator κ-zdeformowane-
go, zespolonego pola skalarnego, jak również część urojoną jednopętlowej poprawki
do propagatora, a następnie zakończymy dyskusją konsekwencji fenomenologicznych.
Trzeci rozdział to nowa, nieopublikowana praca.

HTTP://WWW.NCBJ.GOV.PL




ix

Acknowledgements
I would like to thank my supervisors Jurek and Wojtek. Their deep knowledge

and understanding of physics has been the source of many interesting discussions,
and their guidance has made my Ph.D. studies a wonderful experience. For the same
reasons, I would also like to thank Giulia, Michele, Giacomo, and Josua. I am also
deeply grateful to Przemek for his help in making these four years possible in the
first place. I would also like to thank Monika for all the incredible help, and for the
very interesting discussions during my frequent trips to her office, as well as for the
enjoyable Polish lectures. Additionally, I would like to thank Ubaldo and Anatolii for
the wonderful time spent together. A special thanks goes also to my family for their
help, I wouldn’t have been able to study for so many years without their support.

Finally, my partner Alice has accompanied me throughout all my studies, in a
voyage which has been made even more beautiful (and much more chaotic) by the
birth of our son Levi. To both of them goes all my gratitude.

Part of this work has been supported by funds provided by the Polish National
Science Center, the project number 2019/33/B/ST2/00050, and by the NAWA schol-
arship financed by the STER program. My participation to COST Action CA18108
activities has been financed by COST Action. Part of this work’s bibliography has
been collected using [1].





xi

Contents

Declaration of Authorship iii

Abstract v

Streszczenie vii

Acknowledgements ix

1 κ-Minkowski and κ-Poincaré 1
1.1 Introduction to κ-deformation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal definition of Hopf algebra . . . . . . . . . . . . . . . . . . . . . 4
1.3 From κ-Poincaré to κ-Minkowski . . . . . . . . . . . . . . . . . . . . . 5
1.4 From κ-Minkowski to κ-Poincaré . . . . . . . . . . . . . . . . . . . . . 9
1.5 Finite boosts for two-particle states . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Fifth column: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.2 Fourth column: . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.3 Third column: . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.4 Second column: . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.5 First column: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.6 Expansion of the final matrix up to 1/κ . . . . . . . . . . . . . 21
1.5.7 Check of the consistency of the first order expansion of L′

g . . . 23
1.6 Two-particle kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Complex scalar field on κ-Minkowski spacetime 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Weyl maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Action for the complex scalar field . . . . . . . . . . . . . . . . . . . . 34
2.4 Action of derivatives on ⋆ products . . . . . . . . . . . . . . . . . . . . 35

2.4.1 A = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 A = i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.3 A = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 A = + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.5 ∆†

+ = κ2∆−1
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Integration-by-parts relation for ∂i going ← . . . . . . . . . . . . . . . 38
2.6 Integration-by-parts relation for ∂0 going ← . . . . . . . . . . . . . . . 39
2.7 Integration-by-parts relation for ∂i going → . . . . . . . . . . . . . . . 39
2.8 Integration-by-parts relation for ∂0 going → . . . . . . . . . . . . . . . 40
2.9 Mass terms integration by parts . . . . . . . . . . . . . . . . . . . . . . 41
2.10 EoM and surface terms Π0, Πi, and Π4 for both orderings of the action 42
2.11 Complex scalar field and its properties . . . . . . . . . . . . . . . . . . 43

2.11.1 C,P, T in the non-deformed context: a short review . . . . . . 45
2.11.2 C,P, T in the κ-deformed context . . . . . . . . . . . . . . . . . 46

2.12 Off-shell action in momentum space . . . . . . . . . . . . . . . . . . . 47



xii

2.12.1 First ordering of the action . . . . . . . . . . . . . . . . . . . . 47
2.12.2 Second ordering of the action . . . . . . . . . . . . . . . . . . . 48
2.12.3 Sum of the two actions . . . . . . . . . . . . . . . . . . . . . . . 49

2.13 Symplectic form for the two actions . . . . . . . . . . . . . . . . . . . . 49
2.13.1 Example in the non-deformed case . . . . . . . . . . . . . . . . 49
2.13.2 The κ-deformed case . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 Conserved charges: geometric approach . . . . . . . . . . . . . . . . . 54
2.14.1 Non-deformed case . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.14.1.1 Translation charges . . . . . . . . . . . . . . . . . . . 54
2.14.1.2 Boost and rotation charges . . . . . . . . . . . . . . . 55

2.14.1.2.1 Crucial step . . . . . . . . . . . . . . . . . . . 58
2.14.2 κ-deformed case . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.14.2.1 Translation charges . . . . . . . . . . . . . . . . . . . 58
2.14.2.1.1 Non-deformed contraction: . . . . . . . . . . 59
2.14.2.1.2 Deformed contraction: . . . . . . . . . . . . . 60

2.14.2.2 Notes on the above (overall) procedure . . . . . . . . 61
2.14.2.3 Boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.14.2.3.1 Crucial step . . . . . . . . . . . . . . . . . . . 64
2.14.2.3.2 The (very) peculiar features of boosts . . . . 66
2.14.2.3.3 The role of ζ(p) . . . . . . . . . . . . . . . . 67

2.14.2.4 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.14.3 Is it δA ∧ δB = −δB ∧ δA, or δA ∧ δB = S(δB ∧ δA)? . . . . . 69
2.14.4 And what if we add contractions with vector fields? . . . . . . . 70

2.15 The algebra of the κ-deformed charges . . . . . . . . . . . . . . . . . . 74
2.15.0.1 [Ni,Pj ] = −iηijP0 . . . . . . . . . . . . . . . . . . . 75
2.15.0.2 [Ni,Nj ] = −iϵijkMk . . . . . . . . . . . . . . . . . . . 76

2.16 C and its commutator with the boosts . . . . . . . . . . . . . . . . . . 80
2.17 ���CPT ⇔����Lorentz? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.17.1 Greenberg’s argument . . . . . . . . . . . . . . . . . . . . . . . 84
2.17.2 Jost theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.17.3 Comments on Jost and Greenberg theorems . . . . . . . . . . . 88

2.17.3.1 CPT properties of ⟨0|ϕ†1(x1) ⋆ ϕ2(x2)|0⟩ . . . . . . . . 89
2.17.3.2 Lorentz properties of ⟨0|ϕ†1(x1) ⋆ ϕ2(x2)|0⟩ . . . . . . . 91

2.18 Phenomenological consequences of deformed CPT transformations . . 93
2.18.1 Estimation of deformed decay width . . . . . . . . . . . . . . . 96

3 κ-deformed propagator, and 1-loop correction to it 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Feynman propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.1 From the generating functional . . . . . . . . . . . . . . . . . . 101
3.2.2 As inverse of the field operator . . . . . . . . . . . . . . . . . . 104

3.3 Example of loop correction to the propagator: non-deformed case . . . 105
3.3.1 Using renormalization . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Example of loop correction to the propagator: κ- deformed case . . . . 108
3.4.1 Dimensional regularization and cut-off in the κ-deformed context108

3.4.1.1 Summary of the individual diagrams and total 1-loop
amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.5 Mass distribution width . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xiii

To A.B. and L.B-B.





1

1
κ-Minkowski and κ-Poincaré

1.1 Introduction to κ-deformation

Immediately after both general relativity and quantum mechanics were formalized,
physicists were already trying to understand what a quantum theory of gravity would
look like [2]. Several approaches were tried, each with their pros and cons (an ex-
tensive discussion of each approach would be out of place here, but one can consult
[3] for a review). From a theoretical point of view, the wealth of approaches was
due to the vastly different nature of general relativity and quantum mechanics, both
conceptually and formally. Moreover, from the more pragmatic point of view, effects
of quantum gravitational origin were thought to appear when particles with Plank
energy Ep scatter with impact parameter given by the Plank length lp. This means
that very early on, there was significant doubt that any quantum gravitational effect
could be phenomenologically relevant, even in the distant future [4]. Moreover, the
measurement of phenomena happening at distances comparable or smaller than lp
would require apparatuses so large that they inevitably collapse to a black hole [5],
which means there may be some limitation from first principles in the conventional
definition of spacetime as a continuous structure (this was already noted in [4], [6],
[7]). Despite these advances, however, the lack of phenomenological feedback seemed
to be destined to be a long lasting issue in quantum gravity (QG) research. It was
therefore unexpected when it was suggested that, switching the focus to cumulative
effects of QG, a phenomenology was not only possible, but within reach [8]. Indeed,
instead of focussing on high energy scattering processes with very small impact pa-
rameter, one could try to study the cumulative effects of QG, which can for example
manifest themselves with a slightly different propagation speed for photons of different
energies [9], [10], [53], [12], [13], [35], and may also affect neutrino properties [15], [16],
[17], [18], [19], [20]. One of the most effective ways to go about studying potential QG
effects is therefore not to study any model of QG directly, but a potential effective
theory of QG.

One of the most studied model in this sense is based on a deformation of the
Poincaré algebra, called κ-Poincaré algebra, where κ is a deformation parameter with
dimensions of energy. Its origin can be traced back to the 1990’s, particularly to [21],
[22], [23], [24], [25], [26]. The idea is to deform the canonical Poincaré algebra to
investigate how symmetries might change in some well defined physical limit of QG.

At the same time, new models were being proposed where in addition to a constant
speed c, there is also a length scale l = ℏ

κ (or l = 1
κ if ℏ = 1) which is independent of

the observer [27], [28], [29], [30]. This length scale also implies a momentum scale in
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momentum space; the idea is therefore that such observer-independent scale can be
used to define some non-linear dispersion relation while keeping the theory Lorentz
invariant (where ‘Lorentz invariance’ in this context is defined in the appropriate way).
Intuitively speaking, such an additional scale would allow for a non-trivial geometry
of momentum space, which is usually flat in non-deformed theories which lack such
a scale. To give just a small example, one can start from the action of a classical
particle with non-deformed dispersion relation moving in a curved spacetime [75], [76]

S =

∫
dτ ẋµe a

µ (x)pa −N(ηabpapb +m2). (1.1)

From this, one can by analogy write down the action of a particle moving in flat
spacetime, but curved momentum space

Sκ = −
∫
dτ xaE µ

a (k, κ)k̇µ −N(Cκ(k) +m2). (1.2)

where E µ
a is the tetrad which is related to the momentum-space metric by

Gµν(k, κ) = ηabE µ
a (k, κ)E ν

b (k, κ), (1.3)

and Cκ(k) is the deformed dispersion relation (once again, here we are using a defor-
mation parameter with dimensions of energy). For example, one could choose

Cκ(k) = −4κ2 sinh2
(
k0
2κ

)
+ k2e

k0
κ . (1.4)

One can show that

Sκ =

∫
dτ ẋ0k0 − e

k0
κ x · k̇+N(Cκ(k) +m2) (1.5)

which is invariant under a deformed set of transformations which satisfy the so called
κ-Poincaré algebra (which will be discussed in detail in later sections). The symplectic
form is then given by

Ωκ =

∫
dτ δk0 ∧ δx0 + e

k0
κ δki ∧ δxi −

xi

κ
e
k0
κ δk0 ∧ δki (1.6)

which implies

{x0, p0} = 1 {xi,kj} = e−
k0
κ δij {x0,xi} = −1

κ
xi. (1.7)

We see that, upon quantization, spacetime coordinates do not commute. These type of
non-commutativity defines the so called κ-Minkowski spacetime. This kind of models
showcases interesting phenomena, such as relative locality [33], [34], [35], and are
related to κ-Poincaré algebras [36], [65], [66], [67].

Finally, in 2 + 1 dimensions, one can show that κ-deformation naturally emerges
when considering point-like particles coupled with gravity (see for example [38],[37],
[75] and references therein). This is due to the fact that the Newton constant GN is
dimensionful in 2 + 1 dimensions, and it has dimensions of energy. The procedure is
fairly straightforward and can be summarized in the following steps [76],[75]:

1) From the total action of gravity and point-like particles coupled to it, one can
get the explicit solutions of the (finitely many) gravitational degrees of freedom;
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2) Substitute these solutions back into the action, obtaining a new action which
describes the motion of point-like particles ‘dressed’ in their own gravitational
field;

3) This new action can then be shown to correspond to a κ-deformed model, much
like the one described by eq. (1.5) (although in the case of 2 + 1 particles with
gravity we have a different kind of deformations).

Furthermore, one can argue that the deformed symmetry group P3 acting on the
Hilbert space H 3 of 2 + 1 gravity with particles is expected to be a subgroup of the
full group P4 acting on the Hilbert space H 4 of particles coupled with gravity in 3+1
dimensions [38]. All this motivates the study of fields in the context of κ-Poincaré
and κ-Minkowski.

κ-deformation models have also proven to be interesting from the phenomeno-
logical point of view, ranging from symmetry violation, to string theory, astronomy,
particle physics, and black holes [51], [52], [53], [54], [55], [56], [57], [58].

In this work, we will investigate the kinematical properties of particles in κ-
Minkowski spacetime (chapter 1), and we will then introduce the κ-deformed complex
scalar field, studying its properties and computing the Noether charges (chapter 2).
Finally, we will compute the propagator and the imaginary part of the 1-loop correc-
tion to it (chapter 3). Each of the chapters will contain a final section investigating
possible experimental signature of the theoretical results obtained earlier in the chap-
ter. There have been already several approaches building fields on top of κ-Minkowski
spacetime, or using κ-Minkowski algebra in general, see for example [39], [86], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [80], [49], [50]. In contrast to these models,
the construction which we will present in this work allows for a much simpler, canon-
ical definition of deformed symmetries in the κ-deformed context. The particularly
simple form of the discrete symmetries in turn allows for an interesting (and easy to
interpret) phenomenology.

Of course, key ingredients in all our constructions are the κ-Minkowski spacetime,
and the κ-Poincaré algebra, so we will dedicate the first two section of the current
chapter to a brief exposition of their properties. It turns out, however, that it is not
just the deformed κ-Poincaré algebra to be important, but the Hopf algebra structure
of which the κ-Poincaré algebra is but a part [61]. The mathematical aspects of κ-
deformations and the importance of the relevant Hopf algebra have been investigated
in detail in [62], [63], [64], [65], [68], [69], and the important physical ultra-relativistic
and non-relativistic limits in [71], [70], [72]. The constructions of κ-Minkowski space-
time and the κ-Poincaré Hopf algebra, as well as the relations between them, have
been extensively studied for decades. Here we will highlight how one can obtain κ-
Minkowski spacetime starting from the κ-Poincaré Hopf algebra following [59], [37]
and references therein as a guide. We will then show the opposite direction, namely
how one can obtain the κ-Poincaré Hopf algebra structure starting from κ-Minkowski
spacetime, following the approach presented in [60]. Both the approaches can be
useful when working in the context of κ-deformation, and each of them sheds light
on some feature of κ-deformation in general. Since these notions are well known in
the literature, we will not delve into too much details, referring the reader to the
provided references for a deeper treatment. Nevertheless, we will be explicit in out
computations, and show each important step.
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1.2 Formal definition of Hopf algebra

Before beginning our discussion, we give a mathematical definition of a Hopf algebra.
A Hopf algebra is technically defined as a bi-algebra with an antipode, satisfying
several compatibility conditions. To understand what is a bi-algebra with antipode,
we will need to introduce the notion of algebra, co-algebra, and antipode separately.
Using the same notation as [73], we can define a unital algebra as a vector field A
over a field K together with two maps, the product map µ : A ⊗ A → A , and the
unit map η : K→ A , which need to satisfy the associativity and unity axiom defined
respectively by the following commutative diagrams [73]

A ⊗A ⊗A A ⊗A A A ⊗A

A ⊗A A A ⊗A A
η⊗1

1⊗η

µ

µµ

µ

µ⊗id

id⊗µ

A co-algebra can basically be defined by reversing all the arrows. In particular, a
co-algebra is a vector field C over a field K together with two maps, the co-product
map ∆ : C → C ⊗ C and the co-unit map ϵ : C → K, which need to satisfy the
co-associativity and co-unit axiom, which are defined respectively by the following
commutative diagrams [73]

C ⊗ C ⊗ C C ⊗ C C C ⊗ C

C ⊗ C C C ⊗ C C

∆

id⊗∆

∆

∆⊗id

∆

∆

ϵ⊗1

1⊗ϵ

A bi-algebra B is therefore both an algebra and a co-algebra, with additional compati-
bility conditions. In fact, we now have a structure with product µ, unity η, co-product
∆, and co-unity ϵ, and they must satisfy [73]

∆(µ(a, b)) = µ(∆(a),∆(b)), ϵ(µ(a, b)) = ϵ(a)ϵ(b) (1.8)

for all a, b ∈ B, and where

∆(id) = id⊗ id ϵ(id) = 1 (1.9)

where 1 ∈ K. Finally, a Hopf algebra H is a bi-algebra with an additional map
S : H →H such that

S(µ(a, b)) = µ(S(a), S(b)) S(1) = 1 (S ⊗ S) ◦∆ = τ ◦∆ ◦ S (1.10)

where a, b ∈H and τ : H ⊗H →H ⊗H is the flip map defined by

τ(a⊗ b) = b⊗ a (1.11)

for all a ∈H .
In what follows we will concentrate on the κ-Poincaré Hopf algebra. All the above

equalities and commutative diagrams are satisfied by the product, co-product, unity,
co-unity, and antipode, but we will not check them explicitly here. Our aim with
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the discussion in this section and the next is to highlight how the κ-Poincaré Hopf
algebra, and more in particular its co-product sector, is related to the κ-Minkowski
spacetime.

1.3 From κ-Poincaré to κ-Minkowski

The algebra sector of the κ-Poincaré Hopf algebra in the so called bicrossproduct basis
is given by

[Mi, kj ] = iϵijlkl, [Mi, k0] = 0, (1.12)

[Ni, kj ] = iδij

(
κ

2
(1− e−2k0/κ) +

k2

2κ

)
− i

κ
kikj , [Ni, k0] = iki, (1.13)

[Mi,Mj ] = iϵijkMk, [Mi, Nj ] = iϵijkNk [Ni, Nj ] = −iϵijkMk. (1.14)

The co-algebra sector is given by

∆ki = ki ⊗ 1 + e−k0/κ ⊗ ki, ∆k0 = k0 ⊗ 1 + 1⊗ k0, (1.15)

∆Ni = Ni ⊗ 1 + e−k0/κ ⊗Ni +
1

κ
ϵijkkj ⊗Mk, (1.16)

∆Mi =Mi ⊗ 1 + 1⊗Mi (1.17)

and finally the antipode sector is given by

S(k0) = −k0, S(ki) = −kiek0/κ, (1.18)

S(Mi) = −Mi, S(Ni) = −ek0/κ
(
Ni −

1

κ
ϵijkkjMk

)
. (1.19)

The co-units ϵ(k), ϵ(Ni), ϵ(Mj) are all zero. Starting from this Hopf algebra, and
in particular from the co-algebra sector, we can build the spacetime associated to
the algebra. The construction is quite intuitive, because one first introduces the
objects xµ (interpreted as ‘coordinates’, the dual objects of the momenta kµ), and
then one defines the action of the algebra generators kµ, Ni, Mj on them. Having
done this, the co-algebra sector is used to define the action of kµ, Ni, Mj on products
xµxν , and one immediately gets the coordinates commutation relation defining κ-
Minkowski spacetime from the action of kα on xµxν (or more in general on polynomials
of xµ). Furthermore, one can also check that such commutation relations are invariant
under the action of Ni, Mj , showing that the Poincaré algebra indeed describes the
symmetries of κ-Minkowski spacetime. More in detail, using the symbol ▷ to indicate
the action of one of the generators of the κ-Poincaré algebra on spacetime variables,
we have the definitions [37]

kµ ▷ x
ν = −iδνµ, Ni ▷ x̂

j = ix̂0δji , Ni ▷ x̂
0 = ixi, kµ ▷ 1 = ϵ(kµ) = 0

(1.20)
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We then use the co-products to define the actions on polynomials of xµ using the so
called Sweedler notation. Writing everything explicitly, we have

∆f ▷ g1g2 = (∆f)(g1, g2) =
∑
α

(f (1)α ▷ g1)(f
(2)
α ▷ g2) (1.21)

where g1, g2 are some coordinates. The objects with (1) and (2) represent respectively
the ‘first’ and ‘second’ terms in each of the tensor products in the definition of co-
product in eq. (1.15), (1.16), (1.17). To make things more concrete, take for example
ki whose co-product rule is given in eq. (1.15). We have

ki ▷ x̂
0x̂j =

∑
α

((ki)
α
(1) ▷ x̂

0)((ki)
α
(2) ▷ x̂

j) (1.22)

= ((ki)
1
(1) ▷ x̂

0)((ki)
1
(2) ▷ x̂

j) + ((ki)
2
(1) ▷ x̂

0)((ki)
2
(2) ▷ x̂

j) (1.23)

= (ki ▷ x̂
0)(1 ▷ x̂j) + (e−k0/κ ▷ x̂0)(ki ▷ x̂

j) (1.24)

= −iδ0i x̂j +
[(

1− k0
κ

+
k20
2κ2
− . . .

)
▷ x̂0

]
(−iδji ) (1.25)

= 0− ix0δji +
(k0 ▷ x̂

0)

κ
iδji −

k0 ▷ (k0 ▷ x̂
0)

2κ2
iδji + . . . (1.26)

= −ix̂0δji +
1

κ
δji + 0− . . . (1.27)

= −ix0δji +
1

κ
δji (1.28)

Notice that we also used the relations k2 ▷ x = k ▷ (k ▷ x), and recall that ϵ(k) = 0 in
the κ-Poincaré Hopf algebra. In the same way, we also have

ki ▷ x̂
j x̂0 =

∑
α

((ki)
α
(1) ▷ x̂

j)((ki)
α
(2) ▷ x̂

0) (1.29)

= ((ki)
1
(1) ▷ x̂

j)((ki)
1
(2) ▷ x̂

0) + ((ki)
2
(1) ▷ x̂

j)((ki)
2
(2) ▷ x̂

0) (1.30)

= (ki ▷ x̂
j)(1 ▷ x̂0) + (e−k0/κ ▷ x̂j)(ki ▷ x̂

0) (1.31)

= −ix̂0δji . (1.32)

k0 ▷ x̂
0x̂j =

∑
α

((k0)
α
(1) ▷ x̂

0)((k0)
α
(2) ▷ x̂

j) (1.33)

= ((k0)
1
(1) ▷ x̂

0)((k0)
1
(2) ▷ x̂

j) + ((k0)
2
(1) ▷ x̂

0)((k0)
2
(2) ▷ x̂

j) (1.34)

= (k0 ▷ x̂
0)(1 ▷ x̂j) + (1 ▷ x̂0)(k0 ▷ x̂

j) (1.35)

= −ix̂j (1.36)

k0 ▷ x̂
j x̂0 =

∑
α

((k0)
α
(1) ▷ x̂

j)((k0)
α
(2) ▷ x̂

0) (1.37)

= ((k0)
1
(1) ▷ x̂

j)((k0)
1
(2) ▷ x̂

0) + ((k0)
2
(1) ▷ x̂

j)((k0)
2
(2) ▷ x̂

0) (1.38)

= (k0 ▷ x̂
j)(1 ▷ x̂0) + (1 ▷ x̂j)(k0 ▷ x̂

0) (1.39)

= −ix̂j (1.40)
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Furthermore, one can also obtain the relation

ki ▷ x̂
j x̂k =

∑
α

((ki)
α
(1) ▷ x̂

j)((ki)
α
(2) ▷ x̂

k) (1.41)

= ((ki)
1
(1) ▷ x̂

j)((ki)
1
(2) ▷ x̂

k) + ((ki)
2
(1) ▷ x̂

j)((ki)
2
(2) ▷ x̂

k) (1.42)

= (ki ▷ x̂
j)(1 ▷ x̂k) + (e−k0/κ ▷ x̂j)(ki ▷ x̂

k) (1.43)

= −iδji x̂
k +

[(
1− k0

κ
+

k20
2κ2
− . . .

)
▷ x̂j

]
(−iδki ) (1.44)

= −iδji x̂
k − iδki x̂j (1.45)

One can therefore deduce

ki ▷ x̂
0x̂j − ki ▷ x̂j x̂0 =

δji
κ

k0 ▷ x̂
0x̂j − k0 ▷ x̂j x̂0 = 0 (1.46)

ki ▷ x̂
j x̂k − ki ▷ x̂kx̂j = 0 (1.47)

and therefore

[x̂0, x̂j ] =
i

κ
x̂j [x̂i, x̂j ] = 0 (1.48)

which are the commutation relations for the coordinates defining κ-Minkowski space-
time. For the second commutator, notice that we used k0 ▷ x̂

i = 0. This algebra is
called an(3) algebra.

One can then show that the commutators (1.48) is invariant under boosts and
rotations. The invariance under rotations is trivial since, as can be seen from eq.
(1.12), (1.14), (1.17), (1.19) the rotation sector is completely not deformed in the
κ-Poincaré Hopf algebra, and so it acts as usual. For the boosts, using eq. (1.20), as
well as the previous computations one gets [61]

Ni ▷ x̂
0x̂j = (Ni ▷ x̂

0)(1 ▷ x̂j) + (e−k0/κ ▷ x̂0)(Ni ▷ x̂
j) +

1

κ
ϵijk(kj ▷ x̂

0)(Mk ▷ x̂
j)

= ixix̂
j +

[(
1− k0

κ
+

k20
2κ2
− . . .

)
▷ x̂0

]
(ix̂0δji ) + 0 (1.49)

= ixix̂
j + i(x̂0)2δji −

x̂0δji
κ

(1.50)

Ni ▷ x̂
j x̂0 = (Ni ▷ x̂

j)(1 ▷ x̂0) + (e−k0/κ ▷ x̂j)(Ni ▷ x̂
0) +

1

κ
ϵijk(kj ▷ x̂

j)(Mk ▷ x̂
0)

= ix̂0δji x̂
0 + ix̂jxi + 0 (1.51)

= i(x̂0)2δji + ix̂jxi (1.52)

and therefore

Ni ▷ [x̂
0, x̂j ] = Ni ▷

ix̂j

κ
+ i[xi, x̂

j ] = Ni ▷
ix̂j

κ
(1.53)

which shows that indeed the commutation relation (1.48) are invariant under κ-
deformed boosts. Notice that we used the fact that Mk ▷ x̂

0 = 0 (spatial rotations do
not act on the time direction) and eq. (1.48).
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Although we used the bicrossproduct basis for the computations up to now, this
is by no means the only choice. In particular, another choice of coordinates for mo-
mentum space is the so called classical basis, which is related to the bicrossproduct
one by the following coordinate change

P0(k0,k) = κ sinh
k0
κ

+
k2

2κ
e
k0
κ , Pi(k0,k) = kie

k0
κ (1.54)

P4(k0,k) = κ cosh
k0
κ
− k2

2κ
e
k0
κ . (1.55)

One can check by direct computations [74], [75] that

−P 2
0 +P2 + P 2

4 = κ2 P+ := P0 + P4 > 0 P4 > 0. (1.56)

In this basis, the algebra sector of the κ-Poincaré Hopf algebra reads

[Mi, Pj ] = iϵijkPk, [Mi, P0] = 0, [Ni, Pj ] = iδijP0, [Ni, P0] = iPi, (1.57)

[Mi,Mj ] = iϵijkMk, [Mi, Nj ] = iϵijkNk, [Ni, Nj ] = iϵijkMk. (1.58)

The co-algebra sector is given by

∆Pi =
1

κ
Pi ⊗ P+ + 1⊗ Pi, (1.59)

∆P0 =
1

κ
P0 ⊗ P+ +

∑
k

Pk
P+
⊗ Pk +

κ

P+
⊗ P0, (1.60)

∆P4 =
1

κ
P4 ⊗ P+ −

∑
k

Pk
P+
⊗ Pk −

κ

P+
⊗ P0, (1.61)

∆Ni = Ni ⊗ 1 +
κ

P+
⊗Ni + ϵijk

Pj
P+
⊗Mk, (1.62)

∆Mi =Mi ⊗ 1 + 1⊗Mi, (1.63)

and the antipodes by

S(Pi) = −
κPi
P+

, S(P0) = −P0 +
P2

P+
, S(P4) = P4, (1.64)

S(Mi) = −Mi, S(Ni) = −Ni
P+

κ
+

1

κ
ϵijkPjMk. (1.65)

Once again, the co-units ϵ(k), ϵ(Ni), ϵ(Mj) are all zero. Furthermore, notice also
that rotations are non-deformed in both basis. A very interesting property of the
classical basis is the fact that the algebra coincides with the non-deformed Poincaré
algebra, so the totality of the effect of κ-deformation is found in the co-product and
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antipode sector. This also shows that κ-deformation is important at the Hopf algebra
level, and not merely at the algebra level. Because of the construction of κ-Minkowski
showed above, the co-products cover a particularly important role since they allow
the definition of κ-Minkowski spacetime. More details can be found in [75], [59].

1.4 From κ-Minkowski to κ-Poincaré

The first step in going from κ-Minkowski to κ-Poincaré is to find an explicit represen-
tation of the an(3) algebra in eq. (1.48). We choose (with a slight abuse of notation,
we call the explicit matrices representing the algebra with the same names as the
elements of the algebra itself)

x̂0 = − i
κ

 0 0 1

0T 0̃ 0T

1 0 0

 x̂i =
i

κ

 0 (ϵi) T 0

ϵi 0̃ ϵi

0 −(ϵi) T 0

 . (1.66)

The central 0̃ is a 3× 3 null matrix, while 0 = (0, 0, 0) and ϵi is a unit column vector,
such that (ϵ1)T = (1, 0, 0), (ϵ2)T = (0, 1, 0), and (ϵ1)T = (0, 0, 1). We now compute
the group elements of AN(3)

êk = eikix̂
i
eik0x̂

0
. (1.67)

Notice that because of the non-trivial algebra we need to carefully define the expo-
nentiation, i.e. on how we decide to define the group element. Here we choose the
so called time-to-the-right convention, in which eikj x̂j is to the left of eik0x̂0 . Because
of this choice, the objects k0,k in the exponent (which are dimensionally momenta)
coincide with the bicrossproduct basis introduced in the previous section. With a
different choice of group element, for example

êq = eiqµx̂
µ

(1.68)

one would get different coordinates for momentum space (in this particular case, we
would be introducing the so called normal basis [75], but we will not address this
further). Furthermore, notice that the representation matrices are 5× 5.

We have0 0 1
0 0 0
1 0 0

2n

=

1 0 0
0 0 0
0 0 1

 0 0 1
0 0 0
1 0 0

2n+1

=

0 0 1
0 0 0
1 0 0

 (1.69)

and therefore

eik0x̂
0
=
∑
n

(ik0x
0)n

n!
=
∑
n

1

n!

(
k0
κ

)n0 0 1
0 0 0
1 0 0

n

(1.70)

=


cosh k0

κ 0 sinh k0
κ

0 1 0

sinh k0
κ 0 cosh k0

κ

 (1.71)
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Similarly one can check that0 ϵT 0
ϵ 0 ϵ
0 −ϵT 0

2

=

 1 0 1
0 0 0
−1 0 −1

 0 ϵT 0
ϵ 0 ϵ
0 −ϵT 0

3

= 0 (1.72)

This behaviour is the reason for the ‘N ’ in the name ’AN(3)’, which stands for ‘nilpo-
tent’. Therefore

eikix̂
i
= 1 + ikix̂

i +
1

2
(ikix̂

i)2 =

1 + k2

2κ2
kT

κ
k2

2κ2
k
κ 1 k

κ

− k2

2κ2
−kT

κ 1− k2

2κ2
.

 (1.73)

Multiplying these two matrices we get

êk =

cosh k0
κ + k2

2κ2
e
k0
κ

kT

κ sinh k0
κ + k2

2κ2
e
k0
κ

k
κe

k0
κ 1 k

κe
k0
κ

sinh k0
κ −

k2

2κ2
e
k0
κ −kT

κ cosh k0
κ −

k2

2κ2
e
k0
κ

 (1.74)

where we used the relation coshx + sinhx = ex. Notice now that we can make the
following substitutions

P0(k0,k) = κ sinh
k0
κ

+
k2

2κ
ek0/κ, (1.75)

Pi(k0,k) = ki e
k0/κ, (1.76)

P4(k0,k) = κ cosh
k0
κ
− k2

2κ
ek0/κ (1.77)

to bring the above group element êk into the following form

êP (k) =
1

κ

P̃4 κP/P+ P0

P κ× 13×3 P

P̃0 −κP/P+ P4

 (1.78)

where

P̃0 = P0 −
P2

P+
= −S(P0) P̃4 = P4 +

P2

P+
(1.79)

Incidentally, one can use the group property êP (k)êQ(l) = êP (k)⊕Q(l) and ê−1
P = êS(P )

to obtain the deformed antipode and sum in the classical basis.

S(P0) = −P0 +
P2

P0 + P4
=

κ2

P0 + P4
− P4 , (1.80)

S(P) = − κP

P0 + P4
, S(P4) = P4. (1.81)

(P ⊕Q)0 =
1

κ
P0(Q0 +Q4) +

PQ

P0 + P4
+

κ

P0 + P4
Q0 (1.82)

(P ⊕Q)i =
1

κ
Pi(Q0 +Q4) +Qi (1.83)
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(P ⊕Q)4 =
1

κ
P4(Q0 +Q4)−

PQ

P0 + P4
− κ

P0 + P4
Q0 (1.84)

One can of course do the same thing in the bicrossproduct basis. Notice the relation-
ship between these equations and the co-products in eq. (1.59), (1.60), (1.61).

Notice that the momenta defined in eq. (1.75) are indeed again the classical basis
defined in eq. (1.54), (1.55). By construction, therefore, they satisfy the constraints in
eq. (1.56). Furthermore, notice that the group elements êP (k) are uniquely identified
once one knows the quantities P0, Pi, P4, which are the components on the last column
of the matrix (1.78). Indeed, calling O = (0, 0, 0, 0, κ)T , we have

êP (k)O = (P0,P, P4)
T (1.85)

and the action of the group AN(3) on O is transitive, meaning that acting with all
g ∈ AN(3) on O reaches all the points of the manifold associated to the group. We
already know that relations (1.56) hold, which means that the 4-dimesional manifold
associated to AN(3) is half of de Sitter space, namely the half where P+ > 0. Notice
that the curvature of such a space is constant and equal to 1/κ2. Furthermore, since
each point is uniquely described by the coordinates (P0,P) (after fixing both P0 and
P, P4 is not a free parameter, and can be obtained through the constraint), the group
manifold AN(3) is therefore our momentum space manifold. This gives a clear picture
of how the non-commutative nature of spacetime coordinates is linked to a constant
curvature of momentum space. Notice that to obtain coordinates spanning the other
half of de Sitter space defined by the first constraint in eq. (1.56), one applies the
same group elements to the new origin O∗ = (0, 0, 0, 0,−κ)T . Alternatively, one can
define a matrix

z = eπκx̂
0

(1.86)

which allows us to define

ê∗k = êkz (1.87)

and then apply these new objects ê∗ to the same origin O = (0, 0, 0, 0, κ). In both
cases, we obtain the coordinates

P ∗
0 (k0,k) = −κ sinh k0

κ
− k2

2κ
ek0/κ, (1.88)

P ∗
i (k0,k) = −ki ek0/κ, (1.89)

P ∗
4 (k0,k) = −κ cosh k0

κ
+

k2

2κ
ek0/κ. (1.90)

These starred coordinates satisfy P ∗
+ = P ∗

0 + P ∗
4 < 0, and one can show that

S(P ∗) = −S(P ) (1.91)

and that the deformed sum is not modified if one or both of the momenta is starred.
In other words, we have

(P (∗) ⊕Q(∗))0 =
1

κ
P

(∗)
0 (Q

(∗)
0 +Q

(∗)
4 ) +

P(∗)Q(∗)

P
(∗)
0 + P

(∗)
4

+
κ

P
(∗)
0 + P

(∗)
4

Q
(∗)
0 (1.92)

(P (∗) ⊕Q(∗))i =
1

κ
P

(∗)
i (Q

(∗)
0 +Q

(∗)
4 ) +Q

(∗)
i (1.93)
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(P (∗) ⊕Q(∗))4 =
1

κ
P

(∗)
4 (Q

(∗)
0 +Q

(∗)
4 )− P(∗)Q(∗)

P
(∗)
0 + P

(∗)
4

− κ

P
(∗)
0 + P

(∗)
4

Q
(∗)
0 , (1.94)

where the (∗) indicates that either P or Q or both or neither can be starred momenta,
and the deformed sum formula works in the same way regardless [78].

We now address the issue of how one can get the κ-Poincaré structure out of the
AN(3) group, and in particular the co-product and antipode sectors. We will not
treat in detail all the coproducts and antipodes for all generators, and we will use
either the classical or the bicrossproduct basis depending on which is easier to work
with. The interested reader is referred back to [60] for more details.

We start with the coproduct and antipode of momenta. As was already discussed
in the previous section, coproducts describe the way the κ-Poincaré algebra act on
products, be it products of coordinates like before, or of states like we will consider
now. In particular, we have

∆kµ(|p⟩ ⊗ |q⟩) = (p⊕ q)µ|p⟩ ⊗ |q⟩ (1.95)

where p⊕ q is define through the group multiplication

êpêq = êp⊕q. (1.96)

In the same way, the antipode S(k)µ is related to inverse group elements by the
definition

ê−1
k = êS(k). (1.97)

One can therefore multiply two copies of eq. (1.74) and deduce the sum of momenta,
and then take the inverse of eq. (1.74) directly to obtain the antipode. Alternatively,
in a more illuminating and less computation intensive way, one can work directly with
the definition in eq. (1.67). Indeed, using the Baker-Campbell-Hausdorff formula one
can show that

[X,Y ] = sY =⇒ eXeY = exp

(
X +

s

1− e−s
Y

)
(1.98)

which means that since because of eq. (1.48) we have

[ik0x
0, ikx] = −k0k[x0,x] = −k0k

i

κ
x = −k0

κ
(ikx), (1.99)

then

eik0x
0
eikx = exp

(
ik0x

0 +
−k0

κ

1− e
k0
κ

ikx

)
(1.100)

eiqxeiq0x
0
= exp

(
iq0x

0 +
k0
κ

1− e−
k0
κ

iqx

)
= exp

(
iq0x

0 +
−k0

κ

1− e
k0
κ

ie
k0
κ qx

)
(1.101)

and therefore sending q→ ke−
k0
κ and q0 → k0 we prove

eik0x
0
eikx = eie

− k0
κ kxeik0x

0
. (1.102)
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Using this relation, we get

êkêq = eikxeik0x
0
eiqxeiq0x

0
= e

i

(
k+e−

k0
κ q

)
x
ei(k0+q0)x

0
(1.103)

Furthermore, we can also recover the inverse group element ê−1
k using a similar pro-

cedure. In fact we can use the same steps as before, but at the end we must impose
that both the exponent go to zero, so that we get

q = −e
k0
κ k q0 = −k0 (1.104)

and therefore

ê−1
k = e−ie

k0
κ ke−ik0x

0
(1.105)

We now consider the bicrossproduct coordinate functions on AN(3) defined as [75]

fBµ (g ∈ AN(3)) = fBµ

(
eikxeik0x

0
)
:= kµ = (k0,k) (1.106)

These are important because functions on a group have a natural structure of Hopf
algebra [75]. In fact, using the same notation as [75], the algebra Fun(G) of functions
on G with multiplication and identity defined as usual

(f1, f2)(g) = f1(g)f2(g) I(g) = 1 (1.107)

This algebra Fun(G) is of course commutative and associative (because pointwise
multiplication of functions with codomain in C is of course commutative and associa-
tive). From this we can naturally define all of the additional structure needed for a
Hopf algebra, namely coproduct, co-unit, and antipode

∆ : Fun(G)→ Fun(G×G) ϵ : Fun(G)→ C S : Fun(G)→ Fun(G)
(1.108)

with the definitions

(∆f)(g1, g2) =
∑
α

f (1)α ⊗ f (2)α (g1, g2) = f(g1g2) (1.109)

ϵ(g) = f(1) (S(f))(g) = f(g−1) (1.110)

Therefore, using these definitions and the bicrossproduct coordinate functions, we
immediately find

∆
(
fB0
)
(êk, êq) = fB0 (êkêq) (1.111)

= fB0

(
e
i

(
k+e−

k0
κ q

)
x
ei(k0+q0)x

0

)
(1.112)

= k0 + q0 (1.113)

=
(
fB0 ⊗ 1 + 1⊗ fB0

)
(êk, êq) (1.114)

∆
(
fBi
)
(êk, êq) = fBi (êkêq) (1.115)
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= fBi

(
e
i

(
k+e−

k0
κ q

)
x
ei(k0+q0)x

0

)
(1.116)

= k+ e−
k0
κ q (1.117)

=
(
fBi ⊗ 1 + e−

k0
κ ⊗ fBi

)
(êk, êq) (1.118)

and similarly for the co-unit

ϵ(fB0 ) = fB0 (1) = fB0

(
ei0xei0x

0
)
= 0 (1.119)

ϵ(fBi ) = fBi (1) = fBi

(
ei0xei0x

0
)
= 0 (1.120)

and the antipode

S(fB0 )(êk) = fB0 (ê−1
k ) = fB0

(
e−ie

k0
κ ke−ik0x

0

)
= −k0 (1.121)

S(fBi )(êk) = fi(ê
−1
k ) = fi

(
e−ie

k0
κ ke−ik0x

0

)
= −e

k0
κ k (1.122)

With a slight abuse of notation, these relations are traditionally written as

∆k0 = k0 ⊗ 1 + 1⊗ k0 ∆ki = ki ⊗ 1 + e−
k0
κ ⊗ ki (1.123)

S(k)0 = −k0 S(k)i = −e
k0
κ ki (1.124)

so that we recover eq. (1.15) and (1.18). In the same way, using the classical basis,
we recover eq. (1.59), (1.60), (1.64).

To get the coproduct of boosts and rotations, we follow a slightly different route.
Indeed, knowing that AN(3) is our momentum manifold, we want to find some action
of SO(1, 3) on it. The trick to find it is to notice that both AN(3) and SO(1, 3) are
subgroups of SO(1, 4). We can then use something called Iwasawa decomposition

so(1, 4) = so(1, 3)⊕ a⊕ n

where a is generated by x̂0, n is generated by x̂i. In other words, given g ∈ SO(1, 4),
then given Kg ∈ SO(1, 3) and g ∈ AN(3), then there exist two unique elements
K ′
g ∈ SO(1, 3) and g′ ∈ AN(3) such that

Kgg = g′K ′
g ⇔ Kgg(K

′
g)

−1 = g′.

In this way, we obtain the action of SO(1, 3) on a single group element. To get the
co-product, we then need to define the action on the product gh, where g, h ∈ AN(3).
We do this by the following relation.

(gh)′ = KgghK
′
gh = (KggK

′−1
g )(K ′

ghK
′
gh) (1.125)

We will see shortly that K ′
gh is irrelevant for the definition of the coproducts of

SO(1, 3) generators, so that we only need Kg and K ′
g. We are only interested in
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infinitesimal transformations, so we assume

Kg ≈ 1 + iξaka K ′
g ≈ 1 + iξahba(g)kb. (1.126)

Notice that hba(g) is in general momentum dependent, a fact which is responsible for
the non-trivial boost co-product. Concentrating on boosts, and in particular choosing
a boost in the direction 1, and using the classical basis for simplicity, explicitly we
have 

1 ξ 0 0 0
ξ 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


P̄4

κPi
P+

P0

Pi κ Pi

P̄0 −κPi
P+

P4

 (1.127)

=


P̄ ′
4

κP′
i

P ′
+

P ′
0

P′
i κ P′

i

P̄ ′
0 −κP′

i
P ′
+

P ′
4




1 ξ̄1 ξ̄2 ξ̄3 0
ξ̄1 1 ρ̄3 −ρ̄2 0
ξ̄2 −ρ̄3 1 ρ̄1 0
ξ̄3 ρ̄2 −ρ̄1 1 0
0 0 0 0 1

 (1.128)

where the parameters ξ̄i and ρ̄j can be uniquely determined by dong the product
and comparing both sides of the equivalence [75]. After doing the computations, one
obtains

K ′
g =


1 κ

P+
ξ 0 0 0

κ
P+
ξ 1 P2

P+
ξ P3

P+
ξ 0

0 − P2
P+
ξ 1 0 0

0 − P3
P+
ξ 0 1 0

0 0 0 0 1

 = 1 +
κ

P+
ξN1 + ϵijk

Pj
P+

Mk. (1.129)

In other words, we have up to first order

(gh)′ = (1 + ξN1)g

(
1 +

κ

P+
ξN1 + ϵijk

Pj
P+

Mk

)
hK ′

gh (1.130)

Now, notice that a multiplication from the right by K ′
gh cannot influence the momenta

in a group element h. This is due to the fact that K ′
gh will have all zero entries in the

last column and row, except (K ′
gh)44 = 1, and a multiplication from the right of such

a matrix cannot influence the last row of h, which contains the momenta. Therefore,
we have up to first order

(gh)′ = gh+ ξ

(
(N1g)(h) +

(
κ

P+
g

)
(N1h)

)
+ ϵ1jk

(
Pj
P+

g

)
(Mkh). (1.131)

and generalizing this relation to a boost in a generic direction we get immediately the
co-product in eq. (1.62). Finally, for the antipode, one can just switch g 7→ g−1 and
h 7→ g into eq. (1.131), and impose that the result gives 1, which means that we get
the antipode in eq. (1.65). For the rotation, the whole process is repeated, and one
gets that the co-product and the antipode are not deformed, in accordance with eq.
(1.63) and (1.65).
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1.5 Finite boosts for two-particle states

What we computed above is the co-product of generators of the algebra on tensor
product states. To get a finite boost for two particles, one needs to exponentiate this
infinitesimal generators to get a finite transformation. However, due to the non-trivial
nature of co-products both in the classical and bicrossproduct basis, this is often not
practical. Luckily for us, however, the Iwasawa decomposition that was used in section
1.4 holds in general, and we only used a first order expansion for the involved matrices
because we only needed the generators co-products [77]. Here, we employ once again
the same decomposition, but this time we will use the full transformation matrices to
obtain a finite boost for a two-particle state. Contrary to the previous sections, the
computations and discussions for the rest of the chapter are original results. Because
of the importance of the final result for the kinematics of a two-particle state in the
κ-deformed context, we will explicitly perform all the computations in full.

We start therefore from

Lg = g′L′
g (1.132)

where the boost on the RHS can in general be momentum dependent.
We need to recover what is L′

g. Written explicitly in terms of matrices, and
considering without loss of generality L as a boost in the x1 direction, we have

L =


γ −βγ 0 0 0
−βγ γ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (1.133)

g =


P̃4 κP1/P+ κP2/P+ κP3/P+ P0

P1 κ 0 0 P1

P2 0 κ 0 P2

P3 0 0 κ P3

P̃0 −κP1/P+ −κP2/P+ −κP3/P+ P4

 (1.134)

g′ =


P̃ ′
4 κP′

1/P
′
+ κP′

2/P
′
+ κP′

3/P
′
+ P ′

0

P′
1 κ 0 0 P′

1

P′
2 0 κ 0 P′

2

P′
3 0 0 κ P′

3

P̃ ′
0 −κP′

1/P
′
+ −κP′

2/P
′
+ −κP′

3/P
′
+ P ′

4

 (1.135)

where P̃4 and P̃0 are defined in eq. (1.79). For what concerns the matrix L′
g, we will

use the generic matrix

L′
g =


L00 L01 L02 L03 0
L10 L11 L12 L13 0
L20 L21 L22 L23 0
L30 L31 L32 L33 0
0 0 0 0 1

 (1.136)
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1.5.1 Fifth column:


γP0 − βγP1

γP1 − βγP0

P2

P3

P4

 !
=


P ′
0

P′
1

P′
2

P′
3

P ′
4

 (1.137)

which translates into the equalities

P ′
0 = γP0 − βγP1 (1.138)

P′
1 = γP1 − βγP0 (1.139)

P′
2 = P2 (1.140)

P′
3 = P3 (1.141)
P ′
4 = P4 (1.142)

1.5.2 Fourth column:


γκP3/P+

−βγκP3/P+

0
κ

−κP3/P+

 !
=


L03P̃

′
4 + L13κP

′
1/P+ + L23κP

′
2/P+ + L33κP

′
3/P+

L03P
′
1 + L13κ

L03P
′
2 + L23κ

L03P
′
3 + L33κ

L03P̃
′
0 − L13κP

′
1/P+ − L23κP

′
2/P+ − L33κP

′
3/P+

 (1.143)

Summing the equations coming from the first and fifth row we get

L03(P̃
′
4 + P̃ ′

0) = (γ − 1)κP3/P+ (1.144)

and using eq. (1.79) and (1.138) we get

L03 = (γ − 1)κ
P3

P+P ′
+

(1.145)

and therefore

L03 = (γ − 1)κ
P3

P+(γP0 − βγP1 + P4)
(1.146)

From the third row we get

L23 = −
P2

κ
L03 (1.147)

and therefore

L23 = (1− γ) P2P3

P+(γP0 − βγP1 + P4)
(1.148)

From the fourth row we get

L33 = −
P3

κ
L03 + 1 (1.149)
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and therefore

L33 = (1− γ) P2
3

P+(γP0 − βγP1 + P4)
+ 1 (1.150)

Finally, from the second row we get

L13 = −βγ
P3

P+
− P′

1

κ
L03 (1.151)

and therefore

L13 = −βγ
P3

P+
+ (1− γ) (γP1 − βγP0)P3

P+(γP0 − βγP1 + P4)
(1.152)

1.5.3 Third column:


γκP2/P+

−βγκP2/P+

κ
0

−κP2/P+

 !
=


L02P̃

′
4 + L12κP

′
1/P+ + L22κP

′
2/P+ + L32κP

′
3/P+

L02P
′
1 + L12κ

L02P
′
2 + L22κ

L02P
′
3 + L32κ

L02P̃
′
0 − L12κP

′
1/P+ − L22κP

′
2/P+ − L32κP

′
3/P+

 (1.153)

Summing the equations coming from the first and fifth row we get

L02(P̃
′
4 + P̃ ′

0) = (γ − 1)κP2/P+ (1.154)

and using eq. (1.79) and (1.138) we get

L02 = (γ − 1)κ
P2

P+P ′
+

(1.155)

and therefore

L02 = (γ − 1)κ
P2

P+(γP0 − βγP1 + P4)
(1.156)

From the fourth row we get

L32 = −
P3

κ
L02 (1.157)

and therefore

L32 = (1− γ) P2P3

P+(γP0 − βγP1 + P4)
(1.158)

From the third row we get

L22 = −
P2

κ
L02 + 1 (1.159)
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and therefore

L22 = (1− γ) P2
2

P+(γP0 − βγP1 + P4)
+ 1 (1.160)

Finally, from the second row we get

L12 = −βγ
P2

P+
− P′

1

κ
L02 (1.161)

and therefore

L12 = −βγ
P2

P+
+ (1− γ) (γP1 − βγP0)P2

P+(γP0 − βγP1 + P4)
(1.162)

1.5.4 Second column:


γκP1/P+ − βγκ
−βγκP1/P+ + γκ

0
0

−κP1/P+

 !
=


L01P̃

′
4 + L11κP

′
1/P+ + L21κP

′
2/P+ + L31κP

′
3/P+

L01P
′
1 + L11κ

L01P
′
2 + L21κ

L01P
′
3 + L31κ

L01P̃
′
0 − L11κP

′
1/P+ − L21κP

′
2/P+ − L31κP

′
3/P+


(1.163)

Summing the equations coming from the first and fifth row we get

L01(P̃
′
4 + P̃ ′

0) = (γ − 1)κP1/P+ − βγκ (1.164)

and using eq. (1.79) and (1.138) we get

L01 = (γ − 1)κ
P1

P+P ′
+

− βγκ

P ′
+

(1.165)

and therefore

L01 = (γ − 1)κ
P1

P+(γP0 − βγP1 + P4)
− βγκ

γP0 − βγP1 + P4
(1.166)

From the fourth row we get

L31 = −
P3

κ
L01 (1.167)

and therefore

L31 = (1− γ) P1P3

P+(γP0 − βγP1 + P4)
+

βγP3

γP0 − βγP1 + P4
(1.168)

From the third row we get

L21 = −
P2

κ
L01 (1.169)
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and therefore

L21 = (1− γ) P1P2

P+(γP0 − βγP1 + P4)
+

βγP2

γP0 − βγP1 + P4
(1.170)

Finally, from the second row we get

L11 = −βγ
P1

P+
− P′

1

κ
L01 + γ (1.171)

and therefore

L11 = −βγ
P1

P+
+ (1− γ) (γP1 − βγP0)P1

P+(γP0 − βγP1 + P4)
+
βγ(γP1 − βγP0)

γP0 − βγP1 + P4
+ γ (1.172)

1.5.5 First column:


γP̃4 − βγP1

γP1 − βγP̃4

P2

P3

P̃0

 !
=


L00P̃

′
4 + L10κP

′
1/P+ + L20κP

′
2/P+ + L30κP

′
3/P+

L00P
′
1 + L10κ

L00P
′
2 + L20κ

L00P
′
3 + L30κ

L00P̃
′
0 − L10κP

′
1/P+ − L20κP

′
2/P+ − L30κP

′
3/P+

 (1.173)

Summing the equations coming from the first and fifth row we get

L00 = γ
P4

P ′
+

+
P0

P ′
+

+ (γ − 1)
P2

P+P ′
+

− βγP1

P ′
+

(1.174)

and therefore

L00 =
γP4 + P0

γP0 − βγP1 + P4
+ (γ − 1)

P2

P+(γP0 − βγP1 + P4)

− βγ P1

γP0 − βγP1 + P4
(1.175a)

From the third row we have

L20 =
P2

κ
(1− L00) (1.176)

and therefore

L20 =
P2

κ

[
1−

( γP4 + P0

γP0 − βγP1 + P4

+ (γ − 1)
P2

P+(γP0 − βγP1 + P4)
− βγ P1

γP0 − βγP1 + P4

)]
(1.177a)

From the fourth row we have

L30 =
P3

κ
(1− L00) (1.178)
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and therefore

L30 =
P3

κ

[
1−

( γP4 + P0

γP0 − βγP1 + P4

+ (γ − 1)
P2

P+(γP0 − βγP1 + P4)
− βγ P1

γP0 − βγP1 + P4

)]
(1.179a)

Finally, from the second row we have

L10 =
1

κ

(
γP1 − βγP4 − βγ

P2

P+
− (γP1 − βγP0)L00

)
(1.180)

and therefore

L10 =
1

κ

[
γP1 − βγP4 − βγ

P2

P+
− (γP1 − βγP0)

( γP4 + P0

γP0 − βγP1 + P4

+ (γ − 1)
P2

P+(γP0 − βγP1 + P4)
− βγ P1

γP0 − βγP1 + P4

)]

(1.181a)

1.5.6 Expansion of the final matrix up to 1/κ

In most phenomenological applications, an expansion of the full results up to first
order in 1

κ is in general useful for numerical estimations of the effect of κ-deformation
on canonical, non-deformed quantities. Because of this, we here expand up to first
order the matrix elements computed in the previous section. We make use of the
following relations.

a

b+ cP4
≈ a

cκ
. (1.182)

More in general, we also have

a+ bP4

c+ dP4
≈ b

d
+

b

dκ

(
ad

b
− c

d

)
(1.183)

We also have
aκ

P+(b+ P4)
≈ a

κ
(1.184)

aκ

b+ P4
≈ a− ab

κ
(1.185)

where a, b, c, d do not depend on κ. We have

(1.175) 7→ L00 ≈ γ +
(1− γ)
κ

[(1 + γ)P0 − βγP1] (1.186)
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(1.181) 7→ L10 ≈ −βγ +
γ

κ
P1 −

γ

κ
(γP1 − βγP0) (1.187)

(1.177) 7→ L20 ≈
(1− γ)
κ

P2 (1.188)

(1.179) 7→ L30 ≈
(1− γ)
κ

P3 (1.189)

(1.166) 7→ L01 ≈ −βγ +
γ

κ
P1 −

γ

κ
(γP1 − βγP0) = L10 (1.190)

(1.172) 7→ L11 ≈ γ + βγ
(γ − 1)

κ
P1 −

β2γ2

κ
P0 (1.191)

(1.170) 7→ L21 ≈
βγP2

κ
(1.192)

(1.168) 7→ L31 ≈
βγP3

κ
(1.193)

(1.156) 7→ L02 ≈ (γ − 1)
P2

κ
= −L20 (1.194)

(1.162) 7→ L12 ≈ −βγ
P2

κ
(1.195)

(1.160) 7→ L22 ≈ 1 (1.196)

(1.158) 7→ L32 ≈ 0 (1.197)

(1.146) 7→ L03 ≈ (γ − 1)
P3

κ
(1.198)

(1.152) 7→ L13 ≈ −βγ
P3

κ
(1.199)

(1.148) 7→ L23 ≈ 0 (1.200)
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(1.150) 7→ L33 ≈ 1 (1.201)

We can now finally write the matrix in extended form. We have

L′
g =

 γ +
(1−γ)

κ
[(1 + γ)P0 − βγP1] −βγ + γ

κ
P1 − γ

κ
(γP1 − βγP0) (γ − 1)κ

P2
κ

(γ − 1)
P3
κ

0

−βγ + γ
κ
P1 − γ

κ
(γP1 − βγP0) γ + βγ

(γ−1)
κ

P1 − β2γ2

κ
P0 −βγ P2

κ
−βγ P3

κ
0

(1−γ)
κ

P2
βγP2

κ
1 0 0

(1−γ)
κ

P3
βγP3

κ
0 1 0

0 0 0 0 1


(1.202)

This can be rewritten more simply as a contribution with κ→∞ plus the first order
in 1

κ obtaining

L′
g = L′

g(κ =∞) +
1

κ
L̃′
g (1.203)

where

L′
g(κ =∞) =


γ −βγ 0 0 0
−βγ γ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (1.204)

1

κ
L̃′
g =

1

κ

((1 − γ) [(1 + γ)P0 − βγP1] γP1 − γ(γP1 − βγP0) (γ − 1)P2 (γ − 1)P3 0

γP1 − γ(γP1 − βγP0) βγ(γ − 1)P1 − β2γ2P0 −βγP2 −βγP3 0
(1 − γ)P2 βγP2 0 0 0
(1 − γ)P3 βγP3 0 0 0

0 0 0 0 0

)
(1.205)

1.5.7 Check of the consistency of the first order expansion of L′
g

Notice that if L′
g is a legitimate Lorentz transformation, then by definition one must

have

L′
gηL

′T
g = η (1.206)

where η = diag(+ − − − const). We know that the zeroth order in perturbation
satisfies the relation

L′
g(κ =∞)ηL′T

g (κ =∞) = η (1.207)

by definition, which means that we must have (ignoring terms of order 1/κ2)

L′
g(κ =∞)η(L̃′)Tg + L̃′

gη[L
′
g(κ =∞)]T = 0 (1.208)

We have

L′
g(κ =∞)η(L̃′)Tg =


A B (1− γ)P2 (1− γ)P3 0
C D βγP2 βγP3 0

(1− γ)P2 βγP2 0 0 0
(1− γ)P3 βγP3 0 0 0

0 0 0 0 0

 (1.209)

where

A = γ(1− γ) [(1 + γ)P0 − βγP1] + βγ[γP1 − γ(γP1 − βγP0)] (1.210)
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C = −βγ(1− γ) [(1 + γ)P0 − βγP1]− γ[γP1 − γ(γP1 − βγP0)] (1.211)

B = γ[γP1 − γ(γP1 − βγP0)] + βγ[βγ(γ − 1)P1 − β2γ2P0] (1.212)

D = −βγ[γP1 − γ(γP1 − βγP0)]− γ[βγ(γ − 1)P1 − β2γ2P0] (1.213)

Furthermore we have

L̃′
gη(L

′
g(κ =∞))T =


Ã B̃ (γ − 1)P2 (γ − 1)P3 0

C̃ D̃ −βγP2 −βγP3 0
(γ − 1)P2 −βγP2 0 0 0
(γ − 1)P3 −βγP3 0 0 0

0 0 0 0 0

 (1.214)

where

Ã = γ(1− γ) [(1 + γ)P0 − βγP1] + βγ[γP1 − γ(γP1 − βγP0)] (1.215)

B̃ = −βγ(1− γ) [(1 + γ)P0 − βγP1]− γ[γP1 − γ(γP1 − βγP0)] (1.216)

C̃ = γ[γP1 − γ(γP1 − βγP0)] + βγ[βγ(γ − 1)P1 − β2γ2P0] (1.217)

D̃ = −βγ[γP1 − γ(γP1 − βγP0)]− γ[βγ(γ − 1)P1 − β2γ2P0] (1.218)

The sum of the two matrices is therefore
A+ Ã B + B̃ 0 0 0

C + C̃ D + D̃ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (1.219)

so that we only need to compute the remaining quantities. We do it one by one. First
notice that A = Ã, so we need to show that A = 0. Indeed, we have

A = γ(1− γ) [(1 + γ)P0 − βγP1] + βγ[γP1 − γ(γP1 − βγP0)] (1.220)

= P1[−βγ2(1− γ) + βγ2 − βγ3] (1.221)

+ P0[γ(1− γ2) + β2γ3] (1.222)
= 0 (1.223)

where we used the fact that 1−γ2 = (1−β2− 1)/(1−β2) = −β2γ2. Secondly, notice
that also D = D̃, and therefore we must have D = 0. Indeed we have

D = −βγ[γP1 − γ(γP1 − βγP0)]− γ[βγ(γ − 1)P1 − β2γ2P0] (1.224)

= P1[−βγ2 + βγ3 − βγ3 + βγ2] (1.225)

+ P0[−β2γ3 + β2γ3] (1.226)
= 0 (1.227)

Then we need to check B + B̃ and C + C̃. Starting with the first one we have

B + B̃ = γ[γP1 − γ(γP1 − βγP0)] + βγ[βγ(γ − 1)P1 − β2γ2P0] (1.228)
+ {−βγ(1− γ) [(1 + γ)P0 − βγP1]− γ[γP1 − γ(γP1 − βγP0)]} (1.229)

= βγ[βγ(γ − 1)P1 − β2γ2P0]− βγ(1− γ) [(1 + γ)P0 − βγP1] (1.230)
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= P1[β
2γ3 − β2γ2 + β2γ2 − β2γ3] + P0[−β3γ3 − βγ(1− γ2)] (1.231)

= 0 (1.232)

where we used the fact that 1−γ2 = (1−β2− 1)/(1−β2) = −β2γ2. Finally, we have

C + C̃ = −βγ(1− γ) [(1 + γ)P0 − βγP1]− γ[γP1 − γ(γP1 − βγP0)]

+ γ[γP1 − γ(γP1 − βγP0)] + βγ[βγ(γ − 1)P1 − β2γ2P0] (1.233)

= B + B̃ = 0 (1.234)

which concludes the check. Therefore, the matrix

L′
g = L′

g(κ =∞) +
1

κ
L̃′
g (1.235)

satisfies

L′
gη(L

′
g)
T = η (1.236)

and it is therefore a valid Lorentz transformation.

1.6 Two-particle kinematics

We now have the finite boost for a two-particle state, and we can therefore turn to
understanding the phenomenological consequences of our computations.

As we already discussed in the context of the boost co-product in section 1.4,
multiplication of the matrices Lg,L′

gh from the right by an arbitrary Lorentz matrix
does not change the entries of their last columns so that |(Lg(L′

g)
−1)(P )⟩ = |(Lg)(P )⟩

and in writing the states we can neglect the Lorentz group element on the right of
g. Therefore we define the action of the finite Lorentz transformation L on a two
particle state as [77]

∆L ▷ |g(P )⟩ ⊗ |h(Q)⟩ = |(Lg)(P )⟩|(L′
gh)(Q)⟩ (1.237)

where (Lg)(P ) denotes (in the case of the boost along the first axis) the four top
components of the last column of the product of the matrices L (which is a canonical
boost) and g (eq. (1.134)), in components explicitly

Lg(P ) = (γP0 − βγP1,−βγP0 + γP1, P2, P3) (1.238)

The components of L′
gh can be similarly computed using eq. (1.203), (1.204), and

(1.205), as we will discuss in more details shortly.
We now consider the decay of a particle of mass M , originally at rest, into two

particles of mass m. Starting from the first order expansion in 1/κ of the four-
momentum deformed composition rule (P ⊕Q)0 and (P ⊕Q)i we get

(P ⊕Q)0 ≈ P0 +Q0 +
PQ

κ
(P ⊕Q)i ≈ Pi +Qi +

PiQ0

κ
(1.239)

and we need to impose

P0 +Q0 +
PQ

κ
=M Pi +Qi +

PiQ0

κ
= 0. (1.240)
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We need to find the spatial momenta such that these two relations are satisfied. The
conservation of spatial momenta tells us that the momenta P and Q are parallel, which
means that we can align them with one of our axis, and we can write Pµ = (P0, P, 0, 0)
and Qµ = (Q0, Q, 0, 0) without loss of generality. We have therefore

P0 +Q0 +
PQ

κ
=M P +Q+

PQ0

κ
= 0. (1.241)

From the conservation of momenta, one can get the relation

P ≈ −Q+
QQ0

κ
(1.242)

which substituted back into the sum of energies gives (at first order in 1/κ)

Q ≈
√
M2 − 4m2

(
1

2
+

3M

8κ

)
(1.243)

Substituting back into (1.242), we also get

P ≈ −
√
M2 − 4m2

(
1

2
+
M

8κ

)
. (1.244)

Notice that the modulus P differs from that of Q by
√
M2 − 4m2M/4κ. Notice

also that another solution would have been to switch the RHS of eq. (1.243) and
(1.244), which however amounts to the same solution. Notice that in the formal limit
κ→∞ the spatial momenta are equal and opposite. The deformation effects is here
considered only up to first order in 1/κ, but can be understood without needing to
approximate. Indeed, since we are imposing P⊕Q = 0, it is clear that one must either
have P = P ′ and Q = S(P ′) or vice versa. What we obtain in eq. (1.243) and (1.244)
is just a first order expansion of this all-orders result. We will see in chapter 2 that
this is not only a general kinematical property due to the presence of κ-deformation,
but it is also comes out naturally when dealing with particles and antiparticles at the
same time.

We can now boost the two particles. Since the boost is in the x1 direction but
the two particles can go in arbitrary direction in the center of mass frame, we con-
sider spherical coordinates with the polar axis oriented along the x axis, so that the
coordinates of the momenta Pµ and Qµ are given by

Pµ = (P0, P cos θ, P sin θ sinϕ, P sin θ cosϕ) =: (P0, P1, P2, P3) (1.245)
Qµ = (Q0, Q cos θ,Q sin θ sinϕ,Q sin θ cosϕ) =: (Q0, Q1, Q2, Q3). (1.246)

When computing the boost, we have two possibilities, depending on which particle
is the first and which is second in (1.237), namely L ▷ Pµ and L′

g ▷ Qµ, or L ▷ Qµ
and L′

g ▷ Pµ. Since the non-deformed boost acts on momenta as usual, we will only
concentrate in the action of L′

g. Furthermore, since the second case can be obtained
from the first one by simply switching P ←→ Q, we will only consider the first one.
Using equations (1.133), (1.203), (1.204), (1.205), (1.243), (1.244), we can write down
the first order expansion in powers of 1/κ of the momenta boosted using L′

g. We have

(L′
g ▷ Q)0 = γ(Q0 − βQ1) +

1

κ

[
(γ − 1)(P2Q2 + P3Q3 − γP1Q1 + βγQ0P1)

+ P0(Q0 −Q0γ
2 + βγ2Q1)

]
(1.247)
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(L′
g ▷ Q)1 = γ(Q1 − βQ0) +

1

κ

[
− βγ(P2Q2) + P3Q3 − P1(Q0 − βQ1)(γ − 1)γ

+ P0(Q1 −Q1γ
2 +Q0βγ

2)
]

(1.248)

(L′
g ▷ Q)2 = Q2 +

1

κ
[P2(Q0 −Q0γ +Q1βγ)] (1.249)

(L′
g ▷ Q)3 = Q3 +

1

κ
[P3(Q0 −Q0γ +Q1βγ)] (1.250)

One can also explicitly write the expressions of L ▷ P and L′
g ▷ Q obtained by substi-

tuting eq. (1.243), (1.244) in the formulae, which are the following.

(L′
g ▷ Q)0 =

1

2
γ
(
β cos(θ)

√
M2 − 4m2 +

√
5M2 − 4m2

)
+

1

40κ

[
5βγ cos(θ)

√
M2 − 4m2

(
3M − 2

√
5M2 − 4m2

)
+ 4m2

(
5γ2 − 12γM√

5M2 − 4m2
− 5
)
+ 3M

(
γ
√
5M2 − 4m2 − 15

(
γ2 − 1

)
M
)

− 5(γ − 1)2 cos(2θ)
(
4m2 −M2

)]
+O

((1
κ

)2)
(1.251)

(L′
g ▷ Q)1 = −

1

2
γ
(
β
√

5M2 − 4m2 + cos(θ)
√
M2 − 4m2

)
+

1

8κ
√
5M2 − 4m2

[
βγ
(
(γ − 2) cos(2θ)

(
4m2 −M2

)√
5M2 − 4m2

+ 4m2
(
3M − γ

√
5M2 − 4m2

)
− 3M2

(
M − 3γ

√
5M2 − 4m2

))
+ cos(θ)

√
M2 − 4m2

(
M
(
10(γ − 1)M − 3γ

√
5M2 − 4m2

)
− 8(γ − 1)m2

)]
+O

((1
κ

)2)
(1.252)

(L′
g ▷ Q)2 =

1

2
sin(θ)

√
M2 − 4m2 cos(ϕ)

− 1

8κ

[
sin(θ)

√
M2 − 4m2 cos(ϕ)

(
2βγ cos(θ)

√
M2 − 4m2

+ 2(γ − 1)
√
5M2 − 4m2 − 3M

)]
+O

((1
κ

)2)
(1.253)

(L′
g ▷ Q)3 =

1

2
sin(θ)

√
M2 − 4m2 sin(ϕ)

− 1

8κ

[
sin(θ)

√
M2 − 4m2 sin(ϕ)

(
2βγ cos(θ)

√
M2 − 4m2

+ 2(γ − 1)
√
5M2 − 4m2 − 3M

)]
+O

((1
κ

)2)
(1.254)

(L ▷ P )0 =
1

2
γ
(
β cos(θ)

√
M2 − 4m2 +

√
5M2 − 4m2

)
+
γM

(
β cos(θ)

√
M2 − 4m2 + M2−4m2

√
5M2−4m2

)
8κ

+O
((1

κ

)2)
(1.255)
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(L ▷ P )1 = −
1

2
γ
(
β
√
5M2 − 4m2 + cos(θ)

√
M2 − 4m2

)

+

γM

(
β(4m2−M2)√

5M2−4m2
− cos(θ)

√
M2 − 4m2

)
8κ

+O
((1

κ

)2)
(1.256)

(L ▷ P )2 = −
1

2
sin(θ)

√
M2 − 4m2 cos(ϕ)

− M sin(θ)
√
M2 − 4m2 cos(ϕ)

8κ
+O

((1
κ

)2)
(1.257)

(L ▷ P )3 = −
1

2
sin(θ)

√
M2 − 4m2 sin(ϕ)

− M sin(θ)
√
M2 − 4m2 sin(ϕ)

8κ
+O

((1
κ

)2)
(1.258)

Notice that, in absence of deformation, the components of momenta along x2 and x3

(i.e. those components perpendicular to the boost direction) of L′
g ▷ Q and L ▷ P are

equal and opposite. However, deformation introduces additional terms which make
even these components not equal and opposite after boost, which in turn gives a
deformed angular distribution. To show this, we plot the angular dependence of the
modulus of the deformed boosted momenta to compare it to the non-deformed case.
In figures below all the quantities on the axes are expressed in GeV.

In the center of mass (COM) frame, the two momenta are distributed on a sphere.
Because of deformation, however, the spatial momenta P and Q are different in mod-
ulus (see eq. (1.243), (1.244)). In Figure 1.1 we show the distribution of momenta in
the COM frame, together with the distribution in the non-deformed case. To highlight
the qualitative difference, for the next plots we chose hypothetically M = 10 GeV,
m = 0.1 GeV, κ = 102 GeV. Furthermore, we chose the domains ϕ ∈

[
− π

10 ,
3π
2 + π

10

]
and ϕ ∈

[
0, 3π2

]
for the distributions of the deformed P and the deformed Q respec-

tively, in order to clearly show how they are related to the non-deformed one. Notice
that the non-deformed case contains only a single surface because both spatial mo-
menta have the same modulus. We then boost our momenta. In particular, Pµ will
be canonically boosted while Qµ will be boosted in a deformed way (recall however
that both Pµ and Qµ still have some effects of deformation in their modulus). In this
case we chose γ = 5 while the other parameters remain the same. We also restricted
the domain in ϕ of all distributions to better show the features of the surfaces, and
we obtain Figure 1.2. Notice that the deformed boost not only modifies the ampli-
tude of the boosted momentum, but also its angular distribution. Finally, notice that
switching P ↔ Q in the above formula makes manifest that the κ-deformed boost
contribution is much greater than the center of mass deformation of the moduli.

From a phenomenological point of view, eq. (1.247) and (1.250) show that the
difference between the two boosted momenta mostly depend on the 1

κ contribution
coming from the deformed boost (large values of boost parameter γ highlight these
contributions). This in turn is important for the study of two-particle correlations and
interference patterns, since these are often expressed as a function of the difference of
momenta (or lifetime) of the involved particles. Of particular relevance, the study of
favoured mesons from the decays Φ0(1020)→ K0K̄0, Ψ(3770)→ D0D̄0, Υ(10580)→
B0B̄0 and Υ(10860)→ B0

s B̄
0
s .
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Non-Deformed P,Q

Deformed Q

Deformed P

Figure 1.1: Angular distribution of deformed and non-deformed
momenta in the COM frame, with parameters M = 10 GeV, m =
0.1 GeV, κ = 102 GeV. Notice the onion-like structure, with the non-
deformed momentum being innermost, followed by the deformed P ,
and finally the deformed q. Here, P and Q are antipodal also in the κ-
deformed context (see eq. (1.240)). To give a more concrete numerical
estimate, the modulus of the non-deformed momentum is 5.00 GeV,
the modulus of P is 5.12 GeV, while the modulus of Q is 5.37 GeV.

Non-deformed P,Q

Deformed boosted Q

Boosted P

Figure 1.2: Angular distribution of deformed and non-deformed mo-
menta in the boosted frame, with parameters γ = 5, M = 10 GeV,
m = 0.1 GeV, κ = 102 GeV. Recall that both P and Q feel the effects
of deformation already in the modulus (see eq. (1.244) and (1.243)).
When boosting, P gets boosted with a canonical non-deformed boost,

while Q is instead boosted in a deformed way.
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2
Complex scalar field on
κ-Minkowski spacetime

2.1 Introduction

Given κ-Minkowski spacetime, one can begin building physical quantities on top of
it. In particular, one can introduce fields over κ-Minkowski spacetime. The whole
process is however not trivial, and because of the many computations involved, it will
be easy to lose track of the progress or the direction of our investigations. As such,
in the remainder of this section we will provide the reader with a roadmap of this
chapter. This chapter will be divided in the following main sections:

i) In order to introduce a field in κ-Minkowski spacetime, one could directly work in
the bicrossproduct basis using the coordinate representation given in eq. (1.66).
It is however much simpler to work with canonical, commuting coordinates,
with the caveat that one needs to switch to the classical basis. One can do
this through the so called Weyl map (the canonical product of functions is also
deformed to a non-commutative ⋆ product under Weyl map). Therefore, the
first step will be to introduce the Weyl map and its properties, after which the
rest of the discussion will be more transparent. This will be done in section 2.2;

ii) We are now in the position to introduce the action of a complex scalar field,
and we will do so immediately after having introduced the Weyl map. Because
of the properties of the ⋆ product, our total action S will be defined in terms of
two possible partial actions S1 and S2. This will be done in section 2.3;

iii) The first thing to understand about the action is how to compute physically
meaningful quantities starting from it, like for example the equations of motion
or the Noether charges. However, because of the non-trivial co-product, the
derivatives do not satisfy the Leibniz rule. We will therefore first introduce
the action of derivatives on ⋆ products from in section 2.4. After this we can
immediately introduce the integration-by-parts relations, from section 2.5 to 2.9;

iv) We now have both an action, and the integration-by-parts relation which means
that we can vary the action introduced in section 2.3 to obtain both the equations
of motion (EoM) and the surface terms. We will do this in section 2.10;

v) We can now build the on-shell field since we know the EoM. Once we have it,
we can also discuss its properties under the discrete transformations C, P , and
T . We will do this in section 2.11;
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vi) Going a bit off-topic, it is useful to introduce at this point the off-shell momentum-
space action, in section 2.12. This is not needed for the rest of this chapter, but
will be needed in chapter 3 when we will obtain the propagator;

vii) Since we now have the EoM and the on-shell field, the other important quantities
to obtain from the action defined in section 2.3 are the charges. We will proceed
along the following steps:

a) To compute the charges, we introduce the symplectic form in section 2.13.
The role of this object is twofold. On one hand it allows us to compute
the creation/annihilation operators algebra. On the other hand, we can
use it to compute the charges using the geometric approach, which we
describe in section 2.14. This will lead us to introduce deformed rules
for the contraction of vector fields with forms. Using them, we will obtain
both the translation (section 2.14), boost (section 2.14.2.3) and the rotation
charges (section 2.14.2.4);

b) We will conclude the computation of the charges with some mathematical
considerations on the properties of the Poisson brackets of creation/annihilation
operators, and the role of the antipode in the interaction between forms
and vector fields (section 2.14.3 and 2.14.4).

viii) We now finally have all the charges, as well as the creation/annihilation opera-
tors algebra. The natural next step is to check what is the algebra satisfied by
the charges. We check it in section 2.15;

ix) We now have all the charges coming from continuous symmetries, and as we
discussed in point v) we also have discrete symmetries. We are therefore ready
to discuss the interaction between them. The first surprising result is the non-
commutativity of the C operator with the boost charge Ni. We show the detailed
computations of this fact in section 2.16;

x) Another important and non-trivial result is related to the Greenberg’s theorem,
which (in canonical axiomatic QFT) shows how invariance CPT transformation
is equivalent to Lorentz invariance. Because our result of point ix), we already
know that in our model CPT invariance is subtly violated. We investigate the
details of Greenberg’s theorem and its application to the deformed context in
section 2.17;

xi) We will conclude with some phenomenological considerations concerning possi-
ble signatures of the fact that [C,Ni] ̸= 0 in section 2.18.

The Weyl map introduced in point i) of the above list is a quantity which (at least in
canonical quantum mechanics) has been known for decades. Here we just review some
of the material in the literature which we need to proceed forward, but it does not
constitute original work. Similarly, the deformation of the Lorenz rule for derivatives
and the integration-by-parts obtained in point iii) have been already discussed in [86]
in the context of the bicrossproduct basis, and only their translation to the classical
basis discussed in this work is original. All other points are original results.

2.2 Weyl maps

We begin with point i) in the roadmap. In our context, a Weyl map is a function
which allows for every object built on top of the group manifold AN(3) to be translated



2.2. Weyl maps 33

into commutative spacetime with ⋆ product. This includes functions of x, integrals,
derivatives. Since this is a standard construction, we only pinpoint the most important
features and definitions, referring the reader to [86], [80], [85], [78] for a more complete
discussion. Conceptually speaking, a Weyl map is not strictly needed for any of the
computations in the present and following chapters. Indeed, since AN(3) is a Lie
group, there are well defined concepts of differentiation and integration, which suffice
for our purpose. Nevertheless, being able to switch to a more conventional spacetime,
where coordinates are not matrices any more, greatly simplifies the computations, and
allows for a more clear interpretation of the results. For clarity, since we will need
to talk about the parity transformation P , from here on we will indicate the classical
basis with p and not P .

By definition, we have

W (êk(x̂)) = ep(k)(x), W −1(ep(k)(x)) = êk(x̂), (2.1)

where

ep(k)(x) = e−i(ωpt−px), (2.2)

and where k are momenta in the bicrossproduct basis, and p are the momenta in the
classical basis as a function of the k momenta, see eq. (1.75), (1.88) (recall also the
definition of ê∗ in eq. (1.87)). Of course, we need to take care also of the sum of
momenta and antipodes, and we have the definitions (we will only write down the
transformation in one direction, since the inverse is then obvious, and we also avoid
writing the dependence on both x and x̂, since they are also obvious)

W ((êk)
−1) = eS(p(k)), W (êkêl) = ep(k)⊕q(l) =: ep ⋆ eq (2.3)

where the second equation defines the ⋆ product. Notice that, since the product in
AN(3) is not commutative, then neither is the ⋆ product. Furthermore, notice that
since by definition we have

e†p ⋆ ep = ep ⋆ e
†
p = 1 (2.4)

then we have

e†p = eS(p). (2.5)

Furthermore, calling ∂̂ the derivatives in the context of the AN(3) group defined by

∂̂µ êk = ipµ(k) êk , ∂̂4 êk = i(κ− p4(k)) êk
∂̂µ ê

∗
k = ip∗µ(k) ê

∗
k , ∂̂4 ê

∗
k = i(κ− p∗4(k)) ê∗k (2.6)

we define the action of the Weyl map action by

W (∂̂µêk) = ∂µep W (∂̂4êk) = ∂4ep, ∂4ep = i(κ− p4)ep. (2.7)

Finally, we have the definition∫̂
êk =

∫
R4

d4xW (êk(x̂)) (2.8)

for plane waves. Notice that the integral on the LHS is not an integral over AN(3).
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This in turn allows us to define fields using the Fourier transform [86], [80], [85], [78],
[81], [82]

ϕ(x) =

∫
AN(3)

dµ(p)ϕ̃(p)ep(x) dµ(p) =
d4p

p4/κ
(2.9)

restricted by the constraints in eq. (1.56). Of course, one can define the same thing
at the group level and not in canonical spacetime by

ϕ̂(x̂) =

∫
AN(3)

dµ(p)ϕ̃(p)êk(x̂) (2.10)

with the definitions

W (ϕ̂(x̂)) = ϕ(x) W (ϕ̂(x̂)ψ̂(x̂)) = ϕ(x) ⋆ ψ(x) (2.11)

and therefore ∫̂
ϕ̂(x̂)ψ̂(x̂) =

∫
R4

d4xϕ(x) ⋆ ψ(x). (2.12)

In other words, we can safely translate quantities defined purely in terms of (deriva-
tives and integrals of) group elements in AN(3) into more familiar terms, with canon-
ical Riemannian integrals defined in R4 and derivatives acting on canonical plane
waves, paying attention to the fact that products of different objects need to be de-
fined as ⋆ product. Of course, such a set of definitions is not unique, for example here
we chose to relate canonical plane waves with group elements defined according to the
time-to-the-right convention (recall eq. (1.67)). Instead, we could have chosen a Weyl
map with the definition

W −1(ep) = eipµx̂
µ

(2.13)

which, as we saw in eq. (1.68), corresponds to a different choice of basis in momen-
tum space. Different Weyl maps can offer different advantages and disadvantages,
depending on the problem at hand, for a more in depth discussion see [86], [80], [85],
[78].

In what follows, we will use the Weyl map defined as above, and we will assume
that it has already been applied.

2.3 Action for the complex scalar field

We can now go to point ii) in the roadmap in section 2.1. Because of what has been
said in section 2.2, and recalling that we need to get back the non-deformed action in
the formal κ→∞ limit, we have two possible choices for the action, namely

S1 =

∫
R4

d4x (∂µϕ)† ⋆ (∂µϕ)−m2ϕ† ⋆ ϕ (2.14)

S2 =

∫
R4

d4x (∂µϕ) ⋆ (∂
µϕ)† −m2ϕ ⋆ ϕ†. (2.15)
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Because of this, and for reasons that will become apparent later, we choose the fol-
lowing action.

S =
1

2

∫
R4

d4x [(∂µϕ)† ⋆ (∂µϕ) + (∂µϕ) ⋆ (∂µϕ)
† −m2(ϕ† ⋆ ϕ+ ϕ ⋆ ϕ†)] . (2.16)

We now need to extract the equations of motion (EoM) and the conserved Noether
charges associated with continuous symmetries out of this action. Notice that the
quantities ∂† are non-trivial objects which will be defined (and whose properties will
be investigated) in the next section.

2.4 Action of derivatives on ⋆ products

We now have a star product in a commutative spacetime, and we want to know
how derivatives act on the star product of two functions. We are at point iii) of
our roadmap in section 2.1. We know that the action cannot be Leibnizian, since
otherwise one would get the following contradiction.

i(p⊕ q)µep⊕q = ∂µ(ep ⋆ eq) = (∂µep) ⋆ eq + ep ⋆ ∂µeq = i(p+ q)µep⊕q (2.17)

Indeed, from the first equality in eq. (2.17) we already see that the action must be
defined in terms of the co-product. Since we are using plane waves whose momenta
are in the classical basis, we will need to model the action of derivatives on products
over eq. (1.59), (1.60), (1.61). We define therefore the following κ-deformed Leibniz
rules, in analogy with those defined already1 in [86].

∂0(ϕ ⋆ ψ) =
1

κ
(∂0ϕ) ⋆ (∆+ψ) + κ(∆−1

+ ϕ) ⋆ (∂0ψ) + i(∆−1
+ ∂iϕ) ⋆ (∂iψ) (2.18)

∂i(ϕ ⋆ ψ) =
1

κ
(∂iϕ) ⋆ (∆+ψ) + ϕ ⋆ (∂iψ) (2.19)

∆+(ϕ ⋆ ψ) =
1

κ
(∆+ϕ) ⋆ (∆+ψ) . (2.20)

Furthermore, we introduce the objects ∂† which are related to antipodes. More in
detail, are defined in such a way that

∂ep ∝ pep ⇔ ∂†ep ∝ S(p)ep. (2.21)

As such, we expect them to be related to eq. (1.64). We define

∂†i = κ∆−1
+ ∂i , ∂†0 = ∂0 − i∆−1

+ ∂2 , ∂†4 = −∂4 , ∆†
+ = κ2∆−1

+ (2.22)

∆+ = i∂0 + κ+ i∂4 . (2.23)

1In [86] the co-product rules in the bicrossproduct basis are used to define the action of derivatives
on products, instead of the classical basis that we use here. Furthermore, the model considered in
[86] is completely different from the present one, since they consider only one of the two orderings of
the action (the equivalent of our eq. (2.14)) and they have a completely different field decomposition.
The action of derivatives on products, however, is only a manifestation of the co-product, and it is
therefore model-independent.
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Notice that for the definition of ∆+ we used the conventions highlighted in eq. (2.6).
If we define the linear combinations

Ξ(x) = ap e
−i(ωpt−px) + b†p∗ ei(S(ω

∗
p)t−S(p∗)x) ≡ Ξ(+)(x) + Ξ(−)(x) (2.24)

Ξ†(x) = a†p e
−i(S(ωp)t−S(p)x) + bp∗ ei(ω

∗
pt−p∗x) ≡ Ξ†

(+)(x) + Ξ†
(−)(x) (2.25)

then we have

(∂AΞ)
† = ∂†AΞ

†. (2.26)

The reason for this particular choice of linear combination Ξ will become clear after
we introduce the complex fields in subsequent sections (at this point, a, a†, b, b† are
just some complex coefficients). We check the validity of eq. (2.26) for A = 0, i, 4.

2.4.1 A = 0

In this case

∂0Ξ = −iωpap e−i(ωpt−px) + iS(ω∗
p)b

†
p∗ ei(S(ω

∗
p)t−S(p∗)x) (2.27)

which means that

(∂0Ξ)
† = iωpa

†
p e

−i(S(ωp)t−S(p)x) − iS(ω∗
p)bp∗ ei(ω

∗
pt−p∗x). (2.28)

On the other hand

∂†0Ξ
† = (∂0 − i∆−1

+ ∂2)Ξ† (2.29)

=

(
−iS(ωp) +

i

S(ωp) + p4
S(p)2

)
︸ ︷︷ ︸

=iS(S(ωp))

a†p e
−i(S(ωp)t−S(p)x)

+

(
iω∗
p +

i

−ω∗
p − p∗4

(p∗)2
)

︸ ︷︷ ︸
=−iS(ω∗

p)

bp∗ ei(ω
∗
pt−p∗x) (2.30)

where we also used S(p4) = p4 which is true both off-shell and on-shell, so that we
only need to verify that S(S(ωp)) = ωp. We have

S(S(ωp)) = −S(ωp) +
1

S(ωp) + p4
S(p)2 (2.31)

= ωp −
p2

ωp + p4
+
ωp + p4
κ2

κ2p2

(ωp + p4)2
(2.32)

= ωp (2.33)

where we used

S(p0) + p4 = −p0 +
p2

p0 + p4
+ p4 =

κ2

p0 + p4
. (2.34)

Notice the important detail that the definition ∂̂4 ê∗k = i(κ−p∗4(k)) ê∗k in equation (2.6)
translated through the Weyl map states that

∂4 e
−i(ω∗

pt−p∗x) = i(κ− p∗4(k)) e−i(ω
∗
pt−p∗x) (2.35)
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while in eq. (2.29), when we use ∆−1
+ in the second term in the RHS, we are applying

∂4 to ei(ω
∗
pt−p∗x) = e−i(ωpt−px), so that in the second term in the RHS of eq. (2.29)

we get the quantity

1

ωp + p4
=

1

−ω∗
p − p∗4

. (2.36)

2.4.2 A = i

In this case

∂iΞ = ipiap e
−i(ωpt−px) − iS(p∗)ib

†
p∗ ei(S(ω

∗
p)t−S(p∗)x) (2.37)

and therefore

(∂iΞ)
† = −ipia†p e−i(S(ωp)t−S(p)x) + iS(p∗)ibp∗ ei(ω

∗
pt−p∗x). (2.38)

On the other hand we have

∂†iΞ
† = (κ∆−1

+ ∂i)Ξ
† (2.39)

=

(
κ

i

S(ωp) + p4
S(p)i

)
︸ ︷︷ ︸

=−iS(S(p))i

a†p e
−i(S(ωp)t−S(p)x)

+

(
−κ i

−ω∗
p − p∗4

p∗
i

)
︸ ︷︷ ︸

=iS(p)i

bp∗ ei(ω
∗
pt−p∗x) (2.40)

and also

κ
i

S(ωp) + p4
S(p)i = −iκ

ωp + p4
κ2

κpi
ωp + p4

= −ipi (2.41)

which concludes the verification.

2.4.3 A = 4

We have

∂4Ξ = i(κ− p4)ap e−i(ωpt−px) + i (κ− S(p4))︸ ︷︷ ︸
=κ−p4

b†p∗ ei(S(ω
∗
p)t−S(p∗)x) (2.42)

where in the first term in the RHS we just used eq. (2.6) and in the second term we
used the fact that

ei(S(ω
∗
p)t−S(p∗)x) = e−i(S(ωp)t−S(p)x) (2.43)

and then we used again the definition (2.6). Therefore we have

(∂4ϕ)
† = −i(κ− p4)a†p e−i(S(ωp)t−S(p)x) − i(κ− p4)bp∗ ei(ω

∗
pt−p∗x) (2.44)

On the other hand we have

∂†4ϕ
† = −∂4ϕ† (2.45)
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= −i(κ− S(p4))a†p e−i(S(ωp)t−S(p)x) − i(κ− p4)bp∗ ei(ω
∗
pt−p∗x) (2.46)

which concludes the check.

2.4.4 A = +

From subsection (2.4.1) and (2.4.3) together with the definition (2.23) we have that
(∆+ϕ)

† = ∆†
+ϕ

†. In fact, we know that (∂0ϕ)
† = ∂†0ϕ

† then we also know that
(α∂0ϕ)

† = α†(∂0ϕ)
† = α†∂†0ϕ

† for any constant α, and the same goes for ∂4.

2.4.5 ∆†
+ = κ2∆−1

+

We have

∆†
+ = −i∂†0 + κ− i∂†4 (2.47)

= −i
(
∂0 − i∆−1

+ ∂2
)
+ κ+ i∂4 (2.48)

= −i∂0 −
∂2

i∂0 + κ+ i∂4
+ κ+ i∂4 (2.49)

(2.50)

Furthermore, recall that by definition we have

(κ+ i∂4)
2 = κ2 − ∂20 + ∂2 (2.51)

and therefore we end up with

∆†
+ =

∂20 − ∂2 + κ2 − ∂20 + ∂2

∆+
=

κ2

∆+
(2.52)

which proves the formula.

2.5 Integration-by-parts relation for ∂i going ←
We now need explicitly what are the integration by parts relations that one can get
using eq. (2.18), (2.19), (2.20), (2.22), (2.23). This is a preparatory step, and we
will need it after the introduction of the action of the complex scalar field in order to
compute the continuous charges.

For the spatial integration by parts we have

(∂iϕ)
† ⋆ (∂iψ) = ∂i

[
(∂iϕ)

† ⋆ ψ
]
− ∆+

κ

[
(∂2ϕ)† ⋆ ψ

]
. (2.53)

which can be obtained using the following steps

(∂iϕ)
† ⋆ (∂iψ)

(2.19)
= ∂i

[
(∂iϕ)

† ⋆ ψ
]
− 1

κ
[∂i(∂iϕ)

†] ⋆ (∆+ψ) (2.54)

(2.20)
= ∂i

[
(∂iϕ)

† ⋆ ψ
]
−∆+

[
(∆−1

+ ∂i(∂iϕ)
†) ⋆ ψ

]
(2.55)

= ∂i

[
(∂iϕ)

† ⋆ ψ
]
− ∆+

κ

[
(κ∆−1

+ ∂i(∂iϕ)
†) ⋆ ψ

]
(2.56)

(2.22)
= ∂i

[
(∂iϕ)

† ⋆ ψ
]
− ∆+

κ

[
(∂†i (∂iϕ)

†) ⋆ ψ
]

(2.57)
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= ∂i

[
(∂iϕ)

† ⋆ ψ
]
− ∆+

κ

[
(∂2ϕ)† ⋆ ψ

]
. (2.58)

2.6 Integration-by-parts relation for ∂0 going ←
We do the same thing for the temporal part. We have

(∂0ϕ)
† ⋆ (∂0ψ) =

∂0
κ

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− i∂i[(∆−1

+ ∂i∂0ϕ)
† ⋆ ψ]− ∆+

κ

[
(∂20ϕ)

† ⋆ ψ
]

(2.59)

which can be proven using the following steps.

κ (∂0ϕ)
† ⋆ (∂0ψ) (2.60)

(2.18)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− 1

κ
(∆+∂0(∂0ϕ)

†) ⋆ (∆+ψ)− i(∂i(∂0ϕ)†) ⋆ (∂iψ) (2.61)

(2.20)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
−∆+[(∂0(∂0ϕ)

†) ⋆ ψ]− i(∂i(∂0ϕ)†) ⋆ (∂iψ) (2.62)

(2.19)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
−∆+[(∂0(∂0ϕ)

†) ⋆ ψ]− i∂i[(∂i(∂0ϕ)†) ⋆ ψ]

+
i

κ
(∂2(∂0ϕ)

†) ⋆ (∆+ψ) (2.63)

(2.20)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
−∆+[(∂0(∂0ϕ)

†) ⋆ ψ]− i∂i[(∂i(∂0ϕ)†) ⋆ ψ]

+ i∆+[(∆
−1
+ ∂2(∂0ϕ)

†) ⋆ ψ] (2.64)

= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− i∂i[(∂i(∂0ϕ)†) ⋆ ψ]

−∆+

{
[(∂0 − i∆−1

+ ∂2)(∂0ϕ)
†] ⋆ ψ

}
(2.65)

(2.22)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− i∂i[∆+κ

−1(∂i∂0ϕ)
† ⋆ ψ]

−∆+

{
[(∂0 − i∆−1

+ ∂2)(∂0ϕ)
†] ⋆ ψ

}
(2.66)

(2.22)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− iκ∂i[(∆−1

+ ∂i∂0ϕ)
† ⋆ ψ]

−∆+

{
[(∂0 − i∆−1

+ ∂2)(∂0ϕ)
†] ⋆ ψ

}
(2.67)

(2.22)
= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− iκ∂i[(∆−1

+ ∂i∂0ϕ)
† ⋆ ψ]−∆+

{
[∂†0(∂0ϕ)

†] ⋆ ψ
}

(2.68)

= ∂0

[
(∆+(∂0ϕ)

†) ⋆ ψ
]
− iκ∂i[(∆−1

+ ∂i∂0ϕ)
† ⋆ ψ]−∆+

[
(∂20ϕ)

† ⋆ ψ
]
. (2.69)

2.7 Integration-by-parts relation for ∂i going →
Working in the same way, we obtain

(∂iψ) ⋆ (∂iϕ)
† = κ∂i(ψ ⋆ [∆

−1
+ (∂iϕ)

†])− ψ ⋆ (∂2ϕ)† . (2.70)

Indeed, we have

1

κ
(∂iψ) ⋆ (∂iϕ)

† (2.19)
= ∂i(ψ ⋆ [∆

−1
+ (∂iϕ)

†])− ψ ⋆ [∆−1
+ ∂i(∂iϕ)

†] (2.71)
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and therefore

(∂iψ) ⋆ (∂iϕ)
† (2.19)

= κ∂i(ψ ⋆ [∆
−1
+ (∂iϕ)

†])− ψ ⋆ [κ∆−1
+ ∂i(∂iϕ)

†] (2.72)
(2.22)
= κ∂i(ψ ⋆ [∆

−1
+ (∂iϕ)

†])− ψ ⋆ (∂2ϕ)†. (2.73)

2.8 Integration-by-parts relation for ∂0 going →
One can show that

(∂0ψ) ⋆ (∂0ϕ)
† = ∂0(ψ ⋆ [κ∆

−1
+ (∂0ϕ)

†])− i∂i(ψ ⋆ [∆−1
+ ∂i(∂0ϕ)

†])

− [ψ ⋆ (∂20ϕ)
†] +

(
i

κ
∂0 + i

∂4
κ

)
[ψ ⋆ (∂20ϕ)

†] (2.74a)

Indeed we have

1

κ
(∂0ψ) ⋆ (∂0ϕ)

† (2.18)
= ∂0(ψ ⋆ [∆

−1
+ (∂0ϕ)

†])− κ(∆−1
+ ψ) ⋆ (∆−1

+ ∂0(∂0ϕ)
†)

− i(∆−1
+ ∂iψ) ⋆ (∆

−1
+ ∂i(∂0ϕ)

†) (2.75)

(2.20)
= ∂0(ψ ⋆ [∆

−1
+ (∂0ϕ)

†])−∆−1
+ [ψ ⋆ (∂0(∂0ϕ)

†)]

− iκ−1∆−1
+ [(∂iψ) ⋆ (∂i(∂0ϕ)

†)] (2.76)

(2.19)
= ∂0(ψ ⋆ [∆

−1
+ (∂0ϕ)

†])−∆−1
+ [ψ ⋆ (∂0(∂0ϕ)

†)]

− i∆−1
+

[
∂i(ψ ⋆ [∆

−1
+ ∂i(∂0ϕ)

†])− ψ ⋆ [∆−1
+ ∂2(∂0ϕ)

†]
]

(2.77)

= ∂0(ψ ⋆ [∆
−1
+ (∂0ϕ)

†])− i∆−1
+ ∂i(ψ ⋆ [∆

−1
+ ∂i(∂0ϕ)

†])

−∆−1
+ [ψ ⋆ (∂0 − i∆−1

+ ∂2)(∂0ϕ)
†] (2.78)

(2.22)
= ∂0(ψ ⋆ [∆

−1
+ (∂0ϕ)

†])− i∆−1
+ ∂i(ψ ⋆ [∆

−1
+ ∂i(∂0ϕ)

†])

−∆−1
+ [ψ ⋆ (∂20ϕ)

†] (2.79)

We now expand ∆−1
+ (recall that ∆+ = i∂0+κ+ i∂4). By expanding we mean writing

the differential operator κ∆−1
+ in terms of a sum of derivatives in the numerator. In

other words, after applying κ∆−1
+ to a star product, we get some function of momenta

at the denominator, and we expand such a function around a point in momentum
space which is convenient for us. At this point, we convert this function back to
action of derivatives on the original star product. The net effective result is that
we have expanded out original differential operator as if it was already a function of
momenta. We have

κ∆−1
+ =

1

i∂0κ + 1 + i∂4κ
(2.80)

Notice that we cannot expand around (∂0, ∂i) = (0, 0) (here we abuse notation a bit
by addressing derivatives as if they are already momenta, but one should always keep
in mind our previous discussion) because in this case m = 0 on-shell, and we are
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assuming m ̸= 0 instead. Furthermore, notice that if we expand around ∂0 = 0, then
the expansion up to first order would be

κ∆−1
+ = κ∆−1

+ (∂0 = 0) +
δκ∆−1

+

δ∂0

∣∣∣∣∣
∂0=0

∂0 +O(∂20) (2.81)

where we used eq. (2.6), and in particular the zeroth order would become

κ∆−1
+ (∂0 = 0) =

1

1−
√
1 + m2

κ2

̸= 1 (2.82)

which is however problematic, because one would not recover the correct equation
of motion (since the temporal component of the kinetic term will have a different
rescaling than the spatial part). We need to find an expansion point p such that
κ∆−1

+ (p) = 1. Therefore, we expand around ∂0 = −∂4 = ∂†4. We have

κ∆−1
+ = κ∆−1

+ (∂0 = −∂4) +
δκ∆−1

+

δ∂0

∣∣∣∣∣
∂0=−∂4

(∂0 − (−∂4)) +O((∂0 + ∂4)
2) (2.83)

= 1−
i
κ(

i∂0κ + 1 + i∂4κ

)2
∣∣∣∣∣
∂0=−∂4

(∂0 + ∂4) = 1− i

κ
∂0 − i

∂4
κ

(2.84)

Coming back to our integration-by-parts relation, without loss of generality we can
write

(∂0ψ) ⋆ (∂0ϕ)
† = ∂0(ψ ⋆ [κ∆

−1
+ (∂0ϕ)

†])− i∂i(ψ ⋆ [∆−1
+ ∂i(∂0ϕ)

†])− [ψ ⋆ (∂20ϕ)
†]

+ i∂i

(
i

κ
∂0 + i

∂4
κ

)
(ψ ⋆ [∆−1

+ ∂i(∂0ϕ)
†])

+

(
i

κ
∂0 + i

∂4
κ

)
[ψ ⋆ (∂20ϕ)

†] (2.85)

However, the term i∂i

(
i
κ∂0 + i∂4κ

)
(ψ ⋆ [∆−1

+ ∂i(∂0ϕ)
†]) can be ignored because it con-

tain a double total derivative (we are considering ∂4 as an independent derivative with
respect to the others, because indeed p4 can have a value independent from the value
of p0 or pi). This proves eq. (2.74).

Notice that, since we do not have any prefactor in front of the kinetic part of the
on-shell operator, we also don’t need to modify the mass term to obtain the correct
on-shell relation, like it was needed in the previous ordering. Furthermore, notice
also that we only expanded the ∆−1

+ which acted globally on each star product, while
there would be no meaning in expanding the factors ∆−1

+ inside the star product.
Furthermore, this expansion does not mean that our results are approximate. Indeed,
higher order term in the expansion of κ∆−1

+ would contribute factors proportional to
∂2 or higher, and all these contributions vanish in any case because of the integral.

2.9 Mass terms integration by parts

Recalling that ∆+ = i∂0 + κ+ i∂4 for the first ordering we have

m2ϕ† ⋆ ψ = − i∂0
κ

(m2ϕ† ⋆ ψ)− i∂4
κ

(m2ϕ† ⋆ ψ) +
∆+

κ
(m2ϕ† ⋆ ψ) (2.86)
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which can be proven trivially from

m2ϕ† ⋆ ψ = −
(
∆+

κ
− 1

)
(m2ϕ† ⋆ ψ) +

∆+

κ
(m2ϕ† ⋆ ψ). (2.87)

For the second ordering we don’t have a contribution coming from this reasoning.

2.10 EoM and surface terms Π0, Πi, and Π4 for both or-
derings of the action

We now have all the necessary tools, i.e. eq. (2.53), (2.59), (2.70), (2.74), (2.86), to
integrate by parts both orderings of the action, i.e. eq. (2.14) and (2.15), which we
rewrite here for simplicity

(2.14)→ S1 =

∫
R4

d4x (∂µϕ)† ⋆ (∂µϕ)−m2ϕ† ⋆ ϕ (2.88)

(2.15)→ S2 =

∫
R4

d4x (∂µϕ) ⋆ (∂
µϕ)† −m2ϕ ⋆ ϕ†. (2.89)

We are at point iv) of our roadmap in section 2.1. We can now compute the variation
of the action in eq. (2.16)

δS1 =
1

2

∫
R4

d4x (∂µδϕ)
† ⋆ ∂µϕ+ (∂µϕ)

† ⋆ ∂µδϕ−m2δϕ† ⋆ ϕ−m2ϕ† ⋆ δϕ (2.90)

which can be immediately rewritten using integration by parts (2.53), (2.59), (2.86)
as2

δS1 =
1

2

∫
R4

d4x

{
−∆+

κ

[
(∂†µ(∂

µ)† −m2)ϕ† ⋆ δϕ
]
+ ∂A

(
ΠA1 ⋆ δϕ

)
− κ

∆+

[
δϕ† ⋆ (∂µ∂

µ −m2)ϕ
]
+ ∂†A

(
δϕ† ⋆

(
ΠA1
)†)} (2.91)

where

Π0
1 = (Π0)1 =

1

κ
(∆+∂

†
0 + im2)ϕ† (2.92)

Πi1 = −(Πi)1 = (−∂i(1 + i∆−1
+ ∂0))ϕ

† (2.93)

Π4
1 = (Π4)1 = −i

m2ϕ†

κ
. (2.94)

For the other ordering we proceed in a similar manner, with the only difference that
we use the integration-by-parts relations (2.70), (2.74). We have

δS2 =
1

2

∫
R4

d4x ∂µϕ ⋆ (∂µδϕ)
† + ∂µδϕ ⋆ (∂µϕ)

† −m2ϕ ⋆ δϕ† −m2δϕ ⋆ ϕ† (2.95)

2One can integrate by parts one of the two terms, and then obtain the other by taking the
Hermitian conjugate. Of course, the same relation is obtained if one starts with the co-product rules
for the derivatives ∂†, and then proceeds from there.



2.11. Complex scalar field and its properties 43

which can be rewritten as

δS2 =
1

2

∫
R4

d4x

{
−
[
δϕ ⋆ (∂†µ(∂

µ)† −m2)ϕ†
]
+ ∂A

(
δϕ ⋆ΠA

)
−
[
(∂µ∂

µ −m2)ϕ ⋆ δϕ†
]
+ ∂†A

((
ΠA
)†
⋆ δϕ†

)}
(2.96)

where

Π0
2 = (Π0)2 =

(
κ

∆+
∂†0 +

i

κ
(∂†0)

2

)
ϕ† (2.97)

Πi2 = −(Πi)2 = −
κ

∆+
(∂†i + i∂i∂

†
0)ϕ

† (2.98)

Π4
2 = (Π4)2 = +i

(∂†0)
2

κ
ϕ†. (2.99)

We see that the equations of motion are the canonical Klein-gordon equation

(∂µ∂
µ −m2)ϕ = 0 (∂†µ(∂

µ)† −m2)ϕ† = 0. (2.100)

Notice that in momentum space, ∂†µ(∂µ)† ↔ S(p)µS(p)
µ = pµp

µ ↔ ∂µ∂
µ), where one

can check explicitly that

S(p)µS(p)
µ = S(ωp)

2 − S(p)2 (2.101)

=

(
−ωp +

p2

ωp + p4

)2

−
(
− κp

ωp + p4

)2

(2.102)

= ω2
p − 2

ωpp
2

ωp + p4
+

p4

(ωp + p4)2
− κ2p2

(ωp + p4)2
(2.103)

= ω2
p + p2−(ωp + p4)

2

(ωp + p4)2
(2.104)

= pµp
µ (2.105)

and therefore

S(p)µS(p)
µ = pµp

µ (2.106)

The fields satisfying such equations are usually written as linear combinations of
plane waves and their Hermitian conjugate. Here, because of the curved nature of
momentum space, it is not so automatic. Nevertheless, we will see in the next section
that fields satisfying these equations, in the context of κ-deformation, can be described
in a particularly clear way.

2.11 Complex scalar field and its properties

We are now in point v) of our roadmap. As it is clear from eq. (1.56), the AN(3)
group manifold is a 4-dimensional submanifold of a 5-dimensional space. Furthermore,
we have plane waves, i.e. group elements g ∈ AN(3). To define a field on it which
satisfies the EoM in eq. (2.100) we can use both these facts and define [78]

ϕ(x) =

∫
d5p 2κδ(pAp

A + κ2)θ(p+)θ(p4)δ(pµp
µ −m2)ϕ̃(p)e−ipx (2.107)
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where ϕ(x) is a function in commutative spacetime. Notice that the quantity

d5p 2κδ(pAp
A + κ2) (2.108)

is the metric in R5 restricted to the group manifold with the constraint in eq. (1.56)
(the κ is only present for dimensional reasons). In the same way, the Heaviside θ
functions restrict ourselves to the correct part of the manifold, namely where P+ > 0
and P4 > 0. Finally, the remaining Dirac delta imposes the on-shell condition. In
order to write this field in a more familiar way, one can first split the constraints as
follows.

δ(pµp
µ −m2) = δ(pµp

µ −m2)θ(p0 −m) + δ(pµp
µ −m2)θ(−p0 −m) (2.109)

We use the notation

ϕ+(x) =

∫
d5p 2κδ(pAp

A + κ2)θ(p+)θ(p4)δ(pµp
µ −m2)θ(p0 −m)ϕ̃(p)e−ipx (2.110)

ϕ−(x) =

∫
d5p 2κδ(pAp

A + κ2)θ(p+)θ(p4)δ(pµp
µ −m2)θ(−p0 −m)ϕ̃(p)e−ipx

(2.111)

for simplicity. We can then change variable in ϕ− by sending p 7→ S(p). Because of
eq. (2.106) and (1.64), we know that the arguments of the Dirac delta are invariant.
One can also show starting from eq. (1.64) that

S(p+) = −p0 +
p2

p+
+ S(p)4 =

κ2

p+
(2.112)

so that also the Heaiside θ(p+) and θ(p4) are left invariant. One can then change vari-
able p 7→ −p = p∗ and pick up some additional factors coming from the determinant
of the Jacobian obtained in the coordinate change p 7→ S(p). Furthermore, one can
apply the Dirac deltas, reducing the integration from d5p to d3p, with other factors
added to the integrand (more details can be found in [78]). The result is that the field
can be written as

ϕ(x) =

∫
d3p√
2ωp

ζ(p) ap e
−i(ωpt−px) +

∫
d3p∗√
2|ωp∗ |

ζ(p)b†p∗ ei(S(ωp∗ )t−S(p∗)x) (2.113)

ϕ†(x) =

∫
d3p√
2ωp

ζ(p) a†p e
−i(S(ωp)t−S(p)x) +

∫
d3p∗√
2|ωp∗ |

ζ(p)bp∗ ei(ωp∗ t−p∗)x

(2.114)

Notice that if p > 0, then S(p∗) > 0, so that both ϕ(x) and ϕ†(x) are a linear
combination of positive and negative energy states. Notice that there is an additional
function ζ(p) which will be important when talking about the action. Furthermore,
notice also that the ∗ can be eliminated by all the expressions by simply change
variable p∗ 7→ −p. Therefore, it may be convenient to use instead the fields

ϕ(x) =

∫
d3p√
2ωp

ζ(p) ap e
−i(ωpt−px) +

∫
d3p√
2ωp

ζ(p)b†p e
−i(S(ωp)t−S(p)x) (2.115)
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ϕ†(x) =

∫
d3p√
2ωp

ζ(p) a†p e
−i(S(ωp)t−S(p)x) +

∫
d3p√
2ωp

ζ(p)bp e
−i(ωpt−p)x (2.116)

for simplicity. The reason for using the variables p∗ instead of −p is to make clear that
the minus sign in −p needs to also be present in front of p4, and not only p0,p. This
is important because we need the relation defined in (1.91) to hold. Having clarified
this point, we can safely switch from p∗ to −p without issues.

2.11.1 C,P, T in the non-deformed context: a short review

We provide a short review of the definition of C,P, T transformations in the non-
deformed case, which will be the basis for our treatment of the deformed case. The
non-deformed fields are the same as eq. (2.115), (2.116) but in the limit κ → ∞, so
we have

ϕU (x) =

∫
d3p√
2ωp

ap e
−i(ωpt−px) +

∫
d3p√
2ωp|

b†p e
i(ωpt−p)x) (2.117)

ϕ†U (x) =

∫
d3p√
2ωp

a†p e
i(ωpt−px) +

∫
d3p√
2ωp

bp e
−i(ωpt−p)x. (2.118)

(P ) By definition, a P transformation is defined by (t,x) 7→ (t,−x) and therefore
Pϕ(t,x)P−1 = ϕ(t,−x).

PϕU (t,x)P
−1 =

∫
d3p√
2ωp

PapP−1e−i(ωpt−px) + Pb†pP−1ei(ωpt−px)

(2.119)

!
=

∫
d3p√
2ωp

ape
−i(ωpt+px) + b†pe

i(ωpt+px) (2.120)

which means that

PapP−1 = a−p PbpP−1 = b−p (2.121)

and the same for a†, b†.

(T ) By definition, a T transformation is defined by (t,x) 7→ (−t,x) and therefore
T ϕ(t,x)T −1 = ϕ(−t,x). Recall that this is an anti-unitary operator. One can
show easily this because T xT −1 = x, T pT −1 = −p imply

[x, p] = i
T−→ −[x, p] = T iT −1 !

= −i. (2.122)

We have

T ϕ(t,x)T −1 =

∫
d3p√
2ωp

T apT −1e+i(ωpt−px) + T b†pT −1e−i(ωpt−px) (2.123)

!
=

∫
d3p√
2ωp

ape
−i(−ωpt−px) + b†pe

i(−ωpt+px) (2.124)

which means that

T apT −1 = a−p T bpT −1 = b−p (2.125)



46 Chapter 2. Complex scalar field on κ-Minkowski spacetime

and the same for a†, b†.

(C) Contrary to the previous two transformation, this is not related to spacetime
coordinates. Its action is defined by the relation CϕC−1 = ϕ†. We have

Cϕ(t,x)C−1 =

∫
d3p√
2ωp

C apC−1e−i(ωpt−px) + C b†pC−1e+i(ωpt−px) (2.126)

!
=

∫
d3p√
2ωp

a†pe
+i(ωpt−px) + bpe

−i(ωpt+px) (2.127)

which means that

C apC−1 = bp C bpC−1 = ap (2.128)

and the same for a†, b†.

2.11.2 C,P, T in the κ-deformed context

The P and T transformations can consistently be defined as acting like in the non-
deformed case (they leave [x̂0, x̂i] = i

κ x̂
i invariant). Therefore, they behave as in the

non-deformed case analysed before

T ϕ(t,x)T −1 = ϕ(−t,x) =⇒ T apT −1 = a−p (2.129)

Pϕ(t,x)P−1 = ϕ(t,−x) =⇒ PapP−1 = a−p (2.130)

The only non-trivial transformation is therefore the C transformation. However, be-
cause of the presence of the antipode S(·) in the fields in eq. (2.115), (2.116), also
C can be shown to behave like in the non-deformed case (in its action on a, a†, b, b†)
when acting on fields.

Indeed, take the ϕ+(x) component first

Cϕ+(x)C
−1 =

∫
d3p√
2ωp

ζ(p)C apC−1e−i(ωpt−px). (2.131)

On the other hand we have

ϕ†−(x) =

∫
d3p√
2ωp

ζ(p)bp e
−i(ωpt−p)x (2.132)

which means that

C apC−1 = bp. (2.133)

At the same time, we also have

Cϕ−(x)C
−1 =

∫
d3p√
2ωp

ζ(p)C b†pC−1 e−i(S(ωp)t−S(p)x) (2.134)

and

ϕ†+(x) =

∫
d3p√
2ωp

ζ(p) a†p e
−i(S(ωp)t−S(p)x) (2.135)
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which means that

C b†pC−1 = a†p. (2.136)

Notice that the definition of the C transformation is trivial also in the deformed case,
and we stress once again that this is due to the presence of the antipode in the field
definition. This is in contrast with other approaches to charge conjugation, which do
not give rise to such simple transformation rules.

2.12 Off-shell action in momentum space

It is instructive (and we will need it in chapter 3) to compute the off-shell action in
momentum space (we are in point vi) of our roadmap in section 2.1). This gives a
unique insight on the on-shell relation in momentum space, as well as a clear picture of
the invariance of the action under both discrete C,P, T transformation, and continuous
κ-Poincaré transformations.

To do so we will need the off-shell field. We cannot use the same construction as
before because it includes the Dirac delta δ(pµpµ −m2). Therefore, we define

ϕoff (x) =

∫
I +

d4p

p4/κ
ζ(p)

{
ap e

−i(ωpt−px) + b†p e
−i(S(ωp)t−S(p)x)

}
(2.137)

ϕ†off (x) =

∫
I +

d4p

p4/κ
ζ(p)

{
a†p e

−i(S(ωp)t−S(p)x) + bp e
−i(ωpt−px)

}
. (2.138)

Since we have two ordering of the action, namely eq. (2.14) and (2.15), we will
compute them separately.

2.12.1 First ordering of the action

Using the fact that (∂Aϕ)
† ≡ ∂†Aϕ

† and substituting eq. (2.137), (2.138) into (2.14)
we get

S =

∫
d4x

∫
d4p

p4/κ

d4q

q4/κ

{
(pµq

µ −m2)a†paqe
−i(S(ωp)⊕ωq)tei(S(p)⊕q)x (2.139)

− (pµS(q)
µ −m2)a†pb

†
qe

−i(S(ωp)⊕S(ωq))tei(S(p)⊕S(q))x (2.140)

− (S(p)µq
µ −m2)bpaqe

−i(ωp⊕ωq)tei(p⊕q)x (2.141)

+ (S(p)µS(q)
µ −m2)bpb

†
qe

−i(ωp⊕S(ωq))te−i(p⊕S(q))x

}
ζ(p)ζ(q) (2.142)

For the moment we will ignore the terms (2.140) and (2.141). Their treatment is quite
non-trivial, and we will defer their treatment to future studies. Therefore, integrating
in d4x,

S =

∫
d4p

p4/κ

d4q

q4/κ

{
(pµq

µ −m2)a†paqδ(S(ωp)⊕ ωq)δ(S(p)⊕ q) (2.143)

+ (S(p)µS(q)
µ −m2)bpb

†
qδ(ωp ⊕ S(ωq))δ(p⊕ S(q))

}
ζ(p)ζ(q) (2.144)
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=

∫
d4p

p4/κ

d4q

q4/κ

{
(pµq

µ −m2)a†paqδ(S(p)⊕ q) (2.145)

+ (S(p)µS(q)
µ −m2)bpb

†
qδ(p⊕ S(q))

}
ζ(p)ζ(q) (2.146)

where we used the notation

δ(S(ωp)⊕ ωq)δ(S(p)⊕ q) = δ(S(p)⊕ q) (2.147)
δ(ωp ⊕ S(ωq))δ(p⊕ S(q)) = δ(p⊕ S(q)). (2.148)

We now use a known result in the literature [85] which states that

δ(p⊕ S(q)) = |p+|
3

κ3
δ(S(p)⊕ q) δ(S(p)⊕ q) = p4

κ
δ(p− q) (2.149)

The additional p4
κ factor eliminates one of the factors in one of the two metrics, so

that the final expression for the firs off-shell action in momentum space is

S =

∫
d4p

p4/κ
ζ2(p)

[
(pµp

µ −m2)a†pap + (S(p)µS(p)
µ −m2)bpb

†
p

|p+|3

κ3

]
(2.150)

where the red term is the factor coming from the delta.

2.12.2 Second ordering of the action

Using the switched convention, i.e. substituting eq. (2.137) and (2.138) into eq.
(2.15), we obtain

S =

∫
d4x

∫
d4p

p4/κ

d4q

q4/κ

{
(pµq

µ −m2)aqa
†
pe

−i(ωqt−qx) ⋆ e−i(S(ωp)t−S(p)x) (2.151)

+ (S(p)µS(q)
µ −m2)b†qbpe

i(S(ωq)t−S(q)x) ⋆ ei(ωpt−px)

}
ζ(p)ζ(q) (2.152)

=

∫
d4x

∫
d4p

p4/κ

d4q

q4/κ

{
(pµq

µ −m2)aqa
†
pe

−i(ωq⊕S(ωp))tei(q⊕S(p))x (2.153)

+ (S(p)µS(q)
µ −m2)b†qbpe

−i(S(ωq)⊕ωp)te−i(S(q)⊕p)x

}
ζ(p)ζ(q) (2.154)

The two missing terms have been eliminated for the same reason as before, and we
will study them in detail in forthcoming publications.

These are exactly the same terms as in the previous calculations with only two
exceptions:

1) In the previous action we had the products a†paq and bpb
†
q, while with this

switched convention we have the other order, i.e. aqa
†
p and b†qbp;

2) The Dirac deltas are switched with respect to the computations with the previ-
ous ordering. More explicitly, the exponential multiplying the term aqa

†
p here

is the same that was multiplying the term bpb
†
q, and vice versa.
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Therefore, all the computations proceed in the same way but the extra coefficient is
now found with the a, a† operators, i.e. we have

S =

∫
d4p

p4/κ
ζ2(p)

[
|p+|3

κ3
(pµp

µ −m2)a†pap + (S(p)µS(p)
µ −m2)bpb

†
p

]
(2.155)

Notice that the on-shell conditions are not swapped, because their formulation only
depends on the property (∂Aϕ)

† = ∂†Aϕ
†, and not on the ordering of the star products.

2.12.3 Sum of the two actions

Using the definition of the total action given by eq. (2.16), and substituting eq.
(2.150) and (2.155), we obtain (recall that we are still in the classical case, but upon
quantization one should remember that normal-ordering should be applied)

S =

∫
d4p

p4/κ

[
1 +
|p+|3

κ3

]
ζ2(p)

{
(pµp

µ −m2)a†pap + (S(p)µS(p)
µ −m2)b†pbp

}
.

(2.156)

If we decided to go on-shell, the computations would proceed as usual, but with an
additional Dirac delta imposing the shell condition, which means that the action would
be exactly zero.

2.13 Symplectic form for the two actions

We are now at point vii)a) of our roadmap in section 2.1.

2.13.1 Example in the non-deformed case

Let us consider a complex scalar field with the Lagrangian

L = −
(
∂µϕ†∂µϕ+m2ϕ†ϕ

)
(2.157)

The variation of this Lagrangian is

δL = −
(
∂µδϕ†∂µϕ+ ∂µϕ†∂µδϕ+m2δϕ†ϕ+m2ϕ†δϕ

)
(2.158)

This variation contains terms proportional to the field equations and the total deriva-
tive term

δL = EoM− ∂µ
(
δϕ†∂µϕ

)
− ∂µ

(
∂µϕ†δϕ

)
(2.159)

Therefore the variation of the action is

δS =

∫
M

EoM−
∫
∂M

dσµ

(
δϕ†∂µϕ+ ∂µϕ†δϕ

)
(2.160)

The second, boundary term in this expression is the so-called presymplectic structure
or Liouville form θ, if we choose the boundary ∂M to be a Cauchy surface, for example
the surface of constant time t = 0. Then we can find the symplectic form

ω = δθ =
1

2

∫
t=0

d3x

(
δϕ† ∧ ∂

∂t
δϕ− ∂

∂t
δϕ† ∧ δϕ

)
t=0

(2.161)
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Now we take the field decomposition

ϕ(t,x) =

∫
d3p√
2E

ap e
−i(Et−px) + b†p e

i(Et−px) (2.162)

so that

δϕ(t,x) =

∫
d3p√
2E

δap e
−i(Et−px) + δb†p e

i(Et−px) (2.163)

and plug it to (2.161) to obtain the symplectic form, whose inverse defines for us the
Poisson brackets, and (upon quantization) the commutators.

ω =
i

2

∫
d3x

∫
d3p d3q

(
δa†p e

−ipx + δbp e
ipx
)
∧
(
−δaq eiqx + δb†q e

−iqx
)

− i

2

∫
d3x

∫
d3q d3p

(
δa†p e

−ipx − δbp eipx
)
∧
(
δaq e

iqx + δb†q e
−iqx

)
Defining

Ω =

∫
d3pd3q ω(p, q) (2.164)

we find
Ω(p, q) ∼ −δa†p ∧ δaq − δb†p ∧ δbq (2.165)

from which the commutational relations

[ap, a
†
q] ∼ [bp, b

†
q] ∼ δ(p− q) (2.166)

2.13.2 The κ-deformed case

The extension of this reasoning to the case of fields in the context of κ-Poincaré
algebra is straightforward. In particular we have already computed the surface term
in previous sections, and we are only interested in those terms whose boundary is
spacelike, i.e. we only need to consider the following presymplectic forms.

θ1 = −
∫

R3

d3x
(
Π0

1 ⋆ δϕ+ δϕ† ⋆
(
Π0

1

)†)
= −

∫
R3

d3x

{
1

κ

(
∆+∂

†
0 + im2

)
ϕ† ⋆ δϕ+ δϕ† ⋆

[
1

κ

(
∆+∂

†
0 + im2

)
ϕ†
]†}

. (2.167)

θ2 = −
∫

R3

d3x
(
δϕ ⋆Π0

2 +
(
Π0

2

)†
⋆ δϕ†

)
= −

∫
R3

d3x

{
δϕ ⋆

(
κ

∆+
∂†0 +

i

κ
(∂†0)

2

)
ϕ† +

[(
κ

∆+
∂†0 +

i

κ
(∂†0)

2

)
ϕ†
]†
⋆ δϕ†

}
.

(2.168)

Notice that the sign in the RHS of these two presymplectic forms is such that we get
the correct symplectic form in the canonical limit κ → ∞ (and therefore the correct
canonical commutator between a and a†,a nd same for b and b†). Furthermore, we
are not writing down explicitly the wedge product for the moment because at the
moment it is not present, it will be when we will consider δθ1 and δθ2. To simplify
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the computations, notice that

Π0
1 =

(
∆+

κ
∂†0 +

im2

κ

)
ϕ† (2.169)

=
(
∆+(∂0 − i∆−1

+ ∂2) + im2
) ϕ†
κ

(2.170)

=

(
∆+

κ
∂0 +

i

κ
(m2 − ∂2)

)
ϕ† (2.171)

=

(
∆+

κ
∂0 −

i∂20
κ

)
ϕ† (2.172)

=

(
i∂0 + κ+ i∂4

κ
∂0 −

i∂20
κ

)
ϕ† (2.173)

=

[
κ+ i∂4
κ

∂0

]
ϕ†. (2.174)

and in the same way one gets[
κ+ i∂4
κ

∂0

]
=

(
∆+

κ
∂†0 +

im2

κ

)
=

(
κ

∆+
∂†0 +

i(∂†0)
2

κ

)†

(2.175)

and therefore (
κ

∆+
∂†0 +

i(∂†0)
2

κ

)
=

[
κ+ i∂4
κ

∂0

]†
. (2.176)

Notice that the quantity ∂4 acting on any plane wave brings down iκ− ip4, and since
p4 = S(p4), then κ + i∂4 → κ + i(iκ − ip4) = p4 (recall that S(p4) = p4). The
presymplectic forms can therefore be simplified to

θ1 = −
∫

R3

d3x
p4
κ

(
∂0ϕ

† ⋆ δϕ+ δϕ† ⋆ ∂†0ϕ
)

(2.177)

θ2 = −
∫

R3

d3x
p4
κ

(
δϕ ⋆ ∂†0ϕ

† + ∂0ϕ ⋆ δϕ
†
)
. (2.178)

Taking the delta, we get

δθ1 = −
∫

R3

d3x
p4
κ

(
δ∂0ϕ

† ∧
⋆ δϕ− δϕ† ∧

⋆ δ∂†0ϕ
)

(2.179)

δθ2 = −
∫

R3

d3x
p4
κ

(
−δϕ ∧

⋆ ∂†0δϕ
† + ∂0δϕ

∧
⋆ δϕ†

)
. (2.180)

The notation
∧
⋆ means that we are still taking the ⋆ product among plane waves, and

also the wedge product between δa, δa†, δb, δb†. We can now explicitly compute both
symplectic forms using the fields in eq. (2.115), (2.116). Starting from the first, we
have

δθ1 = −
∫

R3

p4
κ

{
δ∂0ϕ

† ∧
⋆ δϕ− δϕ† ∧

⋆ δ∂†0ϕ
}

(2.181)
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= −i
∫

R3

∫
d3p√
2ωp

d3q√
2ωq

ζ(q) ζ(p)
p4
κ
×{

(−S(ωq)− S(ωp))a
†
q ∧ ape−i(S(ωq)⊕ωp)tei(S(q)⊕p)x (2.182)

+ (−ωq − ωp)bq ∧ b†pe−i(ωq⊕S(ωp))tei(q⊕S(p))x (2.183)

− (S(ωq) + ωp)a
†
q ∧ b†pe−i(S(ωq)⊕S(ωp))tei(S(q)⊕S(p))x (2.184)

− (ωq + S(ωp))aq ∧ bpe−i(ωq⊕ωp)tei(q⊕p)x
}

(2.185)

We now use ∫
R3

e−i(S(ωq)t−S(q)x) ⋆ e−i(ωpt−px) = δ (p− q) (2.186)

∫
R3

e−i(ωpt−px) ⋆ e−i(S(ωq)t−S(q)x) =
|q+|3

κ3
δ (p− q) (2.187)

so that the first two terms give

δθ1 = i

∫
d3p

2ωp
ζ2(p)

p4
κ

(
2S(ωp)a

†
p ∧ ap +

p3+
κ3

2ωpbp ∧ b†p
)

(2.188)

and the other two go away because the Dirac delta impose on-shell that ωq = −S(ωp).
Indeed, one can check for example that∫

R3

e−iωpt+ipx ⋆ e−iωqt+iqx = e−i(ωp⊕ωq)tδ(p⊕ q) = e−i(ωp⊕ωq)tδ
(q+
κ
p+ q

)
(2.189)

If we first integrate in d3p, the quantity |q+|3/κ3 can be brought outside the delta
obtaining κ3

|q+|3 δ(p+ q κ
q+

). Therefore we have

e−i(ωp⊕ωq)tδ
(q+
κ
p+ q

)
=

κ3

|q+|3
e−i(ωp⊕ωq)tδ

(
p+

κ

q+
q

)
(2.190)

The Dirac deltas imply also a modification of the energy ωp. In fact, we have

ω2
q − q2 = m2 = ω2

p − p2 = ω2
p −

κ2

q2+
q2 (2.191)

and therefore

ω2
p = m2 +

κ2

q2+
q2 = S(ωq)

2. (2.192)

In other words, the Dirac delta imposes

ωp = −S(ωq). (2.193)

Notice that the LHS contains a minus sign because on-shell we have ωp > 0 and
S(ωq) < 0, so taking the square root we need to take this into account. The other
exponential is treated in the same way, since one can change variables p 7→ S(p),
obtaining the same result, so that the time-dependent parts go away.



2.13. Symplectic form for the two actions 53

For the second one, we proceed in a similar manner, and we have

δθ2 =

∫
R3

p4
κ

{
δϕ

∧
⋆ ∂†0δϕ

† − δ∂0ϕ
∧
⋆ δϕ†

}
(2.194)

= i

∫
R3

∫
d3p√
2ωp

d3q√
2ωq

ζ(q) ζ(p)
p4
κ
×{

(ωq + ωp)δap ∧ δa†qe−i(ωp⊕S(ωq))tei(p⊕S(q))x (2.195)

+ (S(ωp) + S(ωq))δb
†
pδδbqe

−i(S(ωp)⊕ωq)tei(S(p)⊕q)x (2.196)

+ (S(ωp) + ωq)δb
†
pδδa

†
qe

−i(S(ωp)⊕S(ωq))tei(S(p)⊕S(q))x (2.197)

+ (ωp + S(ωq))δbpδδaqe
−i(ωp⊕ωq)tei(p⊕q)x

}
(2.198)

so that, proceeding in the same way as before, we have

δθ2 =

∫
d3p

2ωp
ζ2(p)

p4
κ

(
p3+
κ3

2ωpδap ∧ δa†p + 2S(ωp)δb
†
p ∧ δbp

)
(2.199)

Because of the definition of the action, the total symplectic form will be

δθT =
δθ1 + δθ2

2
(2.200)

and therefore we have

δθT = i

∫
d3p

2ωp
ζ(p)2

[
|p+|3

κ3
ωp − S(ωp)

]
p4
κ

{
ap ∧ a†p − b†p ∧ bp

}
. (2.201)

This result can be simplified using the definition

α(p) =
ζ(p)2

2ωp

[
|p+|3

κ3
ωp − S(ωp)

]
p4
κ

(2.202)

and we get

δθT = i

∫
d3p α(p)

{
ap ∧ a†p − b†p ∧ bp

}
. (2.203)

This result would imply the Poisson brackets{
ap, a

†
q

}
= −i 1

ξ(p)2
κ

p4

2ωp
|p+|3
κ3

ωp − S(ωp)
δ(p− q) (2.204)

{
bp, b

†
q

}
= −i 1

ξ(p)2
κ

p4

2ωp
|p+|3
κ3

ωp − S(ωp)
δ(p− q). (2.205)

which can also be simplified using eq. (2.202) as follows{
ap, a

†
q

}
= − i

α(p)
δ(p− q) (2.206){

bp, b
†
q

}
= − i

α(p)
δ(p− q). (2.207)
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Notice that, if one uses the canonical quantization map [A,B] = iℏ{A,B} and assume
ℏ = 1, then we would get the commutators[

ap, a
†
q

]
=

1

α(p)
δ(p− q) (2.208)[

bp, b
†
q

]
=

1

α(p)
δ(p− q). (2.209)

where the LHS is positive and the coefficient goes to 1 for κ → ∞, as it should. We
will comment on how to technically get these commutations relations in section 2.14.4
below.

2.14 Conserved charges: geometric approach

The starting point is the symplectic form in eq. (2.203). For simplicity, we will call
Ω = δθT = δθ1+δθ2

2 . In order to get the charges from the symplectic form we need to
do the following.

Assuming that the charges come from a symmetry described by some continuous
vector field ξ in spacetime, then we compute [87] (this approach is also used quite
often in GR, for example see [89], [90])

−δξ⌟Ω
!
= δQξ (2.210)

where δ is the exterior derivative in phase space (i.e. the set of solutions of the EoM)
and Qξ is the charge associated to the vector ξ. The object δξ is a vector field in
phase space generated by the killing vector field ξ. In other words, δξA measures the
infinitesimal variation of the object A in phase space due to the symmetry due to the
action along ξ in spacetime. The symbol ⌟ is used to indicete contraction of the vector
field with forms. Notice that each charge obtained in this way is a symmetry of the
symplectic form. Indeed one can easily show that

£δξΩ = δξ⌟ δΩ+ δ(δξ⌟Ω) = 0 + δ2Qξ = 0 (2.211)

where we used the fact that δ2 = 0 since δ is the exterior derivative in phase space,
and also δΩ = 0 because Ω is an exact 2-form. The charges built in this way are
independent of the dynamics because the symplectic form Ω and the vector field δξ
are both time independent and non-dynamical by construction, and they are defined
on-shell.

To see how the procedure of getting the charges using this formalism, we first
tackle the problem in the canonical non-deformed QFT context.

2.14.1 Non-deformed case

In this case, the symplectic form is given by the κ → ∞ limit of eq. (2.203) above,
and it reads

Ωκ→∞ = i

∫
d3p (δap ∧ δa†p − δb†p ∧ δbp). (2.212)

2.14.1.1 Translation charges

In this case, the translation can be described by the vectors ∂0 or ∂i, depending on
whether we are talking about time translation or spatial translations.
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Starting with the time translations, we first need to understand what δ∂0ap is (it
will be analogous for b). We know that after a translation we have

ap 7→ eiϵωpap = ap + iϵωpap (2.213)

and therefore

δ∂0ap = iϵωpap ⇔ δ∂0a
†
p = −iϵωpa†p (2.214)

where the second expression can be obtained from the first one by simply taking the
hermitian conjugate. Therefore, we have (the wedge product goes away after the
contraction because the creation/annihilation operators are not themselves forms)

−δ∂0⌟Ωκ→∞ = −i
∫
d3p (δ∂0apδa

†
p − δapδ∂0a†p − δ∂0b†pδbp + δb†pδ∂0bp) (2.215)

= −i
∫
d3p [iϵωpapδa

†
p − δap(−iϵωpa†p)

− (−iϵωpb†p)δbp + δb†piϵωpbp] (2.216)

= ϵ

∫
d3p [ωpapδa

†
p + δapωpa

†
p + ωpb

†
pδbp + δb†pωpbp] (2.217)

= ϵδ

∫
d3pωp(apa

†
p + b†pbp) (2.218)

and therefore we get the canonical charge apart from the irrelevant prefactor ϵ.

Pκ→∞
0 =

∫
d3p ωp

{
a†p ap + bp b

†
p

}
(2.219)

We can also check that eq. (2.213) gives the correct field transformation.

δ∂µϕ =

∫
d3p√
2ωp

[
iϵµpµ ap e

−i(ωpt−px) − iϵµpµb†p ei(ωpt−px)
]

= ϵµ∂µ ϕ(x). (2.220)

Of course, once we quantize these charges, the operators will need to be put in normal
order. The same exact reasoning will work for the spatial translation charges, it is
sufficient to substitute ωp with pi everywhere.

2.14.1.2 Boost and rotation charges

In this case, the procedure is again the same, but this time we need to use as a
vector field ξ the generator of boost transformation, and then we need to understand
how creation/annihilation operator change under this transformation, i.e. we need to
understand what is the object δΛap.

In the case of boosts the field Fourier components transform as follows

δBap = iωp λ
i∂ap
∂pi

+ i apλ
i pi
2ωp

,

δBa†p = iωp λ
i∂a

†
p

∂pi
+ i a†pλ

i pi
2ωp

(2.221)
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and analogous expressions for bp, b†p. We have therefore

−δB⌟Ωκ→∞ = i

∫
d3p (δBa†pδap − δa†pδBap − δBbpδb†p + δbpδ

Bb†p)

= λi
∫
d3pωp

(
∂ap
∂pi

δa†p − δap
∂a†p
∂pi
− ∂b†p
∂pi

δbp + δb†p
∂bp
∂pi

)

+ λi
∫
d3p

pi
2ωp

(
apδa

†
p − δapa†p + δb†p bp − b†pδbp

)
=

1

2
λiδ

∫
d3pωp

(
∂ap
∂pi

a†p − ap
∂a†p
∂pi
− ∂b†p
∂pi

bp + b†p
∂bp
∂pi

)
(2.222)

which gives the non-deformed boost charge

N κ→∞
i =

1

2

∫
d3pωp

(
∂ap
∂pi

a†p − ap
∂a†p
∂pi
− ∂b†p
∂pi

bp + b†p
∂bp
∂pi

)
. (2.223)

The case of rotations R is analogous, and starting from the transformations

δRap = iϵijkρipj
∂

∂pk
ap δRa†p = iϵijkρipj

∂

∂pk
a†p (2.224)

and analogously for bp, b
†
p, one gets the charge

Mi =
1

8

∫
d3p ϵijkp

j

(
∂ap
∂pk

a†p − ap
∂a†p
∂pk

− ∂b†p
∂pk

bp + b†p
∂bp
∂pk

)
. (2.225)

Once again, we can obtain the field transformations from eq. (2.221) and (2.224), and
one respectively gets

δBϕ(x) = iλi

∫
d3p√
2ωp

[
ωp

∂ap
∂pi

+ ap
pi
2ωp

]
e−i(ωpt−px) +

[
ωp

∂b†p
∂pi

+ b†p
pi
2ωp

]
ei(ωpt−px)

= −iλi
∫

d3p√
2ωp

[
ap ωp

∂

∂pi
e−i(ωpt−px) + b†p ωp

∂

∂pi
ei(ωpt−px)

]
= iλi x

i ∂

∂t
ϕ(x) (2.226)

and

δRϕ(x) = iρi ϵik
j

∫
d3p√
2ωp

[
ap pk

∂

∂pj
e−i(ωpt−px) + b†p pk

∂

∂pj
ei(ωpt−px)

]
= iρi ϵik

j xj
∂

∂xk
ϕ(x) (2.227)

which are the standard spacetime boost and rotation transformations.
Notice that for the boosts we actually have antisymmetrization when writing them

in spacetime. In fact, we only wrote down the contribution from ωp
∂
∂pi

, but we should
also include the contribution of pi ∂

∂ωp
. However, since we are only integrating in d3p,

we first need to transform the derivative in ωp into a derivative in pi (which will
allow us to integrate by parts). Moreover, since we are on-shell (which means that
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ωp =
√

p2 +m2), one can show by chain rule that

∂

∂pi
=
∂ωp

∂pi

∂

∂ωp
=

pi

ωp

∂

∂ωp
= − pi

ωp

∂

∂ωp
(2.228)

and we get the same contribution as before.
Given the importance of the boost for the following discussion, as a double check

of the correctness of eq. (2.223), we also sketch the computation of the boost charge
from scratch using Noether theorem in non-deformed QFT. The action is

L = (∂µϕ)
†(∂µϕ)−m2ϕ†ϕ (2.229)

and the on-shell fields for such an action are given by

ϕ =

∫
d3p√
2ωp

ape
−i(ωpt−px) + b†pe

i(ωpt−px) (2.230)

ϕ† =

∫
d3p√
2ωp

a†pe
i(ωpt−px) + bpe

−i(ωpt−px). (2.231)

The energy-momentum tensor is given by

T νµ =
∂L

∂(∂νϕ)
∂µϕ+

∂L

∂(∂νϕ†)
∂µϕ

† − δνµL (2.232)

=
1

2
(∂µϕ)

†(∂νϕ) +
1

2
(∂µϕ)(∂

νϕ)† − 1

2
(∂αϕ)

†(∂αϕ) +
1

2
m2ϕ†ϕ. (2.233)

By Noether theorem, the charge is given by

L0i = i

∫
R3

(x0T
0
i − xiT 0

0 ) (2.234)

(the additional i factor is added by hand, and it does not modify the discussion)
and using eq. (2.232) and eq. (2.230), (2.231) one can do the explicit computations,
which we will not do explicitly here. Notice however the following subtlety. In the
term xiT

0
0 , the xi factor can be described as a derivative in momentum space acting

on the spatial exponent, but since this exponent will contain p−q (the two momenta
are necessary because Tµν contains product of fields, each of which is an integral in
momentum space, so we need two integration variables) we have two ways of going
so. This will result in two possible ways to compute the coefficient xiT 0

0 , namely

−
∫

R3

xiT
0
0 = −

∫
d3p√
2ωp

d3q√
2ωq

{
(ωpωq + pq+m2)×

×
(
−iapa†qe−i(ωp−ωq)t + ib†pbqe

i(ωp−ωq)t
) ∂

∂pi
δ(p− q)

}
(2.235)

−
∫

R3

xiT
0
0 = −

∫
d3p√
2ωp

d3q√
2ωq

{
(ωpωq + pq+m2)×

×
(
iapa

†
qe

−i(ωp−ωq)t − ib†pbqei(ωp−ωq)t
) ∂

∂qi
δ(p− q)

}
(2.236)
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After integration by parts, in both cases one term will eliminate the coefficient x0T 0
i ,

and the final charges will be

N
(p)
i = −

∫
d3p

{
ωp

(
−∂ap
∂pi

a†p +
∂b†p
∂pi

bp

)}
. (2.237)

N
(q)
i =

∫
d3p

{
ωp

(
−ap

∂a†p
∂pi

+ b†p
∂bp
∂pi

)}
. (2.238)

However, this means that we can write without loss of generality that the boost charge
Ni is given by

Ni =
1

2
(N

(p)
i +N

(q)
i ) (2.239)

which is exactly eq. (2.223).

2.14.1.2.1 Crucial step Notice that in the last passage of Eq. (2.222) we used
the fact that (we consider only the a, a† case since the same reasoning applies to b, b†)

∂ap
∂pi

δa†p − δap
∂a†p
∂pi

=
1

2
δ

(
∂ap
∂pi

a†p − ap
∂a†p
∂pi

)
+

1

2

∂

∂pi

(
apδa

†
p − δapa†p

)
. (2.240)

The second term on the RHS of the last equation is still not a total derivative because
of the presence of ωp inside the integrand. After integration by parts, this term
contributes a factor

− pi
2ωp

(
apδa

†
p − δapa†p

)
(2.241)

to the integrand, which cancels the second term in the second passage of (2.222).

2.14.2 κ-deformed case

Here we work with the full symplectic form in eq. (2.203). In obtaining this equation
we used the following property of the wedge product of two 1-forms e and f .

e ∧ f = −f ∧ e. (2.242)

In particular, this property was used when summing the contribution to the symplectic
form coming from the two different orderings of the action. This is a non-trivial
assumption in the presence of deformation, and we will discuss it more in section
2.14.3.

2.14.2.1 Translation charges

The idea is basically the same, with the only exception that now we need to consider
the presence of antipodes. Because of this, the first thing to do is to understand how
the creation/annihilation operator transform under translation.

Judging by the definition of the fields in eq. (2.115) and (2.116), we assume the
following behaviour

ap 7→ eiϵωpap a†p 7→ eiϵS(ωp)a†p b†p 7→ eiϵS(ωp)b†p bp 7→ eiϵωpbp (2.243)
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and the same for spatial momenta, or in other words

δ∂0ap = iϵωpap δ∂0a
†
p = iϵS(ωp)a

†
p

δ∂0b
†
p = iϵS(ωp)b

†
p δ∂0bp = iϵωpbp (2.244)

These transformations are correspond to the field transformation

δ∂µϕ =

∫
d3p√
2ωp

ζ(p)
[
iϵµpµ ap e

−i(ωpt−px) + iϵµS(p)µb
†
p e

−i(S(ωp)t−S(p)x)
]

= −ϵµ∂µ ϕ(x) (2.245)

for the index µ = 0. However, for these transformations to be well defined, then in
order to ensure the invariance of the products aa† and bb† we need to interpret them as
a star products. This star product is defined in the phase space and not in canonical
spacetime, otherwise the steps leading to the computation of the charges are faulted
by the fact that we cannot write ae(·) ⋆ be[·] = abe(·) ⋆ e[·]. However, things are easily
solved by defining

ae(·) ⋆ be[·] = (a ⋆PS b) e
(·) ⋆ e[·]. (2.246)

In fact, we have

apa
†
p := ap ⋆PS a

†
p
def.7→ (ap ⋆PS a

†
p) ·

(
eiϵωp ⋆ eiϵS(ωp)

)
= ap ⋆PS a

†
p (2.247)

This definition of aa† as a⋆PSa† does not influence the creation/annihilation operators
algebra or the definition of normal ordering, so everything remains well defined.

However, there is now the issue of how to treat the contraction of a vector field δξ
with the form δap ∧ δa†p. In fact, the objects inside the wedge product are now to be
treated in the deformed case.

2.14.2.1.1 Non-deformed contraction: While we are in the context of forms,
the product between the forms δa and δa† is treated using the canonical wedge product
with its properties. However, when we contract with δξ, one has canonically that

δξ⌟ (δap ∧ δa†p) = δξapδa
†
p − δapδξa†p (2.248)

and the wedge product is not present. Notice that the change of sign in the second
term can be understood in terms of the following steps.

• The vector field always acts on the first objects it encounters in the wedge
product. Because of this, to compute its action on the second term of the wedge
product, we first need to use the formula

v ∧ w = (−)p·qw ∧ v (2.249)

where v and w are respectively a p-form and a q-form. In our case, we have the
wedge product of two 1-forms, and therefore we have

δap ∧ δa†p = −δa†p ∧ δap. (2.250)

• Now the vector field acts on the first component, giving

−(δξa†p)δap. (2.251)
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• Now the object δξa
†
p is just some function, i.e. a 0-form, and therefore it com-

mutes with δa, so its placement is arbitrary.

2.14.2.1.2 Deformed contraction: In this case, we define:3

δξ⌟ (δap ∧ δa†p) = (δξap)δa
†
p + δap[S(δξ)a

†
p]. (2.252)

The main difference between this axiom and the one in eq. (2.248) is the presence of
the antipode instead of the normal minus sign in the second term. Notice that, since
S(AB) = S(A)S(B), and since S(A)S(B)

κ→∞−−−→ (−A)(−B) = AB, the object S(δξ)
in eq. (2.252) must contain an additional minus sign when necessary, for consistency
with the non-deformed axiom. For example, if δξ = ϵpi

∂
∂pi

where ϵ is just some
constant, then S(δξ) = −ϵS(p)i ∂

∂S(p)i
, which has the correct κ→∞ limit.

Coming back to the charges, we first notice that we can rewrite

Ω = i

∫
d3pα (δap ∧ δa†p − δb†p ∧ δbp) (2.253)

= −i
∫
d3pα (δa†p ∧ δap − δbp ∧ δb†p). (2.254)

Then, contracting with the vector field δ∂µ , using the assumption in eq. (2.252), and
using eq. (2.244) we finally get

−δ∂0⌟Ω = i

∫
d3pα (δ∂0a

†
pδap + δa†pS(δ∂0)ap − δ∂0bpδb†p − δbpS(δ∂0)b†p) (2.255)

= i

∫
d3pα [iϵS(ωp)a

†
pδap + δa†p(iϵS(ωp)ap)

− (iϵωpb
†
p)δbp − δb†piϵωpbp] (2.256)

= −ϵ
∫
d3pα [S(ωp)a

†
pδap + δa†pS(ωp)ap − ωpb†pδbp − δb†pωpbp] (2.257)

= ϵδ

∫
d3pα [−S(ωp)apa†p + ωpb

†
pbp] (2.258)

which, apart from the irrelevant ϵ factor, gives the correct time translation charge (of
course, in order to compare the final expression for the charges, normal ordering is
always assumed. As stated before, the normal ordering is not affected by whether we
consider the product of creation/annihilation operators as aa† or a ⋆ a†.). Notice also
that we have used the fact that δ(AB) = (δA)B+AδB. Of course, the same reasoning
gives the correct space translation charges, since the procedure works in exactly the
same way. We get therefore the following translation charges

P0 =

∫
d3p α(p)

{
−S(ωp)a†p ap + ωpbp b

†
p

}
(2.259)

Pi =

∫
d3p α(p)

{
−S(p)ia†p ap + pibp b

†
p

}
(2.260)

3We write them down for a, but the same goes for b
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Notice that by construction we have the formal limit (ζ goes to 1 for κ → ∞ by
definition)

lim
κ→∞

α(p) = 1. (2.261)

Furthermore, since ωp > 0 and −S(ωp) > 0, the energy has the correct sign, and in
the limit κ→∞ we get back the correct translation charges of non-deformed complex
scalar field. As a final comment, in [78] the same charges were calculated using a direct
approach based on the Noether theorem. However, it became clear while writing this
thesis that the direct approach presented in [78] only reproduces some of the terms
of the full charges computed here (the charges in [78] are however still correct, in
light of the geometric approach presented here). The source of this incongruence is
an interesting topic, deserving of further investigation, and it will be tackled in future
publications.

2.14.2.2 Notes on the above (overall) procedure

There are several things to notice about the above procedure.

1) The most obvious thing to address is that there seems to be no reason as to why
we chose to write

Ω = −i
∫
d3pα (δa†p ∧ δap − δbp ∧ δb†p) (2.262)

and not for example

Ω = −i
∫
d3pα (δa†p ∧ δap + δb†p ∧ δbp) (2.263)

which seems at least as good. The only sensible answer to this is to look at the
single symplectic forms δθ1 and δθ2, we have

δθ1 ∝ δϕ† ∧ δϕ δθ2 ∝ δϕ ∧ δϕ† (2.264)

In both cases, the off diagonal terms go away and we are only left with the
wedge products between a, a† and between b, b†. However, both in δθ1 and δθ2,
since ϕ contains a and b† (and of course ϕ† contains a† and b), each time that
we have δa ∧ δa† we also have δb† ∧ δb. Therefore, the correct final symplectic
charge must be of the kind in eq. (2.262) and not the one in eq. (2.263).

Of course, in non-deformed QFT, either (2.262) or (2.263) are equally fine, but in
that case there is no antipode in the formula for the contraction of the symplectic
form and an external vector field δξ, while there is one in the deformed case in
(2.252).

Therefore, because of the presence of the antipode in (2.252), it seems that the
structure of the symplectic form in the deformed case is more rigid than in the
non-deformed case, because although we are free to chose the overall sign, we
cannot arbitrarily change the order of only a part of the symplectic form before
contracting with δξ.

2) Having tackled the first important point, then there is the issue of why we chose
the overall sign as in eq. (2.254) and not the one in (2.253). The answer is that
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one can go from (2.253) to (2.254) by means of the following exchange

a↔ b a† ↔ b† (2.265)

so that, performing the same exact computations, instead of the charge

Q1 =

∫
d3pα [−S(ωp)apa†p + ωpb

†
pbp] (2.266)

we would end up with the charge

Q2 =

∫
d3pα [−S(ωp)b†pbp + ωpapa

†
p ]. (2.267)

However, for all practical purposes, the charge Q2 is the same as Q1 because
both a, a† and b, b† live on the same manifold. The important thing is that one
of them has energy ωp and the other −S(ωp) while living on the same manifold,
the name of the operators are not important in this context.

3) One last thing to notice is that the assumption (2.252) is not in contradiction
with the properties of the differential operator dF = ϵA∂A + ωµνLµν that we
used in the computation of the charges (at leat at first sight). In fact, while dF
is the exterior derivative in spacetime, we are dealing with (the properties of)
the exterior derivative δ in phase space, which is however the space of solutions
to the EoM. Therefore, the behaviour of δ can be different than the one of dF .

2.14.2.3 Boosts

Analogously to what has been done before, we can now concentrate on the boost
charges. Once again, we need to understand what is the action of δΛ on a, a†, b, b†.

One approach would be to start from the assumed Lorentz transformations

δBϕ(x) = iλi x
i ∂

∂t
ϕ(x)

= −iλi
∫

d3p√
2ωp

ζ(p) ap ωp
∂

∂pi
e−i(ωpt−px)

− iλi
∫

d3p√
2ωp

ζ(p) b†p S(ωp)
∂

∂S(p)i
e−i(S(ωp)t−S(p)x). (2.268)

and integrating by parts obtaining

δBϕ(x) = iλi

∫
d3p√
2ωp

ωp ζ(p)

[
∂ap
∂pi

+ ap

√
2ωp

ζ(p)ωp

∂

∂pi

(
ωp√
2ωp

ζ(p)

)]
e−i(ωpt−px)

+ iλi

∫
d3p√
2ωp

S(ωp) ζ(p)

[
∂b†p

∂S(p)i
+ b†p

√
2ωp

ζ(p)S(ωp)

∂

∂S(p)i

(
S(ωp)√
2ωp

ζ(p)

)]
e−i(S(ωp)t−S(p)x).

δBϕ(x) = iλi

∫
d3p√
2ωp

ζ(p)

{
ωp
∂ap
∂pi

+ ap

√
2ωp

ζ(p)

∂

∂pi

(
ωp√
2ωp

ζ(p)

)}
e−i(ωpt−px)

+ iλi

∫
d3p√
2ωp

ζ(p)

{
S(ωp)

∂b†p
∂S(p)i

+ b†p

√
2ωp

ζ(p)

∂

∂S(p)i

(
S(ωp)√
2ωp

ζ(p)

)}
e−i(S(ωp)t−S(p)x).
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Therefore, limiting ourselves to ϕ since ϕ† is analogous, we would have the following
relations

δBap = −iλi ωp
[
∂

∂pi
+

1

ζ(p)
√
ωp

∂

∂pi
(ζ(p)

√
ωp)

]
ap (2.269)

δBa†p = −iλi S(ωp)
[

∂

∂S(p)i
+

√
ωp

ζ(p)S(ωp)

∂

∂S(p)i

(
S(ωp)√
ωp

ζ(p)

)]
a†p (2.270)

δBbp = −iλi ωp
[
∂

∂pi
+

1

ζ(p)
√
ωp

∂

∂pi
(ζ(p)

√
ωp)

]
bp (2.271)

δBb†p = −iλi S(ωp)
[

∂

∂S(p)i
+

√
ωp

ζ(p)S(ωp)

∂

∂S(p)i

(
S(ωp)√
ωp

ζ(p)

)]
b†p (2.272)

We will however now see that the above transformations need to be modified into

δBap = −iλi ωp

[
∂

∂pi
+

1

2

1

ωp

∂[ωpS(α(p))]

∂pi

]
ap (2.273)

δBa†p = −iλi S(ωp)

[
∂

∂S(p)i
+

1

2

1

S(ωp)

∂[S(ωp)α(p)]

∂S(p)i

]
a†p (2.274)

δBbp = −iλi ωp

[
∂

∂pi
+

1

2

1

ωp

∂[ωpα(p)]

∂pi

]
bp (2.275)

δBb†p = −iλi S(ωp)

[
∂

∂S(p)i
+

1

2

1

S(ωp)

∂[S(ωp)S(α(p))]

∂S(p)i

]
b†p (2.276)

in order to obtain a conserved charge. The reasoning here is as follows. We know
that the action is invariant under κ-Poincaré transformations, which means that by
Noether theorem there are conserved charges. More in detail, there is a one-to-one
correspondence between symmetries and conserved charges. One usually goes in one
direction, obtaining the conserved charges as a result of exploiting the symmetries of
the action. Here we go in the other direction, obtaining the charges, and then defining
the symmetry of the system by showing that charges are conserved.

Notice that in this whole process, there is no way to know a priori the transforma-
tion laws of the fields under a symmetry of the action. A symmetry of the action does
not necessarily translate to a symmetry of the field inside the action; quite the oppo-
site, the fields change under some transformation, and the action is such combination
of fields and their derivatives which is invariant. Eq. (2.268) represents a canonical
field transformation under non-deformed boost; it is therefore not surprising that it
does not give rise to a charge since it is not a symmetry of our system.

We now first show that eq. (2.273), (2.274), (2.275), (2.276) give rise to a conserved
charge, and then we will show to what field transformation they correspond to. We
have

−δB⌟Ω = −i
∫
d3pα(p)

(
δBa†pδap + δa†pS(δ

B)ap − δBbpδb†p − δbpS(δB)b†p
)

= −λi
∫
d3pα(p)

(
S(ωp)

∂a†p
∂S(p)i

δap − δa†p S(ωp)
∂ap

∂S(p)i
− ωp

∂bp
∂pi

δb†p + δbpωp
∂b†p
∂pi

)

+ λi
∫
d3p

1

2

∂[S(ωp)α(p)]

∂S(p)i

(
apδa

†
p − δapa†p

)
− 1

2

∂[ωpα(p)]

∂pi

(
bpδb

†
p − δbpb†p

)
(2.277)
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= −1

2
λiδ

∫
d3pα(p)

{
S(ωp)

[
∂a†p

∂S(p)i
ap − a†p

∂ap
∂S(p)i

]
+ ωp

[
bp
∂b†p
∂pi
− ∂bp
∂pi

b†p

]}
(2.278)

which gives the boost charge

Ni = −
1

2

∫
d3pα(p)

{
S(ωp)

[
∂a†p

∂S(p)i
ap − a†p

∂ap
∂S(p)i

]
+ ωp

[
bp
∂b†p
∂pi
− ∂bp
∂pi

b†p

]}
.

(2.279)

2.14.2.3.1 Crucial step Once again, in order to be able to take the exterior
derivative outside, we used the fact that

∂ap
∂S(p)i

δa†p − δap
∂a†p

∂S(p)i
= δ

(
∂ap

∂S(p)i
a†p − ap

∂a†p
∂S(p)i

)

− ∂δap
∂S(p)i

a†p + ap
∂δa†p
∂S(p)i

(2.280)

and

∂ap
∂S(p)i

δa†p − δap
∂a†p

∂S(p)i
=

∂

∂S(p)i

(
apδa

†
p − δapa†p

)
+

∂δap
∂S(p)i

a†p − ap
∂δa†p
∂S(p)i

(2.281)

and therefore, adding (2.280) and (2.281) we finally get

∂ap
∂S(p)i

δa†p − δap
∂a†p

∂S(p)i
=

1

2
δ

(
∂ap

∂S(p)i
a†p − ap

∂a†p
∂S(p)i

)

+
1

2

∂

∂S(p)i

(
apδa

†
p − δapa†p

)
. (2.282)

Of course, the same exact reasoning works for the b, b† operators. Here, notice that
after integration by parts the second term produces the following contribution to
−δ∂Λ ⌟Ω

−1

2

∂[S(ωp)α(p)]

∂S(p)i

(
apδa

†
p − δapa†p

)
+

1

2

∂[ωpα(p)]

∂pi

(
bpδb

†
p − δbpb†p

)
, (2.283)

and once again it eliminates the relevant term in the computation of the boost charge.

We can now turn to the transformation of the field due to eq. (2.273), (2.274),
(2.275), (2.276). We have

δBϕ(x) = iλi x
i ∂

∂t
ϕ(x)

− iλi
∫

d3p√
2ωp

ζ

{
ωp

[
1

2

1

ωp

∂[ωpS(α)]

∂pi
−
√
ωp

ζωp

∂

∂pi

(
ωp√
ωp
ζ

)]
ape

−i(ωpt−px)
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− S(ωp)

[
1

2

1

S(ωp)

∂[S(ωp)S(α)]

∂S(p)i
−
√
ωp

ζS(ωp)

∂

∂S(p)i

(
S(ωp)√
ωp

ζ

)]
b†pe

−i(S(ωp)t−S(p)x)

}
(2.284)

δBϕ†(x) = −iλi xi
∂

∂t
ϕ†(x)

− iλi
∫

d3p√
2ωp

ζ

{
ωp

[
1

2

1

ωp

∂[ωpα]

∂pi
−
√
ωp

ζωp

∂

∂pi

(
ωp√
ωp
ζ

)]
bpe

−i(ωpt−px)

− S(ωp)

[
1

2

1

S(ωp)

∂[S(ωp)α]

∂S(p)i
−
√
ωp

ζS(ωp)

∂

∂S(p)i

(
S(ωp)√
ωp

ζ

)]
a†pe

−i(S(ωp)t−S(p)x)

}
(2.285)

To understand these additional terms, let us use eq. (2.202), and let us assume that
we want to impose

ξ(p) : α(p) = 1. (2.286)

This is a natural choice, since it eliminates this factor from the charges. In this case,
we have

ζ(p)−2 =
1

2ωp

p4
κ

[
|p+|3

κ3
ωp − S(ωp)

]
(2.287)

and one can show that, to the leading order in 1
κ , the boost transformation becomes

δBϕ(x) = iλi x
i ∂

∂t
ϕ(x) + iλi

∫
d3p√
2ωp

{
pi
κ

(
m2

ω2
p

− 2

)
ape

−i(ωpt−px)

+
pi
κ

(
5

2
− m2

2ω2
p

)
b†pe

−i(S(ωp)t−S(p)x)

}
(2.288)

δBϕ†(x) = −iλi xi
∂

∂t
ϕ(x)† + iλi

∫
d3p√
2ωp

{
pi
κ

(
m2

ω2
p

− 2

)
bpe

−i(ωpt−px)

+
pi
κ

(
5

2
− m2

2ω2
p

)
a†pe

−i(S(ωp)t−S(p)x)

}
(2.289)

We see that particles and antiparticles, upon boost, get an additional translation.
Furthermore, notice also that using the convention in eq. (2.287), this additional
translation is the same for both a† and b†. This is already apparent looking at eq.
(2.274), (2.276), since if α = 1 the quantities α and S(α) disappear from the formulae4.
If we used instead the convention

ζ(p) : ζ2(p)

[
1 +
|p+|3

κ

]
κ

p4
= 1 (2.290)

then one gets different translations for a† and b†, as is again apparent from eq. (2.274),
(2.276). In this case, in fact, we would have S(α) ̸= α.

4The antipode does not act on objects independent of momenta, so that S(1) = 1.
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Repeating the same calculations as before, in this case one gets the following boost
transformation for the fields.

δBϕ(x) = iλi x
i ∂

∂t
ϕ(x) + iλi

∫
d3p√
2ωp

{
pi
κ

(
− 19

16
√
2

)
ape

−i(ωpt−px)

+
pi
κ

[
3

16
√
2

(
9 +

4m2

ω2
p

)]
b†pe

−i(S(ωp)t−S(p)x)

}
(2.291)

δBϕ†(x) = −iλi xi
∂

∂t
ϕ(x)† + iλi

∫
d3p√
2ωp

{
pi
κ

(
− 11

16
√
2

)
bpe

−i(ωpt−px)

+
pi
κ

(
19

16
√
2
+

3m2

4
√
2ω2

p

)
a†pe

−i(S(ωp)t−S(p)x)

}
. (2.292)

In this case, the additional translations for a† and b† are different.

2.14.2.3.2 The (very) peculiar features of boosts We already saw in eq.
(1.133) that a single particle state gets boosted canonically. This is not just an
assumption, since it can be proven by using the algebra of the charges. Anticipating
a little the results of section 2.15, we will show that all the charges that we compute
in this section satisfy the canonical, non-deformed Poincaré algebra. This means in
particular that [Ni,Pj ] = −iηijP0. We now define single-particle states as usual,
namely given the vacuum state |0⟩ we have

a†p|0⟩ = |p⟩a b†p|0⟩ = |p⟩b. (2.293)

Since we already computed the translation charges (see eq. (2.259), (2.260)), we can
use them to obtain what is the eigenvalue of the above momentum eigenstates. For
example, recalling eq. (2.208), (2.209), we have

P0|q⟩a =
∫

d3pα[−S(ωp)a
†
pap]a

†
q|0⟩

=

∫
d3pα[−S(ωp)

1

α
δ(p− q)]a†p|0⟩

= −S(ωp)|p⟩a (2.294)

and in the same way one obtains

Pi|p⟩a = −S(p)i|p⟩a Pi|p⟩b = pi|p⟩b (2.295)
P0|p⟩a = −S(ωp)|p⟩a P0|p⟩b = ωp|p⟩b. (2.296)

We can now use the commutation relation [Ni,Pj ] = −iηijP0 to show that

−iλjNj Pi|p⟩a = iS(p)iλ
jNj |p⟩a = −iPi λ

jNj |p⟩a + λiS(ωp)|p⟩a (2.297)

−iλjNj P0|p⟩a = iS(ωp)λ
jNj |p⟩a = −iP0 λ

jNj |p⟩a + λiS(p)i|p⟩a (2.298)

which immediately imply

−iλjNj |p⟩a = |p+ λωp⟩a (2.299)
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which is the canonical action of an infinitesimal boosts. One can then obtain the finite
boost, which is therefore the canonical one.

If we now define a wave packet using the fields in eq. (2.115), (2.116) (we can
concentrate on particles created by a†, since the same considerations will be valid
about those created by b†), we have

ϕ†|0⟩ =
∫

d3p√
2ωp

ζ(p) a†pe
−i(S(ωp)−S(p)x)|0⟩

=

∫
d3p√
2ωp

ζ(p)e−i(S(ωp)−S(p)x)|p⟩

= |φ(x)⟩ (2.300)

and acting now with a boost, since single particle states behave canonically, we will
get a canonically boosted single particle wave packet. The φ in this equation describes
the packet obtained by an appropriate definition of ζ(p). On the other hand, if we
first boost the field (obtaining eq. (2.289) or (2.292), or any other expression based
on different choices of ζ(p)), and only then apply the boosted field to the vacuum
state, we get a wave packet with a different distribution due to the presence of the
additional factors in eq. (2.289), (2.292).

This is a puzzling property of boosts which needs to be more deeply understood.
One of the possible solutions would be to understand whether there are differences
between active and passive boosts. Indeed, one can consider the boost acting on the
state |φ(x)⟩ as a passive boost (the wave packet has already been created, and only
later a boost is applied, which changes the coordinates describing the distribution).
On the other hand, eq. (2.289), (2.292) may be considered as active boosts (the field
is boosted before any particle is created). In a passive boost, the particle does not
need to exchange energy with the environment, since we (the observers) are moving
at a different speed, describing what we see from a different point of view. On the
other hand, to physically create an active boost on a field one needs to interact with
it in some way, for example an electron can be actively boosted by switching on an
electric field in order to accelerate it, and then switching it off, obtaining an electron
in uniform rectilinear motion. In canonical, non-deformed QFT, the net result is the
same and indeed active and passive transformations are completely equivalent. It is
however possible that in the deformed context there may be different contributions in
the two cases, leading to the difference just described. However in this context we are
only considering free particles, so that such considerations would be premature. We
will leave the investigation of this puzzle to forthcoming publications.

2.14.2.3.3 The role of ζ(p) Notice that in order to get a better idea for the boost
of a field in the deformed context we needed to assume a specific value for ζ(p). In the
above discussions, we used two natural definitions, namely eq. (2.287) and (2.290).
At first sight, therefore, it would seem that the physical results of our model depend
on our choice of the arbitrary factor ζ(p), which is of course absurd.

This is however not the case. Notice, in fact, that the factor ζ(p) can be found
inside α in eq. (2.202), which is in turn present in the charges (up to now we only have
the translation charges in eq. (2.259), (2.260), and the boost charge in eq. (2.279),
but we will see that it also appears in the rotation charge), symplectic form (see eq.
(2.203)), and creation/annihilation operators algebra (eq. (2.208), (2.209)). However,
it also appears in the off-shell action in momentum space in eq. (2.156). This means
that if we sue the convention for ζ(p) in eq. (2.287), then the generators of the algebra
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are much simpler, but of course the off-shell action now has a global prefactor in the
integrand given by (

1 +
|p+|3

κ3

){
1

2ωp

[
|p+|3

κ3
ωp − S(ωp)

]
p4
κ

}−1

. (2.301)

On the other hand, with convention (2.290), the global prefactor in the momentum-
space off-shell action in eq. (2.156) is 1, but the charges now contain a global prefactor
in the integrand (

1 +
|p+|3

κ3

)−1
1

2ωp

[
|p+|3

κ3
ωp − S(ωp)

]
p4
κ
. (2.302)

Therefore, there is a do ut des scenario between the algebra generators and the off-shell
momentum-space action, which is important because, as we will see in chapter 3, it is
used in the definition of the propagator by using the path integral in the κ-deformed
context.

In other words, if we are in the situation described by eq. (2.287), then after
a boost particles and antiparticles receive the same additional translation, but their
propagator is modified by some non-trivial prefactor. On the other hand, we can
choose to work with convention given by eq. (2.290), in which case after a boost
particles and antiparticles receive a different additional translation, but the propagator
will be the traditional one. One may very well choose another convention, in which
case the behaviour of particles and antiparticles under boosts and their propagator
have mixed features, in between the two extremal case discussed above.

2.14.2.4 Rotations

For rotations, we can proceed in the same manner as for boost, and we only need to
understand how to write δRa and δRa

† (the case of b and b† will be analogous). We
start from

δRap = iϵijkρipj
∂

∂pk
ap δRa†p = iϵijkρiS(p)j

∂

∂S(p)k
a†p

δRbp = iϵijkρipj
∂

∂pk
bp δRb†p = iϵijkρiS(p)j

∂

∂S(p)k
b†p (2.303)

and we have

−δR⌟Ω = i

∫
d3pα (δ∂Ra

†
pδap + δa†pS(δ∂R)ap

− δ∂Rbpδb
†
p − δbpS(δ∂R)b

†
p) (2.304)

= iϵij
∫
d3pα

(
S(p)[i

∂a†p

∂S(p)j]
δap − δa†p S(p)[i

∂ap

∂S(p)j]

− p[i
∂bp

∂pj]
δb†p + δbpp[i

∂b†p

∂pj]

)
(2.305)

= iϵijδ

∫
d3pα

(
S(p)[i

∂a†p

∂S(p)j]
ap − a†p S(p)[i

∂ap

∂S(p)j]

− p[i
∂bp

∂pj]
b†p + bpp[i

∂b†p

∂pj]

)
(2.306)
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which give the rotation charge

Mi = −ϵijk
1

8

∫
d3q

(
S(q)j

∂a†q
∂S(q)k

aq − a†qS(q)j
∂aq

∂S(q)k
+ bqqj

∂b†q
∂qk
− qj

∂bq
∂qk

b†q

)
.

(2.307)

The considerations in this case are the same as for the boost charges.

2.14.3 Is it δA ∧ δB = −δB ∧ δA, or δA ∧ δB = S(δB ∧ δA)?

We are at point vii)b) of our roadmap in section 2.1. We have introduced the antipode
in the contraction rule in eq. (2.252), but so far we have not discussed whether
this inclusion is consistent with other rules concerning forms, vector fields, and their
interaction.

The first thing to tackle is the one reported in the title of this subsection. Indeed, in
obtaining the symplectic form in eq. (2.203), we used the fact that δA∧δB = −δB∧δA
(here A,B represent the quantities a, a†, b, b†). Furthermore, we used it in two ways.
The first one was when we were taking the exterior derivative of an object like (δB)A.
Indeed canonically we have

δ[(δB)A] = −δB ∧ δA (2.308)

but we did not address whether this should instead be substituted by

δ[(δB)A] = S(δB ∧ δA). (2.309)

The second time was when we added the two symplectic forms δθ1 and δθ2 in eq.
(2.188) and (2.199) coming from the two action orderings, since one of the two had a
global minus sign to compensate a global ordering change in the wedge products. In
other words, to go from eq. (2.188) and (2.199) to eq. (2.203) we used the fact that

δA ∧ δB = −δB ∧ δA. (2.310)

Notice however that these two relations are not uncorrelated. Indeed eq. (2.308) can
be considered as a consequence of eq. (2.310) because the exterior derivative only acts
on the first object, and then we switch places using eq. (2.310). In other words, we
have

δ(δBA) = δ(AδB) = δA ∧ δB = −δB ∧ δA. (2.311)

In what follows, we will consider what happens when we try to obtain a symplectic
form using the assumption (2.309). We will show that the only way to obtain an
explicitly time-independent symplectic form is by imposing

S(δA ∧ δB) = −δA ∧ δB. (2.312)

In other words, the antipode acting on wedge products (without any contraction)
behaves like a canonical minus sign. We stress that the time independence of the
symplectic form is a necessary requirement if one wants time-independent commuta-
tors between creation/annihilation operators, as well as time independent charges.
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Indeed, using eq. (2.309), and keeping in mind eq. (2.177) and (2.178), one can
easily see that the time dependent coefficients in both δθ1 and δθ2 are of the type5

[ωqδbq ∧ δap − S(ωp)S(δbq ∧ δap)] ei(q⊕p)xe−i(ωq⊕ωp)t. (2.313)

We know from eq. (2.193) that the Dirac delta which comes out of the exponential
imposes ωq = −S(ωp), so that the time-dependent term becomes

−S(ωp)
[
δbS(p) ∧ δap + S(δbS(p) ∧ δap)

]
e−i([−S(ωp)]⊕ωp)t. (2.314)

Notice that, without the assumption in eq. (2.309), this term would be identically
zero. If instead we use the assumption in eq. (2.309), then this time-dependent term6

would remain, unless

S(δaq ∧ δbS(q) ) = −δaq ∧ δbS(q) (2.315)

i.e. if the antipode acting on a wedge product is exactly the same as the canonical
minus acting on it, which is what we wanted to show.

2.14.4 And what if we add contractions with vector fields?

In the previous subsections we have seen that

δB ∧ δA = S(δA ∧ δB) = −δA ∧ δB. (2.316)

Eq. (2.316) however, only deals with wedge products in the absence of contraction
with vector fields. In case we need to contract with some vector fields, because of
the antipode in eq. (2.252), one needs to take care of whether to use the antipode or
the canonical minus sign when changing the order of the wedge product involved in a
contraction.

Given any two functions f, g in phase space, their Poisson bracket is defined as
[91]

{f, g} = ω(Xf , Xg) (2.317)

where Xf and Xg are the vector fields generated by f and g respectively, i.e.

Xf ⌟ω = −δf Xg ⌟ω = −δg (2.318)

and where ω is the symplectic 2-form (compare the above equations with eq. (2.210)).
In our case, we will use the symplectic form (2.203). In this case the functions on
momentum space would be the creation/annihilation operators themselves.

For simplicity, we first concentrate on the a, a† part. In this case, recalling the
definition (2.252) it is easy to see that, assuming the symplectic form in eq. (2.203),
we have

Xaq = i
1

S(α(q))

∂

∂a†q
X
a†q

= i
1

α(q)

∂

∂aq
(2.319)

5Here we discuss about only one of these time-dependent terms, but for all the others the same
considerations hold.

6Crucially [−S(ωp)]⊕ωp ̸= 0, this can be easily realized by noticing that the κ → ∞ of this sum
is ωp + ωp ̸= 0.
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In fact we have

Xaq ⌟Ω = i

∫
d3pα(p)

[
i

1

S(α(q))

∂

∂a†q
⌟ (δap ∧ δa†p)

]
(2.320)

= i

∫
d3pα(p)

[
0 + δapS

(
i

1

S(α(q))

∂

∂a†q

)
a†p

]
(2.321)

= −
∫
d3pα(p) δap

1

α(q)

∂a†p

∂a†q︸︷︷︸
=δ(p−q)

(2.322)

= −δaq (2.323)

X
a†q

⌟Ω = i

∫
d3pα(p)

[
i

1

α(q)

∂

∂aq
⌟ (δap ∧ δa†p)

]
(2.324)

= i

∫
d3pα(p)

i 1

α(q)

∂ap
∂aq︸︷︷︸

=δ(p−q)

δa†p + 0

 (2.325)

= −δa†q (2.326)

Notice that here we used the assumption S(a) = a and S(a†) = a†, so that the
antipode does not act on the single creation/annihilation operator but only on their
wedge product. There are some subtleties that need to be sorted out.

First of all, notice that the vector field Xaq is defined in such a way that it requires
the application of the antipode to ‘work as intended’. For this reason, in order to
get the correct value for the commutator {a, a†} we must first contract Ω with Xaq

and only after this we can contract with X
a†q

, and not vice versa. In this way, we
immediately get

{ap, a†q} = X
a†q

⌟ (Xap ⌟Ω) = −
i

α
δ(p− q) (2.327)

which is in accordance with the canonical result (see for example eq. (2.206)). It is
important to notice that at first sight one has

X
a†q

⌟ (Xap ⌟Ω) ̸= −Xap ⌟ (Xa†q
⌟Ω) (2.328)

since, as can be seen from eq. (2.324), we have

Xap ⌟ (Xa†q
⌟Ω) = − i

S(α)
δ(p− q). (2.329)

However, as explained above, intuitively speaking one can say that in this case the
vector field Xaq is not ‘working in the way it was built to work’, since it requires the
application of an antipode. More technically, keeping in mind eq. (2.252), notice that
when we are contracting with vector fields, we are not free in general to switch the
order of the wedge products unless we use the antipode. An example of this fact is
given by the computation of the charges using the symplectic form. Take for example
the time translation charge (the computations of the charges are done in section 2.14,
here we just use an example for the argument’s sake). The symplectic form is given by
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(2.203), and the creation/annihilation operator transformations are given by (2.244),
and at the end we get the charge in eq. (2.259).

However, if one wants to change the order of the wedge products involved in a con-
traction with an external vector field (this point is crucial), then one gets exactly the
same result if one uses eq. (2.316) (with the antipode). Indeed, using the symplectic
form (consider just the a, a† case and ignoring the factor α for simplicity)

Ω = −i
∫
d3pαS(δap ∧ δa†p) (2.330)

then the charge becomes

−δ∂0⌟Ω = i

∫
d3p αS(δ∂0)apδap + δapS(S(δ∂0))a

†
p (2.331)

= i

∫
d3p αS(δ∂0)apδap + δapδ∂0a

†
p (2.332)

= −ϵ
∫
d3p αS(ωp)apδap + δapS(ωp)a

†
p (2.333)

= ϵδ

∫
d3p α [−S(ωp)apa†p] (2.334)

which gives exactly the same result. Notice that, in the presence of a contraction with
a vector field, the prescription in eq. (2.316) needs means that the antipode is applied
last, meaning that

X ⌟ (δA ∧ δB) = S(X ⌟ (δB ∧ δA)). (2.335)

In other words, given the contraction

X ⌟ (δA ∧ δB) = (XA)δB + δA(S(X)B) (2.336)

we define

S(X ⌟ (δB ∧ δA)) = (S(X)A)δB + δA(XB) . (2.337)

Notice that, under the assumption that S does not act on A, δA,B, δB individually
(in this section they represent a, b, a†, b†), eq. (2.335) explains the above computations
regarding charges. Alternatively, one could drop the assumption that S(·) does not
act on A, δA,B, δB individually, and simply define

X ⌟ (δA ∧ δB) = S(X) ⌟ (δB ∧ δA) . (2.338)

In light of these considerations, and also keeping in mind that eq. (2.316) implies
that

δA ∧ δB = −S(δA ∧ δB) (2.339)

and, if we apply the same point of view that antipodes should be applied last as before,
we see that there are several ways to define the contraction of a 2-form with two vector
fields. In particular, since Xaq has been designed to account for the presence of an
antipode, and since as shown in eq. (2.335) the antipode is applied last, notice that
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we have

−S(Xap ⌟ (Xa†q
⌟Ω)) =

i

S(S(α))
δ(p− q) =

i

α
δ(p− q) (2.340)

which gives the correct value for the Poisson bracket defined as

{a†q, ap} = −S(Xap ⌟ (Xa†q
⌟Ω)) =

i

α
δ(p− q). (2.341)

Therefore, once a prescription for the contraction of two vector fields with a 2-form
is given, when switching the order of contractions one needs to impose an additional
global −S to the computations. Notice that we indeed recover the property

{a†q, ap} = −{ap, a†q} (2.342)

Of course, if instead of starting from the symplectic form in eq. (2.203) we started
from the one in eq. (2.253), then the vector fields Xaq , Xa†q

would now be given by

Xaq = −i 1

α(q)

∂

∂a†q
X
a†q

= −i 1

S(α(q))

∂

∂aq
(2.343)

In fact we would have

Xaq ⌟Ω = −i
∫
d3pα(p)

[
−i 1

α(q)

∂

∂a†q
⌟ (δa†p ∧ δap)

]
(2.344)

= −
∫
d3pα(p) δap

1

α(q)

∂a†p

∂a†q︸︷︷︸
=δ(p−q)

(2.345)

= −δaq (2.346)

X
a†q

⌟Ω = −i
∫
d3pα(p)

[
−i 1

S(α(q))

∂

∂aq
⌟ (δa†p ∧ δap)

]
(2.347)

= −i
∫
d3pα(p)

[
0 + δa†pS

(
−i 1

S(α(q))

∂

∂aq

)
δap

]
(2.348)

= −i
∫
d3pα(p)

0− i 1

α(q)

∂ap
∂aq︸︷︷︸

=δ(p−q)

δa†p

 (2.349)

= −δa†q (2.350)

Once again, following the fact that this time X
a†q

has been defined to accommodate
for the antipode, it must be contracted first, so that we end up with

{a†p, aq} = Xaq ⌟ (Xa†p
⌟Ω) =

i

α
δ(p− q) (2.351)
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which is in perfect agreement with eq. (2.341). Once again, if we switch the order of
contraction, we need to add a global −S, and indeed one has

{ap, a†q} = −S(Xa†q
⌟ (Xap ⌟Ω)) = −

i

α
δ(p− q) (2.352)

which is in accordance with eq. (2.327). Of course, the same reasoning gives the
correct propagators for b, b†, and all the cross-commutators involving mixing of a, a†

with b, b† are zero. Furthermore, one also gets {a, a} = {b, b} = 0.
To clarify and summarize the above discussion, we write the main steps below:

1) We start from some symplectic form ω and from two quantities f, g of which
we want to compute the Poisson brackets. For the moment, we restrict our
attention to the case when f, g are some creation/annihilation operators which
are part of the phase space of the theory (and therefore δf, δg appear somewhere
in the definition of ω);

2) Use the definitions Xf ⌟ω = −δf and Xg ⌟ω = −δg to obtain the vector fields
Xg, Xf ;

3) The definition of the vector fields themselves will imply that there is one correct
order of contraction of Xg, Xf with ω. Using this contraction, one defines the
relevant Poisson bracket, say for example {f, g} = Xg ⌟ (Xf ⌟Ω);

4) We now want to relate the brackets {f, g} and {g, f}. Notice that, because of
the previous point, only {f, g} contains the appropriate contractions of Xf , Xg

with ω. In order to correctly define {g, f}, therefore, we make use of a global −S
to be added to the reversed contraction, defining {g, f} = −S(Xf ⌟ (Xg ⌟Ω)),
i.e.

{f, g} = Xg ⌟ (Xf ⌟Ω) ⇔ {g, f} = −S(Xf ⌟ (Xg ⌟Ω)) . (2.353)

Notice of course that this gives the correct κ→∞ limit.

5) When f, g are creation/annihilation operators, the above procedure ensures that
one gets the crucial property {f, g} = −{g, f}, as well as the correct value for
the Poisson brackets.

2.15 The algebra of the κ-deformed charges

We are now at point viii) of our roadmap in section 2.1. We now verify that the
translation, rotation, and boost charges, which are respectively eq. (2.259), (2.260),
(2.307), (2.279), satisfy the canonical, non-deformed Poincaré algebra.

[Mi,Pj ] = iϵijkPk [Mi,P0] = 0 [Ni,Pj ] = −iηijP0 [Ni,P0] = −iPi

(2.354)

[Mi,Mj ] = iϵijkMk [Mi,Nj ] = iϵijkNk [Ni,Nj ] = −iϵijkMk (2.355)

Recall that we are using the convention η = diag(+−−−).
Since the computations are long but straightforward, we will only explicitly verify

two of these commutators, but the rest of them can be verified using the same exact
procedures.
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2.15.0.1 [Ni,Pj ] = −iηijP0

The commutator [Ni,Pj ] contains two components, i.e.

−iα(p)α(q)S(ωp)S(q)j

{[
∂a†p

∂S(p)i
ap, a

†
qaq

]
−
[
a†p

∂ap
∂S(p)i

, a†qaq

]}
(2.356)

i α(p)α(q)ωpqj

{[
bp
∂b†p
∂pi

, bqb
†
q

]
−
[
∂bp
∂pi

b†p, bqb
†
q

]}
(2.357)

Starting from the first one, we have

− iα(p)α(q)S(ωp)S(q)j

[
∂a†p

∂S(p)i
ap, a

†
qaq

]
(2.358)

= −iα(p)α(q)S(ωp)S(q)j

{
∂a†p

∂S(p)i
[ap, a

†
q]︸ ︷︷ ︸

= 1
α
δ(p−q)

aq + a†q

[
∂a†p

∂S(p)i
, aq

]
︸ ︷︷ ︸

=− 1
α

∂

∂S(p)i
δ(q−p)

ap

}
(2.359)

= −iα(p)S(ωp)S(q)j
∂a†p

∂S(p)i
δ(p− q)aq

+ iα(p)S(ωp)S(q)ja
†
q

(
∂

∂S(p)i
δ(q− p)

)
ap (2.360)

Integrating by parts the last term in the last passage above we get

−iα(p)S(ωp)S(q)ja†qδ(q− p)
∂

∂S(p)i
ap − i

∂(α(p)S(ωp))

∂S(p)i
S(q)ja

†
qδ(q− p)ap

(2.361)

and substituting back in eq. (2.360) we get (we can now safely apply the Dirac delta
since no derivative acts on it)(
−iα(p)S(ωp)S(p)j

∂

∂S(p)i
(a†pap)− i

∂(α(p)S(ωp))

∂S(p)i
S(p)ja

†
pap

)
δ(q− p) (2.362)

=

(
− i ∂

∂S(p)i
(α(p)S(ωp)S(p)ja

†
pap) + iS(p)ja

†
pap

∂

∂S(p)i
(α(p)S(ωp))

+ iα(p)S(ωp)ηija
†
pap − i

∂(α(p)S(ωp))

∂S(p)i
S(p)ja

†
pap

)
δ(q− p) (2.363)

= iα(p)S(ωp)ηija
†
papδ(q− p) (2.364)

where in the last passage we ignored ∂
∂S(p)i

(α(p)S(ωp)S(p)ja
†
pap) since it is a surface

term after the application of the Dirac delta.
We can analogously proceed for the second term, as follows

i α(p)α(q)ωpqj

[
bp
∂b†p
∂pi

, bqb
†
q

]
(2.365)
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= i α(p)α(q)ωpqj

{
bp

[
∂b†p
∂pi

, bq

]
︸ ︷︷ ︸

=− 1
α

∂

∂pi
δ(q−p)

b†q + 0 + 0 + bq [bp, b
†
q]︸ ︷︷ ︸

= 1
α
δ(p−q)

∂b†p
∂pi

}
(2.366)

= +i α(p)ωpqjbqδ(p− q)
∂b†p
∂pi

+ i α(p)ωpqj
∂bp
∂pi

δ(q− p)b†q

+ iqj
∂(α(p)ωp)

∂pi
bpδ(q− p)b†q (2.367)

=

(
ipj

∂(α(p)ωp)

∂pi
bpb

†
p + i α(p)ωpqj

∂

∂pi
(bpb

†
p)

)
δ(p− q) (2.368)

=
(
i
∂

∂pi
(pjα(p)ωpbpb

†
p)− ipjα(p)ωp

∂

∂pi
(bpb

†
p)− i ηijα(p)ωpbpb†p

+ i α(p)ωpqj
∂

∂pi
(bpb

†
p)
)
δ(p− q) (2.369)

= −i ηijα(p)ωpbpb†pδ(p− q). (2.370)

In summary, we have shown that

[Ni,Pj ] =

∫
d3p d3q

(
iα(p)S(ωp)ηija

†
pap − i ηijα(p)ωpbpb†p

)
δ(q− p) (2.371)

= −iηijP0 (2.372)

which is what we wanted to show.

2.15.0.2 [Ni,Nj ] = −iϵijkMk

The commutator [Ni,Nj ] contains two parts, the a, a† part and the b, b† part. Starting
with the one concerning the a’s we have

− α(p)α(q)S(ωp)S(ωq)

[{
∂a†p

∂S(p)i
ap − a†p

∂ap
∂S(p)i

}
,

{
∂a†q

∂S(q)j
aq − a†q

∂aq
∂S(q)j

}]
(2.373)

=− α(p)α(q)S(ωp)S(ωq)

{[
∂a†p

∂S(p)i
ap,

∂a†q
∂S(q)j

aq

]
+

[
∂a†p

∂S(p)i
ap,−a†q

∂aq
∂S(q)j

]

+

[
− a†p

∂ap
∂S(p)i

,
∂a†q

∂S(q)j
aq

]
+

[
− a†p

∂ap
∂S(p)i

,−a†q
∂aq

∂S(q)j

]}
(2.374)

We will compute these commutators one by one starting from the first. Once again,
we use

[AB,CD] = A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B (2.375)

and we get

− α(p)α(q)S(ωp)S(ωq)

[
∂a†p

∂S(p)i
ap,

∂a†q
∂S(q)j

aq

]
(2.376)

= −α(p)α(q)S(ωp)S(ωq)

{
∂a†p

∂S(p)i

[
ap,

∂a†q
∂S(q)j

]
aq +

∂a†q
∂S(q)j

[
∂a†p

∂S(p)i
, aq

]
ap

}
(2.377)
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= −α(p)α(q)S(ωp)S(ωq)

{
∂a†p

∂S(p)i

[
ap,

∂a†q
∂S(q)j

]
aq −

∂a†q
∂S(q)j

[
aq,

∂a†p
∂S(p)i

]
ap

}
(2.378)

Now we notice that the second term is just the first one with p ↔ q and i ↔ j, but
we can just rename the integration variables in such a way that the second one and
the first are the same except with i↔ j, and therefore the above integral becomes

−α(p)α(q)S(ωp)S(ωq)
∂a†p

∂S(p)[i

[
ap,

∂a†q

∂S(q)j]

]
aq (2.379)

where we just used the antisymmetrized index to shorten the notation. Now we have
a small subtlety related to the presence of the 1

α in front of the delta coming from the
commutator. In fact, recall from eq. (2.208) that[

ap, a
†
q

]
=

1

α
δ(p− q). (2.380)

However we have two choices, one where the 1
α on the RHS depends on p and the

other where it depends on q. We are in the following situation

f(p, q)α(p)α(q)

[
ap,

∂a†q
∂S(q)

]
= f(p, q)α(p)α(q)

∂

∂S(q)

(
1

α
δ(p− q)

)
(2.381)

Now, if the α in the round brackets depends on p, then the above formula reduces to

f(p, q)α(q)
∂

∂S(q)
δ(p− q)

int. by parts and appl.δ−−−−−−−−−−−−−−→ −
(

∂

∂S(q)
f(q)α(q)

)
δ(p− q)

(2.382)

However, if the α in the round brackets depends on q, then we have

f(p, q)α(p)α(q)
∂

∂S(q)

(
1

α
δ(p− q)

)
(2.383)

= −f(p, q)α(p)α(q) 1

α2(q)

∂α(q)

∂S(q)
δ(p− q) + f(p, q)α(p)

∂

∂S(q)
δ(p− q) (2.384)

= −f(q) ∂α(q)
∂S(q)

δ(p− q) + f(p, q)α(p)
∂

∂S(q)
δ(p− q) (2.385)

= −f(q) ∂α(q)
∂S(q)

δ(p− q)−
(

∂

∂S(q)
f(p, q)

)
α(p)δ(p− q) (2.386)

= −
(

∂

∂S(q)
f(q)α(q)

)
δ(p− q) (2.387)

where in eq. (2.385) we applied the Dirac delta in the first term (because it is not acted
upon by any derivatives) and in eq. (2.386) we integrated by parts the second term
on the RHS. One sees that both approaches lead to the same final result. Therefore
for simplicity we will always consider the 1

α in the definition of [a, a†] to depend on
the variable that is not acted upon by the derivation inside the commutator.

Coming back to eq. (2.379), we have

− α(p)α(q)S(ωp)S(ωq)
∂a†p

∂S(p)[i

[
ap,

∂a†q

∂S(q)j]

]
aq (2.388)
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= −α(q)S(ωp)S(ωq)
∂a†p

∂S(p)[i
aq

∂

∂S(q)j]
δ(p− q) (2.389)

=
∂α(q)

∂S(q)[j
S(ωq)

2 ∂a†q

∂S(q)i]
aq + α(q)S(q)[j

∂a†q

∂S(q)i]
aq + α(q)S(ωq)

2 ∂a†q

∂S(q)[i
∂aq

∂S(q)j]

(2.390)

We can now integrate by parts the first term of the last step, which (ignoring surface
terms) will give us

∂α(q)

∂S(q)[j
S(ωq)

2 ∂a†q

∂S(q)i]
aq (2.391)

= −α(q)2 ∂S(ωq)
∂S(q)[j

S(ωq)
∂a†q

∂S(q)i]
aq − α(q)S(ωq)2

∂a†q

∂S(q)[i
∂aq

∂S(q)j]
(2.392)

= −2α(q)S(q)[j
∂a†q

∂S(q)i]
aq − α(q)S(ωq)2

∂a†q

∂S(q)[i
∂aq

∂S(q)j]
. (2.393)

Notice that there is no term with wo derivatives because the antisymmetrization sends
it to zero. Substituting this back into eq. (2.390) we finally obtain that all the terms
go away with the exception of one of them, and we get

−α(p)α(q)S(ωp)S(ωq)

[
∂a†p

∂S(p)i
ap,

∂a†q
∂S(q)j

aq

]
= −α(q)S(q)[j

∂a†q

∂S(q)i]
aq (2.394)

= α(q)S(q)[i
∂a†q

∂S(q)j]
aq (2.395)

which is the expected result.
We now pass to the second and third commutator. We treat them together because

it is easy to show that their sum is zero. In fact, we have{[
∂a†p

∂S(p)i
ap,−a†q

∂aq
∂S(q)j

]
+

[
− a†p

∂ap
∂S(p)i

,
∂a†q

∂S(q)j
aq

]}
(2.396)

=

{[
∂a†p

∂S(p)i
ap,−a†q

∂aq
∂S(q)j

]
−

[
∂a†q

∂S(q)j
aq,−a†p

∂ap
∂S(p)i

]}
(2.397)

and we notice that the second commutator is exactly the same as the first one but
with p↔ q. However, as was done previously, since we are integrating in p and q, we
can just rename them and therefore switch them. Therefore, the sum of the second
and third term will be{[

∂a†p
∂S(p)i

ap,−a†q
∂aq

∂S(q)j

]
−

[
∂a†p

∂S(p)j
ap,−a†q

∂aq
∂S(q)i

]}
= 0 (2.398)

which is what we wanted to show.
We can finally deal with the last term. We have

− α(p)α(q)S(ωp)S(ωq)

[
a†p

∂ap
∂S(p)i

, a†q
∂aq

∂S(q)j

]
(2.399)
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= −α(p)α(q)S(ωp)S(ωq)

{
a†p

[
∂ap

∂S(p)i
, a†q

]
∂aq

∂S(q)j
+ a†q

[
a†p,

∂aq
∂S(q)j

]
∂ap

∂S(p)i

}
(2.400)

− α(p)α(q)S(ωp)S(ωq)

{
a†p

[
∂ap

∂S(p)i
, a†q

]
∂aq

∂S(q)j
− a†q

[
∂aq

∂S(q)j
, a†p

]
∂ap

∂S(p)i

}
(2.401)

Once again, we can without problem switch p ↔ q on the second term, obtaining
finally

− α(p)α(q)S(ωp)S(ωq)a†p
[

∂ap

∂S(p)[i
, a†q

]
∂aq

∂S(q)j]
(2.402)

Proceeding as before, we have

− α(p)α(q)S(ωp)S(ωq)a†p
[

∂ap

∂S(p)[i
, a†q

]
∂aq

∂S(q)j]
(2.403)

= −α(p)S(ωp)S(ωq)a†p
∂aq

∂S(q)[j
∂

∂S(p)i]
δ(p− q) (2.404)

=
∂α(q)

∂S(q)[i
S(ωq)

2a†q
∂aq

∂S(q)j]
+ α(q)S(q)[ia

†
q

∂aq

∂S(q)j]
+ α(q)S(ωq)

2 ∂a†q

∂S(q)[i
∂aq

∂S(q)j]

(2.405)

Once again, we integrate by parts the first term, obtaining

∂α(q)

∂S(q)[i
S(ωq)

2a†q
∂aq

∂S(q)j]
= −2α(q)S(q)[ia†q

∂aq

∂S(q)j]
− α(q)S(ωq)2

∂a†q

∂S(q)[i
∂aq

∂S(q)j]

(2.406)

and substituting back we get the final result

−α(p)α(q)S(ωp)S(ωq)a†p
[

∂ap

∂S(p)[i
, a†q

]
∂aq

∂S(q)j]
= −α(q)S(q)[ia†q

∂aq

∂S(q)j]
(2.407)

Finally, the result of the commutator coming from the a, a† part is given by

1

4

∫
d3p d3q α(q)S(q)[i

∂a†q

∂S(q)j]
aq − α(q)S(q)[ia†q

∂aq

∂S(q)j]
(2.408)

which is what was expected.
For the commutators coming from the b, b† part, we have

−α(p)α(q)ωpωq

{[
bp
∂b†p
∂pi

, bq
∂b†q
∂qj

]
+

[
bp
∂b†p
∂pi

,−∂bq
∂qj

b†q

]
(2.409)

+

[
−∂bp
∂pi

b†p, bq
∂b†q
∂qj

]
+

[
−∂bp
∂pi

b†p,−
∂bq
∂qj

b†q

]}
(2.410)

The second and third term go away for the same reasons as before, and only the first
and last term remain.

Notice that if one (formally) switches b → ã† and b̃† → a, one gets exactly the
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same commutators as the a, a† case7 but with an additional minus sign. This minus
sign comes from the fact that sending b → ã† and b̃† → a also sends δ = [b, b†] →
[ã†, ã] = −δ. Therefore, one can do the exact same computations as for a, with the
additional minus sign coming from the deltas. Therefore the final result will be

−α(q)q[i
∂ã†q

∂qj]
ãq + α(q)q[iã

†
q

∂ãq

∂qj]
(2.411)

or, in other words,

−α(q)q[i
∂bq

∂qj]
b†q + α(q)q[ibq

∂b†q

∂qj]
(2.412)

One can also double check the above result by direct computations. Therefore, the
b, b† contribution to the commutator is given by

1

4

∫
d3p d3q α

(
bqq[i

∂b†q

∂qj]
− q[i

∂bq

∂qj]
b†q

)
(2.413)

Finally, from these results, one can immediately say that

[Ni,Nj ] =
1

4

∫
d3q α(q)

(
S(q)[i

∂a†q

∂S(q)j]
aq − a†qS(q)[i

∂aq

∂S(q)j]
+ bqq[i

∂b†q

∂qj]
− q[i

∂bq

∂qj]
b†q

)
(2.414)

Calling the RHS Mij and noticing that Mk =
1
2ϵkijMij we get the result.

2.16 C and its commutator with the boosts

We are now at point ix) of our roadmap in section 2.1. The C operator in our context
is given by

C =

∫
d3pα(b†pap + a†pbp) (2.415)

In fact, it is easy to show that this operator satisfies the canonical C property

Ca†|0⟩ = b†|0⟩ Cb†|0⟩ = a†|0⟩ (2.416)

where we used the fact that C−1|0⟩ = |0⟩. In fact, using eq. (2.208) and (2.209) we
have

Ca†p|0⟩ =
∫

d3q α(b†qaq + a†qbq)a
†
p|0⟩ (2.417)

=

∫
d3q αb†qaqa

†
p|0⟩+ 0 (2.418)

=

∫
d3q αb†q

(
1

α
δ(p− q) + a†paq

)
|0⟩ (2.419)

= b†p|0⟩ (2.420)

7The fact that the derivatives and the prefactors do not have the antipode is irrelevant in this
context.
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and the computation for the verification of the relation Cb†|0⟩ = a†|0⟩ proceed in the
same way. Notice that C = C† and C2 = 1. In fact we have

C2a†k|0⟩ =
∫
d3p d3q α(p)α(q)(b†pap + a†pbp)(b

†
qaq + a†qbq)a

†
k|0⟩ (2.421)

=

∫
d3pα(p)(b†pap + a†pbp)b

†
k|0⟩ (2.422)

= a†k|0⟩ (2.423)

and the same if we started from b†q|0⟩. Finally, notice that the C operator in eq.
(2.415) is a symmetry of the off-shell action, since acting by conjugation we only
exchange a(†) ↔ b(†).

We now compute the commutator between the charge conjugation operator and
the boost operator. Using the boost charge in eq. (2.279) we have

[Ni, C] =
i

2

∫
d3p d3q α(p)α(q)

{
S(ωp)

[
∂a†p

∂S(p)i
ap, b

†
qaq

]
+ S(ωp)

[
∂a†p

∂S(p)i
ap, a

†
qbq

]
(2.424)

+ S(ωp)

[
−a†p

∂ap
∂S(p)i

, b†qaq

]
+ S(ωp)

[
−a†p

∂ap
∂S(p)i

, a†qbq

]
(2.425)

+ ωp

[
bp
∂b†p
∂pi

, b†qaq

]
+ ωp

[
bp
∂b†p
∂pi

, a†qbq

]
(2.426)

+ ωp

[
−∂bp
∂pi

b†p, b
†
qaq

]
+ ωp

[
−∂bp
∂pi

b†p, a
†
qbq

]}
(2.427)

We compute these commutators one by one using the commutator property

[AB,C] = A[B,C] + [A,C]B (2.428)

We have the following.

• First

α(p)α(q)S(ωp)

[
∂a†p

∂S(p)i
ap, b

†
qaq

]
(2.429)

= 0 + α(p)α(q)S(ωp)

[
∂a†p

∂S(p)i
, aq

]
apb

†
q (2.430)

= −α(p)S(ωp)apb†q
∂

∂S(p)i
δ(p− q) (2.431)

=

{(
∂α

∂S(p)i
S(ωp) + α

S(p)i
S(ωp)

)
apb

†
q + α(p)S(ωp)

∂ap
∂S(p)i

b†q

}
δ(p− q)

(2.432)

= −α(p)S(ωp)ap
∂b†p

∂S(p)i
(2.433)

where in the last passage we integrated once again by parts.
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• Second

α(p)α(q)S(ωp)

[
∂a†p

∂S(p)i
ap, a

†
qbq

]
(2.434)

= α(p)α(q)S(ωp)
∂a†p

∂S(p)i

[
ap, a

†
q

]
bq + 0 (2.435)

= α(p)S(ωp)
∂a†p

∂S(p)i
bp (2.436)

• Third

α(p)α(q)S(ωp)

[
−a†p

∂ap
∂S(p)i

, b†qaq

]
(2.437)

= 0 + α(p)α(q)S(ωp)
[
−a†p, aq

] ∂ap
∂S(p)i

b†q (2.438)

= α(p)S(ωp)
∂ap

∂S(p)i
b†p (2.439)

• Fourth

α(p)α(q)S(ωp)

[
−a†p

∂ap
∂S(p)i

, a†qbq

]
(2.440)

= −α(p)α(q)S(ωp)a†p
[
∂ap

∂S(p)i
, a†q

]
bq + 0 (2.441)

= −α(p)S(ωp)a†pbq
∂

∂S(p)i
δ(p− q) (2.442)

=

{(
∂α

∂S(p)i
S(ωp) + α

S(p)i
S(ωp)

)
a†pbq + α(p)S(ωp)

∂ap†

∂S(p)i
bq

}
δ(p− q)

(2.443)

= −α(p)S(ωp)a†p
∂bp

∂S(p)i
(2.444)

where in the last passage we integrated once again by parts.

• Fifth

α(p)α(q)ωp

[
bp
∂b†p
∂pi

, b†qaq

]
= 0 + α(p)α(q)ωp

[
bp, b

†
q

] ∂b†p
∂pi

aq (2.445)

= α(p)ωp
∂b†p
∂pi

ap (2.446)

• Sixth

α(p)α(q)ωp

[
bp
∂b†p
∂pi

, a†qbq

]
(2.447)

= α(p)α(q)ωpbp

[
∂b†p
∂pi

, bq

]
a†q + 0 (2.448)

= −α(p)ωpbpa†q
∂

∂pi
δ(p− q) (2.449)
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=

{(
∂α

∂pi
ωp + α

pi
ωp

)
bpa

†
q + α(p)ωp

∂bp
∂pi

a†q

}
δ(p− q) (2.450)

= −α(p)ωpbp
∂a†p
∂pi

(2.451)

where in the last passage we integrated once again by parts.

• Seventh

α(p)α(q)ωp

[
−∂bp
∂pi

b†p, b
†
qaq

]
(2.452)

= 0 + α(p)α(q)ωp

[
−∂bp
∂pi

, b†q

]
b†paq (2.453)

= −α(p)ωpb†paq
∂

∂pi
δ(p− q) (2.454)

=

{(
∂α

∂pi
ωp + α

pi
ωp

)
b†paq + α(p)ωp

∂b†p
∂pi

aq

}
δ(p− q) (2.455)

= −α(p)ωpb†p
∂ap
∂pi

(2.456)

where in the last passage we integrated once again by parts.

• Eighth

α(p)α(q)ωp

[
−∂bp
∂pi

b†p, a
†
qbq

]
= −α(p)α(q)ωp

∂bp
∂pi

[
b†p, bq

]
a†q (2.457)

= α(p)ωp
∂bp
∂pi

a†p (2.458)

Putting all these computations together, we are left with

[Ni, C] =
i

2

∫
d3pα(p)

{
S(ωp)

[
∂ap

∂S(p)i
b†p − ap

∂b†p
∂S(p)i

+
∂a†p

∂S(p)i
bp − a†p

∂bp
∂S(p)i

]

+ ωp

[
∂b†p
∂pi

ap − b†p
∂ap
∂pi

+
∂bp
∂pi

a†p − bp
∂a†p
∂pi

]}
(2.459)

which (as expected) is different than zero.
Finally, notice that in the non-deformed case, all the computations will proceed

in exactly the same way but without antipodes (recall that α(p) is a global prefactor
such that α→ 1 when κ→∞). Furthermore, notice also that

S(A)
∂

∂S(B)

κ→∞−−−→ −A ∂

∂(−B)
= A

∂

∂B
. (2.460)

Therefore, the above result in the non-deformed case reduces to

[Ni, C] =
i

2

∫
d3p

{
ωp

[
∂ap
∂pi

b†p − ap
∂b†p
∂pi

+
∂a†p
∂pi

bp − a†p
∂bp
∂pi

]

+ ωp

[
∂b†p
∂pi

ap − b†p
∂ap
∂pi

+
∂bp
∂pi

a†p − bp
∂a†p
∂pi

]}
(2.461)
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= 0 (2.462)

where in the last passage we used the fact that, because of the limit κ→∞, the two
square brackets are equal and opposite.

2.17 ����CPT ⇔ ((((((Lorentz?

In [92] it was shown that CPT violation implies Lorentz violation and vice versa.
The theorem is obtained in the context of axiomatic QFT, and in particular on the
properties of Wightman functions. The relation between CPT invariance and Lorentz
invariance is still not clear in the non-deformed context [100], [101]. In our context, κ-
deformation introduces non-trivialities already at the one-particle level even in absence
of interaction, a fact which can be intuitively understood by noticing that −S(p) ̸= p.
Furthermore, as discussed in the previous section, although the action is manifestly
CPT and invariant under κ-Poincaré, the Noether charges obtained from continuous
symmetries of the action (and in particular the boost charge) have very non-trivial
relations with the discrete symmetries (in this particular case C). A theorem like [92]
is therefore not automatically satisfied in the κ-deformed context. In what follows, we
reproduce the reasoning in the non-deformed case, explicitly performing all the steps
and adding some figures, and at the end we write a discussion on possible departures
from the conclusions of the theorem. We are at point x) of our roadmap in section
2.1.

2.17.1 Greenberg’s argument

The proof of Greenberg’s theorem is based on a theorem by Jost in [95] (a scan of
the original paper in german can be found in [98], see also [96] for a description
of this argument. Greenberg has also described the theorem and its steps in [97]).
First we write down what Jost theorem says without proof, then we write down the
setup for Greenberg’s argument, and finally the argument itself. Since Jost theorem
is fundamental for Greenberg’s proof, we will describe it in the next section. The
description of this theorem provided in this section is solely based on the provided
references, and we will use the same notation and setup.

Jost theorem states the following:

Jost theorem: Given the (Wightman) functions

W (n)(x1, x2, . . . , xn) := ⟨0|ϕ1(x1)ϕ2(x2) . . . ϕn(xn)|0⟩ (2.463)

the validity of the weak local commutativity condition at Jost points

W (n)(x1, x2, . . . , xn) =W (n)(xn, xn−1, . . . , x1) (2.464)

is equivalent to the validity of the CPT symmetry. The Jost points {xi} are a set of
points such that the linear combination∑

i

ci(xi − xi−1) (2.465)

is always spacelike, for any choice of ci ≥ 0 with
∑

i ci > 0.

Setup: We consider only passive transformations. A quantum field theory is con-
sidered Lorentz covariant if it is both in-cone covariant and out-of-cone covariant. A
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quantum field theory is said to be in-cone covariant if the Wightman functions are co-
variant (notice that the Wightman functions are matrix elements of unordered fields).
On the other hand, a quantum field theory is said to be out-of-cone covariant if the
matrix elements of time-ordered fields τ are covariant. In the notation used in [92],
the τ functions are written as

τ =
∑
σ

θ(x0σ1 , x
0
σ2 , . . . , x

0
σn)W

(n)(xσ1 , xσ2 , . . . , xσn) (2.466)

where the function θ(xσ1 , xσ2 , . . . , xσn) ensures that x0σ1 ≥ x
0
σ2 ≥ · · · ≥ x

0
σn . The sum

goes over all the permutations of n elements.

Argument : The idea is to show that violation of CPT (in the form of violation
of the weak local commutativity condition) implies a violation of the out-of-cone
covariance condition, and since a theory is Lorentz covariant if it is covariant both
in-cone and out-of-cone, we get a violation of the Lorentz covariance of the theory.

Since we want to use Jost theorem, consider points x1, . . . , xn separated by space-
like intervals. For these points, there can be Lorentz transformations that reverse their
time ordering. Therefore, in order for τ to be invariant under Lorentz transformation,
the Wightman functions must not depend of the order of the fields in its argument
(when these fields are evaluated at points with spacelike separation). In fact, say
that there exist some Lorentz transformation such that one goes from x0σ1 ≥ x0σ2 to
x0σ2 ≥ x

0
σ1 . Then the function (2.466) gets sent to

τ
!
= τ̃ =

∑
σ

θ(x0σ2 , x
0
σ1 , . . . , x

0
σn)W

(n)(xσ1 , xσ2 , . . . , xσn) (2.467)

=
∑
σ

θ(x0σ1 , x
0
σ2 , . . . , x

0
σn)W

(n)(xσ2 , xσ1 , . . . , xσn) (2.468)

and therefore we must have

W (n)(xσ1 , xσ2 , . . . , xσn) =W (n)(xσ2 , xσ1 , . . . , xσn). (2.469)

Since the same can be repeated for any choice of points, then indeed for spacelike-
separated points the W (n) functions do not depend on the order of the fields.

Now we can chose the points separated by spacelike intervals to be Jost sets, and
we can chose them in such a way that their successive time differences are all positive.
Graphically speaking, Jost points of this kind can be represented for example as follows
(in red)

Then there exist some Lorentz transformation such that all the successive time differ-
ences are all negative, i.e. we are in the following situation.
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However, because of the invariance of τ under such a transformation, then for these
Jost points we must have

W (n)(x1, x2, . . . , xn) =W (n)(xn, xn−1, . . . , x1) (2.470)

which is the weak local commutativity of Jost theorem. Therefore, Lorentz symmetry
implies weak local commutativity, which by Jost theorem is equivalent to CPT sym-
metry, and vice versa if CPT is violated, then the same is true for Lorentz symmetry.

2.17.2 Jost theorem

We use as a reference Greenberg’s paper [97] where he describes in detail Jost proof.
In this section we will just write down the main steps of the proof, using the same
notation used in [97].

Jost proof follows the following steps:

1) The key idea is to use the group SL(2,C), which is the double covering of
the proper orthochronous Lorentz group L↑

+. One uses SL(2,C) instead of L↑
+

because spacetime inversion PT = −1 is connected to the identity in SL(2,C),
while it is not connected in L↑

+.

2) To use this extended Lorentz group, one needs to use the analytic continuation
of the Wightman functions, i.e. of the vacuum expectation values of products
of fields. However, instead of using the canonical W (n)(x1, . . . , xn), because of
translation invariance one can use the equivalent function W̃ (x1−x2, . . . , xn−1−
xn) := W̃ (ξ1, . . . , ξn−1) where ξj = xj − xj+1. In order to obtain an analytic
continuation of W̃ , we promote each difference ξj to a complex variable, and in
particular

zj = ξj − iηj (2.471)

The introduction of the −iηj transforms the distribution W̃ (ξ1, . . . , ξn−1) into
an analytic function W̃ (z1, . . . , zn−1).

Notice that the use of the differences ξj is a necessary step for the proof. In
fact, the whole argument rests on the existence of real points in the analyticity
domain of the analytic function W̃ (z1, . . . , zn−1). These real points {ξj} are the
Jost points discussed above, and are defined by the condition that the sum

s :=
∑
j

cjξj (2.472)

is spacelike, where cj ≥ 0 and
∑

j cj > 0. Of course, since s must be spacelike
for any observers, it must be defined in terms of ξj and not xj .

3) The newly defined analytic functions W̃ (z1, . . . , zn−1) are still defined only in
a domain which does not include real points. However, because of Lorentz
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invariance with respect to the double covering group SL(2,C), we have

W̃ (Λz1, . . . ,Λzn−1) = W̃ (z1, . . . , zn−1) (2.473)

This allows us to enlarge the domain, and the new domain does contain the Jost
points. Furthermore, because of the fact that in SL(2,C) there is spacetime
inversion, there is some Λ such that

W̃ (Λz1, . . . ,Λzn−1) = (−1)LW̃ (−z1, . . . ,−zn−1) (2.474)

for some coefficient L derived in [97]. Writing the above relation at the Jost
points, using the vacuum expectation values instead of the Wightman functions
and using eq. (2.473) we get8

⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩ = (−1)L⟨0|ϕ1(−x1) . . . ϕn(−xn)|0⟩. (2.475)

4) There is now a small but important subtlety in the above equality. In fact,
the equality merely states that the value of the function on the LHS is the
same as the one on the RHS. However (essentially because of the antisymmetric
nature of the T operator) the function (−1)L⟨0|ϕ1(−x1) . . . ϕn(−xn)|0⟩ has a
different domain of definition than the function ⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩. The
way to solve this is to permute the fields inside the expectation value on the
RHS of eq. (2.475). Of course, in doing so one needs to use the fact that boson
fields commute when evaluated at different spacetime points and fermion fields
anticommute, i.e.

[ϕ(x), ϕ(y)] = [A(x), A(y)] = {ψ(x), ψ(y)} = 0 x ̸= y (2.476)

Upon using these relations, one can write that

⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩ = (i)F ⟨0|ϕn(xn) . . . ϕn(x1)|0⟩ (2.477)

where F is the number of fermions in the expectation value. The identity (2.477)
is called ‘weak local commutativity’, and for the sake of the theorem it only needs
to hold at Jost points. Notice that weak local commutativity is not needed for
the theorem if, instead of considering just Wightman functions, one uses the
time ordered products of Wightman functions τ analogous to the one in eq.
(2.466).

5) Using the weak local commutativity, eq. (2.475) becomes

⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩ = (−1)L(i)F ⟨0|ϕn(−xn) . . . ϕ1(−x1)|0⟩. (2.478)

Now both functions in both sides have the same domain of definition, and since
they are analytic and coincide in some open subset of their domain (i.e. the
neighbour(s) of the Jost points) the above equality implies the same equality of
Wightman functions across the whole domain. Therefore we have

W̃ (z1, . . . , zn) = (−1)L(i)F W̃ (−zn, . . . ,−z1). (2.479)

8The fields ϕi in this expression can be any kind of field, boson or fermion.
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At this point, we can also take the limit ηj → 0 and the analytic functions
become once again distributions, and we have

W̃ (ξ1, . . . , ξn) = (−1)L(i)F W̃ (−ξn, . . . ,−ξ1). (2.480)

Notice that we couldn’t take this limit before using the weak local commutativity
because the domains of definitions of the functions were different. Therefore,
we would have been stuck to the complex case, without the possibility of taking
the limit and coming back to the real (physical) case.

6) We can write eq. (2.480) in terms of vacuum expectation value as

⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩ = (−1)L(i)F ⟨0|ϕn(−xn) . . . ϕ1(−x1)|0⟩ (2.481)

Notice that this equation is formally equivalent to eq. (2.478), but while eq.
(2.478) only made sens in a neighbour of Jost points (i.e. the associated Wight-
man function was an analytic function) here everything is real (i.e. the Wight-
man functions are again distributions). One can restore the order of the fields
through hermitian conjugation on the RHS obtaining

⟨0|ϕ1(x1) . . . ϕn(xn)|0⟩ = (−1)L(i)F ⟨0|ϕ†1(−x1) . . . ϕ
†
n(−xn)|0⟩∗ (2.482)

and from this one can read off the CPT transformation which reads9

θϕ(x)θ† = (−1)lifϕ†(−x). (2.483)

7) With the points 1) to 6) one has proved that (assuming Lorentz symmetry)
the validity of the weak local commutativity at Jost points (2.477) implies CPT
symmetry. To show the other direction one can just use the same steps in reverse
order, and therefore weak local commutativity in the neighbour of Jost points
is equivalent to CPT symmetry.

2.17.3 Comments on Jost and Greenberg theorems

There are already some doubts about the validity of Greenberg’s argument for canon-
ical quantum field theory [100], [101]. Apart from these arguments, one can also say
the following.

• The first problematic step in the whole argument is point 4) of the proof of
Jost theorem. In fact, in the non-deformed context the (anti)commutator of
fields reduces to the (anti)commutators between creation/annihilation operators
because plane waves are just functions and commute with everything (themselves
included). Therefore, the statement about field is just a rewriting of the same
statement about creation/annihilation operators. However, in the deformed
context, plane waves do not commute and their product is described in terms of
star operator and antipode. This fact, coupled with the deformed commutators
in (2.208), (2.209), immediately implies that (anti)commutation relations for
(fermion) fields are at best not obvious, and its imposition could very well lead
to the destruction of some κ-deformed effects.

• On a more pragmatical note, the definition of something like ⟨0|ϕ1(x1)⋆ϕ2(x2)|0⟩
requires the knowledge of the commutator [x01,x2]. Several proposals have been

9The indices l and f refer to the number of dotted and undotted indices in the field representation
used in [97], but it is not important for the proof.
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given for this commutator, each with its own pros and cons, highlighting the fact
that an objective, natural definition of such commutator is lacking. As such,
although any of the definition could be taken as assumption, different choices
would result in different mathematical formulations of ⟨0|ϕ1(x1) ⋆ ϕ2(x2)|0⟩,
with different physical properties. This issue could be sidestepped by going
to momentum space, where a natural definition of two-point function could be
given using the path integral approach (see e.g. chapter 3). However, if we have
more than two fields in the VEV, one has the issue that the Fock space is not
well defined, see for example [99].

• As stated in [97], one does not need to use any assumption related to the
(anti)commutators between fields if, instead of using just the Wightman func-
tion, one uses the time-ordered product τ of such functions as in eq. (2.466).
This of course is true also in the deformed context, but in light of the discussion
on the previous point it is not clear whether the τ in (2.466) does indeed corre-
spond to the correct physical n-point function. For example, in [85] it was shown
that the time-ordered vacuum expectation value (VEV) of two fields gives the
correct propagator only in some subset of phase space (for trans-Planckian mo-
menta the propagator is not the time-ordered VEV). The model considered in
[85] is different from the one discussed in this work, nevertheless it highlights the
fact that general conclusions about the behaviour of time-ordered VEV are in
general groundless, and a lot depends on the considered model. In other words,
one could question whether the correct physical quantities to be considered are
time ordered products of Wightman functions in the first place.

• The weak local commutativity in the proof of Jost theorem needs to hold at Jost
points which are defined in terms of difference of coordinates. However, how
to sum or subtract coordinate vectors is not a trivial matter in the deformed
context.

As a concrete proof of the above considerations, in what follows we will explicitly
show that the two-point function ⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ satisfies the CPT invariance
relation, in the form of eq. (2.482), but it is not Lorentz invariant, meaning that
eq. (2.473) (in the real limit) is not satisfied, and therefore both Jost and Greenberg
theorem are not valid.

2.17.3.1 CPT properties of ⟨0|ϕ†1(x1) ⋆ ϕ2(x2)|0⟩

We want to show that

⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ = ⟨0|ϕ(−x1) ⋆ ϕ†(−x2)|0⟩∗ (2.484)

In order to do so, we use the fields in eq. (2.115) and (2.116), and we have

⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩

=

∫
d4q

q4/κ

d4p

p4/κ
θ(p0) ζ(p)ζ(q) ⟨0|bqb†p|0⟩e−i(ωqt1−qx1) ⋆ e−i(S(ωp)t2−S(p)x2) (2.485)

⟨0|ϕ(−x1) ⋆ ϕ†(−x2)|0⟩∗ (2.486)

=

∫
d4p

p4/κ

d4q

q4/κ
θ(p0) ζ(p)ζ(q) ⟨0|apa†q|0⟩ei(ωpt2−px2) ⋆ ei(S(ωq)t1−S(q)x1) (2.487)
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Recalling eq. (2.208) and (2.209) we immediately have

⟨0|apa†q|0⟩ = ⟨0|[ap, a†q]|0⟩ = ⟨0|[bq, b†p]|0⟩ = ⟨0|bqb†p|0⟩ (2.488)

so we only need to consider the plane waves. Notice that we are working in different
spacetime points (but with p = q because of the Dirac delta and we are on-shell). We
now use the commutation relation

[x01, x
j
2] =

i

κ
xj2. (2.489)

We compute the two star products in the bicrossproduct basis for simplicity. We have
(using the time-to-the-right ordering)

êk(x)êl(x) = êk⊕l(x) = ei(kx+e
− k0
κ lx)ei(k0x

0+l0x0) (2.490)

êS(k)(x) = e−ie
k0
κ kxe−ik0x

0
(2.491)

Before proceeding recall that the inverse Weyl map sends [78]

W (êk(x)) = e−i(ωkt−kx) ⇔ W −1
(
e−i(ωkt−kx)

)
= êk(x) (2.492)

and therefore we have

W −1
(
ei(ωkt−kx)

)
= W −1

(
e−i(ωk(−t)−k(−x))

)
= êk(−x) (2.493)

Using this fact we have

ei(ωpt2−px2) ⋆ ei(S(ωp)t1−S(p)x1) 7→ êp(−x1)êS(p)(−x2) (2.494)

and computing the RHS explicitly we have

ei(p(−x2)+e
− p0
κ (−e

p0
κ p)(−x1))ei(p0(−x

0
2)−p0(−x01)) = eip(x1−x2)eip0(x

0
1−x02) (2.495)

and furthermore

e−i(ωpt1−px1) ⋆ e−i(S(ωp)t2−S(p)x2) 7→ êp(x1)êS(p)(x2) (2.496)

and the RHS computed explicitly gives

ei(px1+e
− p0
κ (−e

p0
κ p)x2)ei(p0x

0
1−p0x02) = eip(x1−x2)eip0(x

0
1−x02) (2.497)

Therefore the two integrands are equal and we have shown that eq. (2.484) holds.
Notice that eq. (2.484) is a particular case of the expression

⟨0|ϕ1(x1) ⋆ ϕ2(x2)|0⟩ = ⟨0|ϕ†1(−x1) ⋆ ϕ
†
2(−x2)|0⟩

∗ (2.498)

with the choice ϕ1(x1) = ϕ†(x1), ϕ2(x2) = ϕ(x2). Any other choice leads to zero
in our case, because in each case there would be an operator a or b acting on the
vacuum (recall that [a, b] = [a, b†] = 0), or terms of the kind ⟨0|a†a†|0⟩ = 0 because
a†a†|0⟩ ̸= |0⟩ and a†a†|0⟩ ⊥ |0⟩. The only other choice that does give a non-zero
contribution is ⟨0|ϕ†(x1)⋆ϕ(x2)|0⟩, however in this case the computations go in exactly



2.17. ���CPT ⇔����Lorentz? 91

the same way. Therefore, we have proved that eq. (2.498) holds for any combination
of two scalar fields in the deformed context.

Notice the important observation that, even if we used the commutation relations

[x01, x
i
2] =

{
0, if x1 ̸= x2
i
κx

i
2, if x1 = x2

(2.499)

we would have gotten the same result. Indeed, we compute these expectation values
at different points, and if we use the fact that fields at different points behave as if
they were non-deformed, we reach exactly the same result as the canonical case.

2.17.3.2 Lorentz properties of ⟨0|ϕ†1(x1) ⋆ ϕ2(x2)|0⟩

Since we are considering products of fields at different spacetime points, in this section
we work in the context of the commutation relations in eq. (2.499). In this way, we
get that the boosts act with a trivial co-product on star products. From the first
order boost transformations in eq. (2.288) and (2.289) we immediately have (up to
first order in the parameter λi)

⟨0|Λϕ†(x1) ⋆ Λϕ(x2)|0⟩
≈ ⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩

+ ⟨0|
(
−iλi xi1

∂

∂x01
ϕ†(x1)

)
⋆ ϕ(x2)|0⟩+ ⟨0|ϕ†(x1) ⋆

(
iλi x

i
2

∂

∂x02
ϕ(x2)

)
|0⟩

+

∫
d3p√
2ωp

d3q√
2ωq

ζ(p)ζ(q) ⟨0|bqb†p|0⟩e−i(ωqt1−qx1) ⋆ e−i(S(ωp)t2−S(p)x2)×

×
[
ζ(p)iλi

qi
κ

(
m2

ω2
q

− 2

)
− ζ(q)iλipi

κ

(
5

2
− m2

2ω2
p

)]

= ⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩

− iλi xi1
∂

∂x01
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩+ iλi x

i
2

∂

∂x02
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩

+

∫
d3p

2ωp
eip(x1−x2)eip0(x

0
1−x02)

[
iλi

pi
κ

(
3m2

2ω2
p

− 9

2

)]
(2.500)

were we used the fact that [a, a†] = [b, b†] = 1 and the fact that

ζ(p) ≈ 1− 1

κ

2ω2
p +m2

4ωp
. (2.501)

We first consider the terms

−iλi xi1
∂

∂x01
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩+ iλi x

i
2

∂

∂x02
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ (2.502)

Using the CPT property (2.484) of the two-point function we can rewrite these two
terms as

−iλi xi1
∂

∂x01
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩+ iλi x

i
2

∂

∂x02
⟨0|ϕ(−x1) ⋆ ϕ†(−x2)|0⟩ (2.503)
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Using the fields in eq. (2.115) and (2.116) one an now show that (keeping only the
relevant part for the two-point function)

xi
∂

∂x0
ϕ†(x) =

∫
d4q

q4/κ
θ(q0) ζ(q) a

†
q

(
−iS(ωq)

∂

∂iS(q)i

)
e−i(S(ωq)x

0−S(q)x)

+

∫
d4q

q4/κ
θ(q0) ζ(q) bq

(
−iωq

∂

∂iqi

)
e−i(ωqx

0−qx). (2.504)

xi
∂

∂x0
ϕ†(−x) =

∫
d4q

q4/κ
θ(q0) ζ(q) a

†
q

(
iS(ωq)

∂

∂(−iS(q)i)

)
ei(S(ωq)x

0−S(q)x)

+

∫
d4q

q4/κ
θ(q0) ζ(q) bq

(
iωq

∂

∂(−iqi)

)
ei(ωqx

0−qx). (2.505)

Hence we have

xi1
∂

∂x01
ϕ†(x1) = xi2

∂

∂x02
ϕ†(−x2) (2.506)

and therefore

xi1
∂

∂x01
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ = xi2

∂

∂x02
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ (2.507)

Because of this relation, eq. (2.502) is therefore zero

−iλi xi1
∂

∂x01
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩+ iλi x

i
2

∂

∂x02
⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ = 0 (2.508)

and the boost transformation property for the two point function becomes

⟨0|Λϕ†(x1) ⋆ Λϕ(x2)|0⟩ ≈ ⟨0|ϕ†(x1) ⋆ ϕ(x2)|0⟩ (2.509)

+

∫
d3p

2ωp
eip(x1−x2)eip0(x

0
1−x02)

[
iλi

pi
κ

(
3m2

2ω2
p

− 9

2

)]
. (2.510)

We now treat the second term on the RHS. First of all, recall that we are performing
all the computations at equal times, so that we only need to consider∫

d3p

2ωp
eip(x1−x2)

[
iλi

pi
κ

(
3m2

2ω2
p

− 9

2

)]
(2.511)

Calling ∆x = x1 − x2 and assuming without loss of generality that ∆x ∥ z we have

−2π ∂

∂i∆xi

∫
d|p|p2d cos θ

2ωp
ei|p||∆x| cos θ

[
iλi

1

κ

(
3m2

2ω2
p

− 9

2

)]
(2.512)

Performing the angular integral one gets

−2π ∂

∂i∆xi

∫ ∞

0

d|p|p2

2ωp

1

i|p||∆x|

(
e−i|p||∆x| − ei|p||∆x|

)[
iλi

1

κ

(
3m2

2ω2
p

− 9

2

)]
(2.513)

which can be equivalently written as

π

|∆x|
λi

κ

∂

∂i∆xi

∫ ∞

−∞

d|p||p|
2ωp

ei|p||∆x|
(
3m2

ω2
p

− 9

)
(2.514)
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This means that we only need to compute the two Fourier transforms

3m2

2

∫ ∞

−∞
d|p| ei|p||∆x| |p|

(m2 + p2)3/2
(2.515)

−9

2

∫ ∞

−∞
d|p| ei|p||∆x| |p|

(m2 + p2)1/2
(2.516)

One can easily check that, since m > 0, |∆x| > 0, we have

3m2

2

∫ ∞

−∞
d|p| ei|p||∆x| |p|

(m2 + p2)3/2
= 3im2|∆x|K0(m|∆x|) (2.517)

−9

2

∫ ∞

−∞
d|p| ei|p||∆x| |p|

(m2 + p2)1/2
= −9imK1(m|∆x|) (2.518)

where K0(x),K1(x) are the modified Bessel functions of the second kind. The addi-
tional term in eq. (2.509) therefore becomes

π

|∆x|
λi

κ

∂m|∆x|
∂∆xi

∂

∂m|∆x|
(
3m2|∆x|K0(m|∆x|)− 9mK1(m|∆x|)

)
(2.519)

Using the fact that

∂

∂x
K0(x) = −K1(x)

∂

∂x
K1(x) = −

1

2
(K0(x) +K2(x)) (2.520)

we end up with

2π
m

κ
λi

∆xi

|∆x|

(
15m

2
K0(m|∆x|)− 3m2|∆x|K1(m|∆x|) + 9m

2
K2(m|∆x|))

)
(2.521)

For small values of |∆x| one can show that

15m

2
K0(m|∆x|)− 3m2|∆x|K1(m|∆x|) + 9m

2
K2(m|∆x|)) ≈ 9

m|∆x|2
(2.522)

while for large values of |∆x| one has

15m

2
K0(m|∆x|)− 3m2|∆x|K1(m|∆x|) + 9m

2
K2(m|∆x|)) ≈ −3m

1
2

√
π

2
e−m|∆x|√|∆x|.

(2.523)

As a final comment, let us note that if we used the commutation relation in eq. (2.489)
instead of eq. (2.499), then we would have a non-trivial co-product acting on the star
product. However, the additional contributions that one gets can be shown not to
cancel the extra factor in eq. (2.509).

2.18 Phenomenological consequences of deformed CPT trans-
formations

We are now at point xi) of our roadmap in section 2.1. We have already seen the
behaviour of infinitesimal boosts on states in eq. (2.299), from which one can get the
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finite (canonical) action given by

|p1, p2, p3⟩a 7→ | cosh ξ p1 + sinh ξ ωp, p2, p3⟩a (2.524)
|p1, p2, p3⟩b 7→ | cosh ξ p1 + sinh ξ ωp, p2, p3⟩b. (2.525)

We now consider the case of a particle and an antiparticle originally at rest, and we
put ourselves in their center of mass frame. Notice that we are not considering the two
as being part of a single tensor state, but as two separate single states. As such, we are
ignoring contributions coming from the finite boost of two-particle states described in
section 1.6 of chapter 1. If we boost their initial single-particle states at rest with the
boosts (2.524), (2.525) we have

|p = 0⟩a 7→ |M sinh ξ, 0, 0⟩a
|p = 0⟩b 7→ |M sinh ξ, 0, 0⟩b (2.526)

where

P1|M sinh ξ, 0, 0⟩a = −S(M sinh ξ)1|M sinh ξ, 0, 0⟩a (2.527)
P0|M sinh ξ, 0, 0⟩a = −S(M cosh ξ)|M sinh ξ, 0, 0⟩a (2.528)

P1|M sinh ξ, 0, 0⟩b =M sinh ξ|M sinh ξ, 0, 0⟩b (2.529)
P0|M sinh ξ, 0, 0⟩b =M cosh ξ|M sinh ξ, 0, 0⟩b (2.530)

with

−S(M sinh ξ)1 =
κM sinh ξ

M cosh ξ +
√
κ2 +M2

, (2.531)

−S(M cosh ξ) =M cosh ξ − M2 sinh2 ξ

M cosh ξ +
√
κ2 +M2

(2.532)

It is clear that the C operator switches a particle for an antiparticle of a different
momentum due to its non-commutativity with the boost. In order to derive phe-
nomenological consequences, it is helpful to first expand at first order in 1/κ eq.
(2.531) and (2.532), obtaining

−S(ωp) = ωp −
p2

κ
+ O(1/κ2), (2.533)

−S(p)i = (p)i −
(p)iωp

κ
+ O(1/κ2). (2.534)

The γ factor corresponding to the two boosts will be different because of the presence
of the antipode, and in particular it will be ωp/M for the particle and −S(ωp)/M for
the antiparticle.

We now consider an unstable particle/antiparticle couple. Their evolution is dic-
tated by a complex energy, where the imaginary part is responsible for the description
of the decay (since it corresponds to an exponential decay of both the amplitude
and the probability density function). In particular, using proper time t > 0 as a
parameter, the amplitudes will be given by

ψpart(t) = A(M,Γ, E) exp

[
−i(E − i

2
Γ)
E

m
t

]
, (2.535)



2.18. Phenomenological consequences of deformed CPT transformations 95

ψapart(t) = A[M,Γ, S(E)] exp

[
−i
(
S(E)− i

2
Γ

)
S(E)

m
t

]
, (2.536)

where A is a normalization factor. Notice that we used the notation ωp = E − i
2Γ,

where Γ = 1
τ describes the reciprocal of the decay time and is called decay width.

Furthermore, we used the fact that

S(ωp) = S(E)− i

2
S(Γ) ≈ S(E)− i

2
Γ (2.537)

i.e. we used the assumption that the decay width is the same for particles and an-
tiparticles (we are only considering total decay width, so there are no corrections on
considering only some of the total decay channels), so that it is unaffected by the
antipode. This is an a-priori well defined assumption since any correction to Γ (which
is computed in the center of mass frame for both particles and antiparticles) can only
be proportional to m

κ or M
κ , where M is the mass of the decaying particle and m

stands for the mass of some decay product. Because we expect κ to be of the order
of magnitude of the Planck energy, such contributions (which are also not enhanced
by boosting since both m and M are the invariant rest masses) are negligible. We
explicitly verify such a-priori estimate by computing the correction to Γ for the decay
of a single particle ϕ of mass M into two particles χ of mass m in the next section
2.18.1.

From the amplitudes, one can get the probability density functions

Ppart(t) =
ΓE

m
exp

(
−Γ E

m
t

)
, (2.538)

Papart(t) =
ΓS(E)

m
exp

[
−Γ S(E)

m
t

]
= Γ

(
E

m
− p2

κm

)
exp

[
−Γ

(
E

m
− p2

κm

)
t

]
. (2.539)

For the moment, we will not discuss possible contributions coming from non-zero mass
distribution width coming from loop corrections to the propagator of the decaying
particle. We will return to this issue at the end of the next chapter 3, section 3.5.

In order to measure the effects on decay times due to deformation, the best can-
didate are particle/antiparticle pairs with small mass and high momentum, so that
the quantity p2

Mκ is the biggest possible. Natural candidates are therefore µ+, µ−, for
which lifetimes are also known with high accuracy. A detailed discussion in this case
can be found in [102]. One can also highlight the phenomenological consequences for
the next best candidates [78].

We consider a particle decaying into a particle/antiparticle pair in the center of
mass, which will produce two particles moving back to back (any correction to the
modulus of the spatial momentum due to deformation, and in particular the antipode,
will contribute higher order corrections to eq. (2.538), (2.539), and so it can be ig-
nored for the moment). Boosting in the lab frame, and choosing only particles which
(in the center of mass frame) decay orthogonally to the boost direction, we will obtain
particles whose momenta are pointing approximately along the boost direction, with
deviation angle θ of the order of 10−4 rad to 10−6 rad. One can then rotate one mo-
mentum over the other, aligning them. This is equivalent to assuming that any effect
which is not CPT -deformation related is absent. Indeed, for example, possible exper-
imental signatures of anisotropy-induced corrections to CPT and Lorentz symmetries
have been extensively studied, confirming the absence of a preferential direction in
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spacetime with better accuracy than we are considering in this section [103], [104],
[105], [106], [107], [108]. Notice that, in general, anisotropy-induced corrections to
CPT and Lorentz symmetries require working with angles which are much larger than
the θ we are considering here. With big enough data samples, one could obtain a high
enough accuracy on the average value of θ. Such a control over θ is however outside
current experimental techniques. The candidate decaying particles can be produced
in current particle accelerators (like LHC) or future one (FCC, see [109]), and in Ta-
ble 2.1 we report several possible decay channels, together with the possible values of
Lorentz boosts, experimental errors, and limits on the value of κ.

2.18.1 Estimation of deformed decay width

In this section we present a simple calculation showing that corrections to the decay
width resulting from κ-deformation are neglectable. For simplicity we consider only
the ϕχ2 interaction. We consider decay of a single ϕ particle of mass M to two χ
particles of the mass m. We have

dΓ =
1

2M
dLIPS2|T |2 (2.540)

where at tree level T = g where g is the coupling constant. Since T is computed
in the rest frame, the corrections might be only of the form m/κ and M/κ. In the
non-deformed theory the Lorentz-invariant phase space factor has the form

dLIPS2 = (2π)4δ4(k1 + k2 − k)
d3k1

(2π)32ωk1

d3k2
(2π)32ωk2

=
1

4(2π)2ωk1ωk2
δ4(k1 + k2 − k)d3k1d3k2, (2.541)

where k is the incoming momentum, while k1, k2 are the outgoing ones.
In the deformed case the only difference comes from the fact that instead of the

ordinary delta function we have the one of deformed momentum composition rule

δ4(k1 ⊕ k2 ⊕ S(k)) (2.542)

Since here we want to find just the leading order deviation from the non-deformed
theory, we consider only one ordering here; all other orderings will give the same
first-order result.

Recall that to the leading in 1/κ we have

(p⊕ q)0 = p0 + q0 +
pq

κ
, (p⊕ q)i = pi + qi +

pi q0
κ

S(p)0 = −p0 +
p2

κ
, S(p)i = −pi +

pip0
κ

(2.543)

We compute Γ in the reference frame in which the initial particle is at rest so that
k = 0. Then

δ4(k1 ⊕ k2 ⊕ S(k))
= δ (ωk1 ⊕ ωk2 ⊕ S(ωk)) δ

3 (k1 ⊕ k2)

= δ

(
ωk1 + ωk2 − ωk +

k1k2

κ

)
δ3
(
k1 + k2 +

k1ωk2

κ

)
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= δ

(
ωk1 + ωk2 − ωk +

k1k2

κ

)
δ3
(
k1 + k2

(
1− ωk2

κ

))
(1− 3

ωk2

κ
) (2.544)

Notice that

k1 = −k2

(
1− ωk2

κ

)
= −k2 +

k2ωk2

κ
(2.545)

and therefore

ωk1 =

√
m2 + k2

2 − 2
k2
2ωk2

κ
= ωk2

√
1− 2

k2
2

κωk2

≈ ωk2

(
1− k2

2

κωk2

)
(2.546)

which means that

1

ωk1

≈ 1

ωk2

(
1 +

k2
2

κωk2

)
(2.547)

Substituting this to (2.541) and integrating we get

Γ =
g2

2M

∫
d3k1d

3k2
4(2π)2ωk1ωk2

δ

(
ωk1 + ωk2 − ωk +

k1k2

κ

)
δ3
(
k1 + k2 +

k1ωk2

κ

)
= − g2

2M

∫
k2d

3k2
4(2π)2ω2

k2

(
1 +

k2
2

κωk2

)(
1− 3

ωk2

κ

)
δ

(
ωk1 + ωk2 − ωk +

k1k2

κ

)
= − g2

2M

∫
k2
2dk2

4πω2
k2

(
1− 3m2 + 2k2

2

κωk2

)
δ

(
2ωk2 −M −

2k2
2

κ

)
. (2.548)

The argument of the delta function is zero for

k2
2 +m2 =

(
k2
2

κ
+
M

2

)2

(2.549)

which means that

k2
2 =

(
M2

4
−m2

)(
1− M

κ

)
(2.550)

Furthermore, notice that

ω2
k2

= m2 + k2
2 = m2 +

(
M2

4
−m2

)(
1− M

κ

)
(2.551)

=
M2

4
− M

κ

(
M2

4
−m2

)
(2.552)

and therefore we have

ω−1
k2

=
2

M

(
1 +

M

2κ

(
1− 4

m2

M2

))
(2.553)

Substituting this result in the above steps we get

Γ = − g2

2M

∫
k2
2dk2

4πω2
k2

(
1− 3m2 + 2k2

2

κωk2

)
δ

(
2ωk2 −M −

2k2
2

κ

)
(2.554)

= − g2

2M

1

4π

4

M2

(
1 +

M

κ

(
1− 4

m2

M2

))(
M2

4
−m2

)(
1− M

κ

)
×
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×
[
1− 3m2

κ

2

M

(
1 +

M

2κ

(
1− 4

m2

M2

))
− 2

κ

2

M

(
1 +

M

2κ

(
1− 4

m2

M2

))(
M2

4
−m2

)(
1− M

κ

)]
(2.555)

and keeping only the terms up to leading order in 1/κ and using the fact that(
1 +

M

κ

(
1− 4

m2

M2

))(
M2

4
−m2

)(
1− M

κ

)
≈
[(

M2

4
−m2

)
+
M

κ

(
4m4

M2

)]
(2.556)

we get

Γ ≈ − g2

2M

∫
k2
2dk2

4πω2
k2

(
1− 3m2 + 2k2

2

κωk2

)
δ

(
2ωk2 −M −

2k2
2

κ

)
(2.557)

= − g2

2M

1

4π

4

M2

[(
M2

4
−m2

)
+
M

κ

(
4m4

M2

)][
1− 3m2

κ

2

M
− 2

κ

2

M

(
M2

4
−m2

)]
(2.558)

To simplify things a bit, notice that[(
M2

4
−m2

)
+
M

κ

(
4m4

M2

)][
1− 3m2

κ

2

M
− 2

κ

2

M

(
M2

4
−m2

)]
=

(
M2

4
−m2

)
+
m2M

2κ
+

6m4

Mκ
− M3

4κ
(2.559)

so that, calling ΓU the non-deformed Γ we see that

Γ = ΓU
[
1 +

M

κ

(
2
m2

M2
+

24m4

M4
− 1

)]
(2.560)

and we see that the kinematical corrections to the integral (2.548) resulting from the
deformation are of the form m/κ or M/κ . Together with possible corrections to the
coupling constant g, which are of the same order, we conclude that overall corrections
to the decay width Γ are at most m/κ or M/κ, i.e. of order 10−19, and therefore
completely negligible. Moreover, since even in deformed case the masses of particles
and antiparticles are identical, the corrections to the decay width Γ are the same for
particles and antiparticles.
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3
κ-deformed propagator, and 1-loop
correction to it

3.1 Introduction

In the previous chapter we studied in details the properties of the complex scalar field,
its charges under continuous transformations and the behaviour of discrete symme-
tries, and the phenomenological consequences of the deformation of CPT transforma-
tions.

In this chapter we will compute the Feynman propagator of our model, as well
as the imaginary part to the 1-loop correction to the propagator. We will begin by
computing the propagator in two ways in section 3.2. We will then give a standard
example of computation of the imaginary part of the 1-loop correction to the propa-
gator in section 3.3. We do this to highlight that each of the tools which is used is
independent from the presence of κ-deformation. As such, we will immediately go to
the deformed case in section 3.4. Because of the peculiar feature of the momentum
sum, we will need to consider 4 different cases, and each of them is treated separately.
Finally, in section 3.5 we discuss possible experimental signatures coming from the
non trivial mass distribution width contribution to the experimental signatures of de-
formed CPT discussed in section 2.18. Everything presented in this chapter (except
for the definitions for the functional derivative in the κ-deformed context, which have
been taken from [85]) is original work.

3.2 Feynman propagator

We now have a well-defined formalism of a complex scalar field in κ-Minkowski space-
time, with a well defined action invariant both under discrete symmetries (C,P, T ),
and under continuous symmetries. We now exploit this model to define the propaga-
tor, and to compute the imaginary part of the 1-loop correction to it.

3.2.1 From the generating functional

The off-shell action (in normal ordering) is given by eq. (2.156). Furthermore, follow-
ing [85], we can define the generating functional as

Z[J, J†] =
1

Z[0, 0]

∫
D [ϕ][ϕ†]eiSfree[ϕ,ϕ

†]+ i
2

∫
[ϕ†⋆J+J⋆ϕ†+J†⋆ϕ+ϕ⋆J†] (3.1)
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Notice that, differently from [85], we include all the possible orderings for the star
product between the sources J, J† and the fields ϕ, ϕ†.

The first step that we have to do is to rewrite the exponent in the generating
functional in momentum space, because in this way we will be able to complete the
squares and then easily compute the propagator. The action has already been written
in eq. (2.156). Furthermore, in analogy with the fields in eq. (2.137), (2.138), we
define J, J† as follows

J(x) =

∫
d4p

p4/κ
θ(p0) ζ(p) Jp e

−i(ωpt−px) +

∫
d4p

p4/κ
θ(p0) ζ(p) J

†
p e

−i(S(ωp)t−S(p)x)

(3.2)

J†(x) =

∫
d4p

p4/κ
θ(p0) ζ(p) J

†
p e

−i(S(ωp)t−S(p)x) +

∫
d4p

p4/κ
θ(p0) ζ(p) Jp e

−i(ωpt−px).

(3.3)
If we perform the same steps as for the computation of the momentum space action,
everything remains the same except for the absence of the terms (pµp

µ − m2) and
(S(p)µS(p)

µ −m2) (recall that the mixed terms containing ca and d†b† all go away
because they are multiplied by δ(ω⊕ω) or δ(S(ω)⊕S(ω)) whose arguments can never
be zero). Therefore, the final result (applying normal ordering) would be

ϕ† ⋆ J + J ⋆ ϕ† =

∫
d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
[a†pJp + J†

pbp] (3.4)

ϕ ⋆ J† + J† ⋆ ϕ =

∫
d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
[J†

pap + b†pJp] (3.5)

For simplicity, we now concentrate only on the a, a† part of the above action, the
computations for the b, b† parts are the same. Therefore, we only consider∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
[(pµp

µ −m2)a†pap + a†pJp + J†
pap] (3.6)

and we complete the squares using the fact that

[(pµp
µ −m2)a†pap + a†pJp + J†

pap] =

∣∣∣∣∣
(√

pµpµ −m2ap +
Jp√

pµpµ −m2

)∣∣∣∣∣
2

− J†
pJp

pµpµ −m2
(3.7)

The generating functional in momentum space can be written as

Z[J, J†] =
1

Z[0, 0]

∫
D [ϕ̃]D [ϕ̃†]e

iSfree[ϕ̃,ϕ̃
†]+ i

2

∫ d4p

p24/κ
2 θ(p0) ζ

2(p)

(
1+

|p+|3

κ3

)
[a†pJp+J

†
pbp+J

†
pap+b

†
pJp]

(3.8)

where D [ϕ̃]D [ϕ̃†] is a shorthand notation for D [ap]D [a†p]D [bp∗]D [b†p∗]. Using the fact
that the measure is invariant under constant shifts like

ap → ap −
Jp

pµpµ −m2
(3.9)
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and recalling that the same exact computations can be reproduced for the b, b† oper-
ators, the generating functional reduces to

Z[J, J†] = exp

[
−i
∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
J†
pJp

pµpµ −m2 + iϵ

]
(3.10)

where the remaining contribution∫
D [ϕ̃]D [ϕ̃†]e

i
2

∫ d4p

p24/κ
2 θ(p0) ζ

2(p)

(
1+

|p+|3

κ3

)
(pµpµ−m2)[a†pap+b

†
pbp]

(3.11)

gets cancelled by the 1
Z[0,0] factor. Notice that there is no prefactor 1

2 in eq. (3.10)
because one has two equal factors coming from the computations of a, a† and b, b†. At
this point, following [85] we can define the the functional derivative as follows

δZ[J, J†]

δJq
= lim

ε→0

Z[Jp + εδ(S(p)⊕ q), J†
p]− Z[J, J†]

ε
(3.12)

δZ[J, J†]

δJ†
q

= lim
ε→0

Z[Jp, J
†
p + εδ(S(p)⊕ S(q))]− Z[J, J†]

ε
(3.13)

Notice that these expressions reduce to the canonical ones in the limit κ→∞. Using
these we can compute the Feynman propagator ∆̃κ(p, q) as follows.

i∆̃κ(p, q) =

(
i
δ

δJ†
l

)(
−i δ

δJq

)
Z[J, J†]

∣∣∣
J,J†=0

=

(
δ

δJ†
l

)(
δ

δJq

)
Z[J, J†]

∣∣∣
J,J†=0

(3.14)

We have1(
δ

δJq

)
Z[J, J†] = lim

ε→0

{
exp

[
−i
∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
J†
pJp

pµpµ −m2 + iϵ

]
×

×
exp

[
−iε

∫ d4p
p24/κ

2 θ(p0) ζ
2(p)

(
1 + |p+|3

κ3

)
J†
pδ(S(p)⊕q)

pµpµ−m2+iϵ

]
ε

−
exp

[
−i
∫ d4p
p24/κ

2 θ(p0) ζ
2(p)

(
1 + |p+|3

κ3

)
J†
pJp

pµpµ−m2+iϵ

]
ε

}
(3.15)

= exp

[
−i
∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
J†
pJp

pµpµ −m2 + iϵ

]
×

×

{
−i
∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
J†
pδ(S(p)⊕ q)

pµpµ −m2 + iϵ

}
(3.16)

1Notice that we are now dealing with canonical expressions of the variables p, q, and we don’t
need to use the star product because there are no mixed functions of spacetime and momentum space.
Furthermore J, J† are not dynamical quantities, and therefore their Poisson brackets are trivial.
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= exp

[
−i
∫

d4p

p24/κ
2
θ(p0) ζ

2(p)

(
1 +
|p+|3

κ3

)
J†
pJp

pµpµ −m2 + iϵ

]
×

×

{
−i κ
p4
ζ2(q)

(
1 +
|q+|3

κ3

)
J†
q

qµqµ −m2 + iϵ

}
(3.17)

where we expanded the exponential containing ϵ and in the last passage we used the
fact that [85]2

δ(S(p)⊕ q) = δ(S(q)⊕ p)
∫

d4p

p4/κ
δ(S(q)⊕ p)f(p) = f(q). (3.18)

Hence (considering only the relevant term which do not go away when J, J† = 0)(
δ

δJ†
l

)(
δ

δJq

)
Z[J, J†]

∣∣∣∣∣
J,J†=0

= lim
ε→0

1

ε

{
−i κ
p4
ζ2(q)

(
1 +
|q+|3

κ3

)
εδ(S(q)⊕ S(p))
qµqµ −m2 + iϵ

}
(3.19)

= −i κ
p4
ζ2(q)

(
1 +
|q+|3

κ3

)
δ(S(q)⊕ S(l))
qµqµ −m2 + iϵ

(3.20)

Notice that, if we were to invert the order of the functional derivatives in eq. (3.14)
we will not be able to immediately apply the first Dirac delta, but this does not
matter because at the end of the computations of both derivatives we are left with an
integral containing the product of Dirac deltas δ(S(p)⊕ q)δ(S(p)⊕S(l)), which using
eq. (3.18) can be rewritten as δ(S(q)⊕ p)δ(S(p)⊕S(l)), and applying the integration
in p to the first Dirac delta we still get a final δ(S(q)⊕S(l)), like in the previous order
of the functional derivatives.

The only remaining fact which is left to clarify is the presence of the additional
factor

κ

p4
ζ2(q)

(
1 +
|q+|3

κ3

)
(3.21)

in front of the propagator. We already discussed about this factor in section 2.14.2.3.3,
and for simplicity we will be using the convention expressed in eq. (2.290) from now
onwards.

3.2.2 As inverse of the field operator

We know that the equation of motion for the field in momentum space is given by
the inverse of the field operator, which in momentum space is given by p2 −m2 (any
additional factor goes away because of the convention in eq. (2.290)). Therefore, we
have

(p2 −m2)(−i∆κ) = 1 =⇒ −i∆κ =
1

p2 −m2 + iϵ
(3.22)

2In particular ibid. eq. (59),(60), and discussion below eq. (60). Notice that the measure dµ̄(q)

in eq. (59) in [85] is the left-invariant measure, which can be equivalently written as d4p
p4/κ

θ(p0) (see
eq. (48) and (51) in [85]).
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3.3 Example of loop correction to the propagator: non-
deformed case

3.3.1 Using renormalization

In the non-deformed context, we consider the following diagram

iΠ(p2) =

k

k − p

Assuming a ψϕ2 theory with interaction vertex gψ ϕ2

2! , the vertex is given by ig (times
a Dirac delta enforcing momentum conservation) and the propagator is given by

i

p2 −m2 + iϵ
(3.23)

We have therefore

iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ︸ ︷︷ ︸
B

i

(p− k)2 −m2 + iϵ︸ ︷︷ ︸
A

(3.24)

We now use the so called Feynman trick, which says that

1

A1 . . . An
=

∫ 1

0

n∏
i=1

dxi δ

 n∑
j=1

xj − 1

 (n− 1)!

(
∑n

l=1 xlAl)
n (3.25)

and we have

A+ (B −A)x = [k − p(1− x)]2 + p2x(1− x)−m2︸ ︷︷ ︸
−∆(x)

+iϵ (3.26)

Notice that ∆(x) ≥ 0. Thus, after using the Feynman parameters, we have

iΠ(p2) = − (ig)2

(2π)4

∫
d4k

∫ 1

0
dx

1

{k2 −∆(x) + iϵ}2
(3.27)

where we performed the constant linear shift k 7→ k+ p(1−x) which leave the metric
invariant. The poles can be represented as follows in the plane below. We can therefore
use the integration contour in red in the same picture.
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The integral computed in the red circuit Γ is zero, and if R→∞ the contribution from
the circular sections goes to zero, meaning that we can use the change of variables

k0 7→ ik0E (3.28)

which is called Wick rotation. In this way one has

k2 = (k0)2 − k2 7→ −k2E = −(k0E)2 − k2. (3.29)

The amplitude reduces to

iΠ(p2) = −i(ig)2
∫ 1

0
dx

∫
d4k

(2π)4
1

(k2E +∆)2
(3.30)

where there is no additional iϵ because there are no more singularities in the integrand.
The momentum space integral is a known integral since

µ4−d
∫

ddk

(2π)4
(k2)a

(k2 +∆)b
=

Γ(b− a− 1
2d)Γ(a+

1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−a−d/2)µ4−d (3.31)

Notice that [µ] = 1, and that the term µ4−d has been added so that the integral still has
the same mass dimension as before dimensional regularization (i.e. 4), regardless of
or choice of d. In our case, using dimensional regularization, we can assume d = 4− ϵ,
and in our case we have a = 0 and b = 2. Therefore the momentum space integral is

Γ( ϵ2)

(4π)2Γ(2)
∆− ϵ

2 (µ2)
ϵ
2 (3.32)

One can use the expansions

∆− ϵ
2 (µ2)

ϵ
2 = 1− ϵ

2
log

∆

µ2
+O(ϵ2) (3.33)

Furthermore, we have

Γ(z) =
1

z
− γ +

z

2

(
γ2 +

π2

6

)
− z2

6

(
γ3 +

γπ2

2
+ 2ζ(3)

)
+ . . . (3.34)

Therefore we have

Γ(
ϵ

2
)∆− ϵ

2 (µ2)
ϵ
2 =

[
2

ϵ
− γ +

ϵ

4

(
γ2 +

π2

6

)
− ϵ2

24

(
γ3 +

γπ2

2
+ 2ζ(3)

)]
(1− ϵ

2
log

∆

µ2
)

(3.35)

≈ 2

ϵ
− log

∆

µ2
− γ +O(ϵ) (3.36)

Putting everything together we end up with

Π(p2) = − (ig)2

(4π)2Γ(2)

∫ 1

0
dx

[
2

ϵ
− log

∆

µ2
− γ +O(ϵ)

]
(3.37)

= − (ig)2

(4π)2

∫ 1

0
dx

[
2

ϵ
− log

∆

µ2
− γ +O(ϵ)

]
(3.38)

To renormalize this amplitude we add the counterterms Ak2+Bm2 to the amplitude,
we then chose A,B in such a way that the divergence is eliminated leaving behind
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only a finite contribution, and finally we fix these finite contributions by imposing the
canonical restrictions Π(m2) = Π′(m2) = 0 where Π′ = dΠ

dp2
. We have

Π(p2) = − (ig)2

(4π)2

∫ 1

0
dx

[
2

ϵ
− log

∆

µ2
− γ +O(ϵ)

]
+Ap2 +Bm2 (3.39)

so that choosing A = κA, B = κB + (ig)2

(4π)2
2
m2ϵ

we have

Π(p2) =
(ig)2

(4π)2

∫ 1

0
dx log

∆

µ2
+ κAp

2 + κBm
2 (3.40)

At this point, notice that the logarithm may have an imaginary part. It is sufficient
to notice that the argument of the logarithm is positive unless p2x(1−x) > m2 (recall
that ∆ = m2 − p2x(1 − x)), in which case the numerator becomes negative, and
therefore the whole argument of the logarithm becomes negative. Notice that this is
indeed possible since p refers to the momentum of the external particle, meaning that
p2 = m2

ψ > m2 where m = mϕ is the mass appearing in the propagators in the loop.

Therefore, as long as |x| < 1
2 ±

1
2

√
1− 4m

2

p2
and p2 > 4m2, the amplitude gains a

small imaginary part. However, notice that this imaginary part cannot be cancelled
(or in general dealt with) by the counterterms, since they are real parameters coming
from a Hermitian Lagrangian. Therefore, we can at best deal with the real part of
the amplitude. In other words, instead of simply imposing Π(p2 = m2

ψ) = 0, we are
actually imposing ℜ(Π(p2 = m2

ψ)) = 0, and the same for Π′.
The renormalized amplitude reads

Π(p2) =
(ig)2

(4π)2

∫ 1

0
dx log

∆

|∆0|
+

(ig)2

m2(4π)2

(
2π

3
√
3
− 1

)
(p2 −m2) (3.41)

Notice that this final expression is dimensionally correct.
We can now deal with the imaginary part of the amplitude. We can obtaining it

by simply assuming that the argument of the logarithm becomes negative.
In this case ℑ log ∆

|∆0| = −π, where the minus arises from the fact that the quantity
∆ − iϵ (which is found in the denominator (k2 − (∆(x) − iϵ))2 after the Feynman
trick) has a negative imaginary part. Therefore, recalling that the only part of the x
integration which contributes is the one such that

|x| < 1

2
± 1

2

√
1− 4

m2

p2
(3.42)

we have

ℑΠ(p2) = g2π

(4π)2

∫
dx =

g2

16π

√
1− 4

m2

p2
. (3.43)

Notice the very important fact that the only real role of the imposition of the con-
ditions Π(m2) = Π′(m2) = 0 (for what concerns the imaginary part contribution)
is to substitute µ2 ↔ |∆0| inside the argument of the logarithm, but both µ2 and
|∆0| are strictly positive, which means that they are irrelevant in the determination
of the imaginary part of the logarithm. In other words, one can get the imaginary
contribution of the 1-loop correction directly from eq. (3.37).

Furthermore, the reason we showed in such detail the non-deformed computation
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was to show that all the tools that are conventionally employed in non-deformed QFT
can be used as well in the deformed context. In other words, we have all the tools to
approach the same calculations in the κ-deformed context.

3.4 Example of loop correction to the propagator: κ- de-
formed case

We can consider the case of one incoming particle (with momentum S(p)) and two
outgoing ones (let us call them p2 and p3). The conservation of momentum then
implies that

S(p)⊕ p2 ⊕ p3 = 0 (3.44)

This identity is immediately satisfied if p2⊕p3 = p, and we can use one of the following
parametrizations for p2 and p3

p2 = k p3 = S(k)⊕ p (3.45)

p2 = p⊕ S(k) p3 = k (3.46)

p2 = S(k) p3 = k ⊕ p (3.47)

p2 = p⊕ k p3 = S(k) (3.48)

We can now perform the computation as in the non-deformed case, keeping in mind
to add all the above contributions.

3.4.1 Dimensional regularization and cut-off in the κ-deformed con-
text

We start from the same amplitude as before, namely

iΠ(p2) =

k

S(k)⊕ p

iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ

i

(S(k)⊕ p)2 −m2 + iϵ
(3.49)

Notice that, apart from the deformed conservation of momentum, we are assuming
that each vertex only contributes ig.

From the relations

(P ⊕Q)0 =
1

κ
P0Q+ + κ

Q0

P+
+
P⃗ · Q⃗
P+

(3.50)

(P ⊕Q)i =
1

κ
PiQ+ +Qi (3.51)
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(P ⊕Q)4 =
1

κ
P4Q+ − κ

Q0

P+
− P⃗ · Q⃗

P+
(3.52)

P+ = P0+P4 = P0 +

√
κ2 + P 2

0 − P⃗ 2 (3.53)

we have

(S(k)⊕ p)0 =
1

κ
S(k)0p+ + κ

p0
S(k)+

+
S(k)p

S(k)+
(3.54)

=
p+
κ

(
−k0 +

k2

k+

)
+
p0k+
κ
− κkp

k+

k+
κ2

(3.55)

= −k0p+
κ

+
p+k

2

κk+
+
p0k+
κ
− kp

κ
(3.56)

(S(k)⊕ p)i =
1

κ
S(k)ip+ + pi (3.57)

= − ki
k+
p+ + pi (3.58)

from which we get

(S(k)⊕ p)20 =
(
−k0p+

κ
+
p+k

2

κk+
+
p0k+
κ
− kp

κ

)2

(3.59)

+ 2
p+k

2p0
κ2

− 2
p+k

2(kp)

κ2k+
− 2

p0k+(kp)

κ2
(3.60)

(S(k)⊕ p)2 =
k2p2+
k2+

+ p2 − 2
(kp)p+
k+

(3.61)

It is useful to obtain the following approximated relations, valid up to second order
in 1

κ .

(p⊕ q)0 ≈ p0 + q0 +
pq

κ
+

1

2κ2
(
p20q0 + p0q

2
0 + q0p

2 − p0q2 − 2p0pq
)

(3.62)

(p⊕ q)i = pi + qi +
piq0
κ

+
pi
2κ2

(
q20 − q2

)
(3.63)

(S(p)⊕ q)0 ≈ −p0 + q0 −
pq

κ
+

p2

κ
+

1

2κ2
(
p20q0 − p0q20 + q0p

2 + p0q
2
)

(3.64)

(S(p)⊕ q)i = −pi + qi −
piq0
κ

+
pip0
κ
− pi

2κ2
(
p20 − 2p0q0 + q20 + p2 − q2

)
(3.65)

(p⊕ S(q))0 ≈ p0 − q0 −
pq

κ
+

q2

κ

+
1

2κ2
(
−p20q0 + p0q

2
0 − q0p2 + 2p0pq+ 2q0pq− p0q2

)
(3.66)
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(p⊕ S(q))i = pi − qi −
piq0
κ

+
qiq0
κ

+
1

2κ2
(
q20pi − q20qi + q2pi − q2qi

)
(3.67)

Notice that we are going up to second order because, as will be shown below, the
first order contribution to the propagator identically vanish, so that we are reduced
to the non-deformed case. Since we want to study the effects of deformation, we need
therefore to consider terms up to second order.

We first show that the first order contribution in 1
κ to i

(S(k)⊕p)2−m2+iϵ
vanish.

(S(k)⊕ q)2 = (S(k)⊕ q)20 − (S(k)⊕ q)2 (3.68)

≈
(
−k0 + q0 −

kq

κ
+

k2

κ

)2

−
(
−ki + qi −

kiq0
κ

+
kik0
κ

)2

(3.69)

≈ (q − k)2 + 2(−k0 + q0)

(
−kq

κ
+

k2

κ

)
− 2(−ki + qi)

(
−kiq0

κ
+

kik0
κ

)
(3.70)

= (q − k)2 + 2k0
kq

κ
− 2k0

k2

κ
− 2q0

kq

κ
+ 2q0

k2

κ

− 2k0
kq

κ
+ 2k0

k2

κ
+ 2q0

kq

κ
− 2q0

k2

κ
(3.71)

= (q − k)2. (3.72)

We need therefore to go to second order contributions. We have (once again using
Mathematica) using eq. (3.64) and (3.65)

(S(k)⊕ q)2 = (S(k)⊕ q)20 − (S(k)⊕ q)2 (3.73)

≈ (q − k)2 + 1

κ2

(
− k30q0 + (−k2 + kq)(q20 + kq− q2)

+ k20(2q
2
0 − 2k2 + kq− q2) + k0q0(−q20 + 3k2 − 2kq+ q2)

)
(3.74)

:= (q − k)2 + ∆2[(S(k)⊕ q)2]
κ2

(3.75)

where we introduce the short-hand notation

∆2[(S(k)⊕ p)2] :=
{
1

2

d2

d(1/κ)2
[(S(k)⊕ p)2 − (p− k)2]

}
1/κ=0

(3.76)

=
(
− k30p0 + (−k2 + kp)(p20 + kp− p2)

+ k20(2p
2
0 − 2k2 + kp− p2) + k0p0(−p20 + 3k2 − 2kp+ p2)

)
(3.77)

where the index 2 in ∆2 means that it is the coefficient of the second order of the
expansion of the quantity inside square brackets. Therefore, we have

i

(S(k)⊕ p)2 −m2 + iϵ
≈ i

(p− k)2 + ∆2[(S(k)⊕p)2]
κ2

−m2 + iϵ
(3.78)

=
i

1 + ∆2[(S(k)⊕p)2]
κ2

1
(p−k)2−m2+iϵ

1

(p− k)2 −m2 + iϵ
(3.79)
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=
i

(p− k)2 −m2 + iϵ
− 1

κ2
i∆2[(S(k)⊕ p)2]

[(p− k)2 −m2 + iϵ]2
(3.80)

The leading contributions in the 1/κ expansion of the amplitude in eq. (3.49) is given
by

iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ

i

(p− k)2 −m2 + iϵ
(3.81)

− (ig)2

κ2

∫
d4k

(2π)4
i

k2 −m2 + iϵ

i∆2[(S(k)⊕ p)2]
[(p− k)2 −m2 + iϵ]2

(3.82)

= iΠU (p2)− g2

κ2

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆2[(S(k)⊕ p)2]
[(p− k)2 −m2 + iϵ]2

. (3.83)

Considering only the integral, after treating the denominator in the same as the non-
deformed case using eq. (3.25) we are reduced to

−g
2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

2 [(S(k)⊕ p)2]
[k2 −∆(x) + iϵ]3

(3.84)

where we have used the generalized Feynman trick

1

AmBn
=

Γ(m+ n)

Γ(m)Γ(n)

∫ ∞

0

λm−1dλ

[λA+B]n+m
(3.85)

which can be rewritten in our particular case as

1

AB2
=

∫ 1

0
dx dy

2δ(x+ y − 1)

[xA+ yB]3
=

∫ 1

0
dy

2

[A+ (B −A)y]3

=

∫ 1

0
dx

2

[A+ (B −A)x]3
(3.86)

and therefore

1

k2 −m2 + iϵ

1

[(p− k)2 −m2 + iϵ]2
=

∫ 1

0
dx

2

{[k − p(1− x)]2 −∆(x) + iϵ}3
(3.87)

−∆(x) = p2x(1− x)−m2. (3.88)

Since the poles are in the same position as before, we can now do a Wick rotation
obtaining

i
g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

2 [(S(k)⊕ p)2]
[k2 +∆(x)]3

(3.89)

where the iϵ has gone away and where, as we computed before, we have

∆shif+Wick
2 [(S(k)⊕ p)2]

= ik30p0 + k20
(
−3p20x+ p20 + 2k2 − 4kpx+ 3kp+ 2p2x2 − 3p2x+ 2p2

)
+ k0

(
− 3ip30x

2 + 2ip30x+ 4ip0k
2x− ip0k2 − 8ip0kpx

2 + 8ip0kpx

− 2ip0kp+ 4ip0p
2x3 − 7ip0p

2x2 + 6ip0p
2x− 2ip0p

2
)
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+
(
p40x

3 − p40x2 − 2p20k
2x2 + p20k

2x+ 4p20kpx
3 − 5p20kpx

2

+ 2p20kpx− 2p20p
2x4 + 4p20p

2x3 − 4p20p
2x2 + 2p20p

2x− k3p

+ k2p2x+ (kp)2(2x− 1)− 3kp3x2 + 2kp3x+ p4x3 − p4x2
)

(3.90)

Terms proportional to k0 or k elevated to an odd power do not contribute to the final
integral. The numerator can therefore be simplified as

∆shif+Wick
2 [(S(k)⊕ p)2] = k20

(
−3p20x+ p20 + 2k2 + 2p2x2 − 3p2x+ 2p2

)
+
(
p40x

3 − p40x2 − 2p20k
2x2 + p20k

2x− 2p20p
2x4

+ 4p20p
2x3 − 4p20p

2x2 + 2p20p
2x

+ k2p2x+ (kp)2(2x− 1) + p4x3 − p4x2
)

(3.91)

Since we are integrating in the Euclidean space, each time we encounter k2 alone we
can substitute it with 3k20. Furthermore, since the terms linear in k do not contribute,
the mixed terms in (kp)2 do not contribute, so that we also have

(kp)2 =
∑
i,j

kip
ikjp

j 7→
∑
i

k2
i (p

i)2 7→ k20p
2 (3.92)

Therefore, the above numerator can be simplified to

∆shif+Wick
2 [(S(k)⊕ p)2] = k20

(
p20
(
1− 6x2

)
+ p2(2x(x+ 1) + 1)

)
+ 2k20k

2 (3.93)

+ (x− 1)x
(
p40x− 2p20p

2((x− 1)x+ 1) + p4x
)

Notice that there is one obvious exception to the substitution done above, and this
exception is obtained once we have terms like k20k2, which explain the remaining k2

in the expression above.
We now have three types of integral:

1) ∫
d4k

(2π)4
k20

(k2 +∆)3
(3.94)

This integral can be computed with the help of eq. (3.31)Considering the case
a = 1, the above integral reduces to

d∑
i=1

µ4−d
∫

ddk

(2π)4
k2i

(k2 +∆)b
= d

∫
ddk

(2π)4
k2i

(k2 +∆)b

=
Γ(b− 1− 1

2d)Γ(1 +
1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−1−d/2)µ4−d

(3.95)

which means that

µ4−d
∫

ddk

(2π)4
k20

(k2 +∆)b
=

1

d

Γ(b− 1− 1
2d)Γ(1 +

1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−1−d/2)µ4−d; (3.96)
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2) ∫
d4k

(2π)4
1

(k2 +∆)3
(3.97)

This integral is just an example of eq. (3.31) with a = 0. We have therefore

µ4−d
∫

ddk

(2π)4
1

(k2 +∆)b
=

Γ(b− 1
2d)Γ(

1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−d/2)µ4−d; (3.98)

3) ∫
d4k

(2π)4
k2i k

2
j

(k2 +m2)3
i ̸= j (3.99)

To compute this in dimensional regularization we cannot simply use the relation
(3.31), but we need to compute it from scratch. We use d dimensions and we
go in spherical coordinates. Using the relations ki = |k| cos(αi) (where αi is the
angle which the vector k forms with respect to the i-th axis) we have∫

ddk

(2π)d
k2i k

2
j

(k2 +∆)b
=

1

(2π)d

∫
dΩ cos2 αi cos

2 αj

∫ ∞

0
dk

kd−1k4

(k2 +∆)b
(3.100)

We can now can just define the constant

Θ(i, 2, j, 2) :=

∫
dΩ cos2 αi cos

2 αj (3.101)

which is a strictly positive quantity bounded from above by the surface Sd of a
d-dimensional sphere. The remaining integral can be evaluated with the help of
the beta functions

B(α, γ) =
Γ(α)Γ(γ)

Γ(α+ γ)
=

∫ ∞

0
dy yα−1(1 + y)−α−γ (3.102)

In our case we have∫ ∞

0
dk kd+3(k2 +∆)−b = ∆−b

∫ ∞

0
dk kd+3

(
k2

∆
+ 1

)−b
(3.103)

= ∆−b
∫ ∞

0

1

2
∆

1
2 y−

1
2dy (

√
∆y)d+3 (y + 1)−b (3.104)

=
1

2
∆−b+ 1

2
+ d

2
+ 3

2

∫ ∞

0
dy y

d
2
+2−1(1 + y)

d
2
+2−b−( d

2
+2)

(3.105)

=
Γ(2 + 1

2d)Γ(b− 2− 1
2d)

2Γ(b)
∆−b+2+ d

2 (3.106)

where we used the change of coordinates

y =
k2

∆
=⇒ dy = 2

k

∆
dk =⇒ dk =

∆

2
√
y∆

dy =
1

2
∆

1
2 y−

1
2dy (3.107)
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which corresponds to the result we would have gotten from eq. (3.31) but with
the factors 1

(4π)d/2Γ( 1
2
d)

exchanged with the factor Θ(i,j)
2(2π)d

. Therefore we have

µ4−d
∫

ddk

(2π)d
k2i k

2
j

(k2 +∆)b
=

Θ(i, 2, j, 2)

(2π)d
Γ(2 + 1

2d)Γ(b− 2− 1
2d)

2Γ(b)
∆−b+2+ d

2µ4−d

(3.108)

where at the end we wrote once again the term µd−4 for dimensional reasons.

We can now explicitly perform the integral. We have to compute

i
g2

κ2

{∫ 1

0
dx
(
p20
(
1− 6x2

)
+ p2(2x(x+ 1) + 1)

)︸ ︷︷ ︸
:=F (p,x)

∫
d4k

(2π)4
k20

[k2 +∆(x)]3
(3.109)

+2

∫ 1

0
dx

∫
d4k

(2π)4
k20k

2

[k2 +∆(x)]3
(3.110)

+

∫ 1

0
dx (x− 1)x

(
p40x− 2p20p

2((x− 1)x+ 1) + p4x
)︸ ︷︷ ︸

:=G(p,x)

∫
d4k

(2π)4
1

[k2 +∆(x)]3

}
(3.111)

Using the equations obtained above, and using the canonical choice d = 4 − ϵ which
is used in dimensional regularization, we have∫

d4k

(2π)4
k20

[k2 +∆(x)]3
=

1

d

Γ(b− 1− 1
2d)Γ(1 +

1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−1−d/2)µ4−d

∣∣∣∣∣
b=3

=
1

4

Γ(3− 1− 2 + ϵ
2)Γ(1 + 2)

(4π)2Γ(3)Γ(2)
∆−(3−1−2+ ϵ

2
)µϵ

=
Γ( ϵ2)

4(4π)2

(
∆

µ2

)− ϵ
2

(3.112)

∫
d4k

(2π)4
k20k

2

[k2 +∆(x)]3
= 3

Θ(0, 2, j, 2)

(2π)d
Γ(2 + 1

2d)Γ(b− 2− 1
2d)

2Γ(b)
∆−b+2+ d

2µ4−d

∣∣∣∣∣
b=3

= 3
Θ(0, 2, j, 2)

(2π)4
Γ(4)Γ(3− 2− 2 + ϵ

2)

2Γ(3)
∆−3+2+2

(
∆

µ2

)− ϵ
2

= 9
Θ(0, 2, j, 2)

2(2π)4
∆Γ(−1 + ϵ

2
)

(
∆

µ2

)− ϵ
2

(3.113)

∫
d4k

(2π)4
1

[k2 +∆(x)]3
=

Γ(b− 1
2d)Γ(

1
2d)

(4π)d/2Γ(b)Γ(12d)
∆−(b−d/2)µ4−d

∣∣∣∣∣
b=3

=
Γ(1)

(4π)2Γ(3)
∆−1

=
1

2(4π)2∆
(3.114)
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We now need the following relations

Γ(−n+ ϵ) =
(−1)n

n!

(
1

ϵ
− γ +

n∑
k=1

1

k
+O(ϵ)

)
(3.115)

(3.35)→ Γ(
ϵ

2
)∆− ϵ

2 (µ2)
ϵ
2 ≈ 2

ϵ
− log

∆

µ2
− γ +O(ϵ) (3.116)

In this way, the amplitude becomes

Π(p) = ΠU (p) +
g2

κ2

{
1

4(4π)2

∫ 1

0
dxF (p, x)

(
2

ϵ
− log

∆

µ2
− γ
)

(3.117)

−9Θ(0, 2, j, 2)

(2π)4

∫ 1

0
dx∆

(
2

ϵ
− γ + 1

)(
1− ϵ

2
log

∆

µ2

)
(3.118)

+
1

2(4π)2

∫ 1

0
dxG(p, x)

1

∆

}
(3.119)

Once again, notice that the amplitude contains a real and an imaginary part, because
the ∆ is exactly the same as the one in the non-deformed case. As such, all the
renormalization procedure is intended to be valid only for the real part ℜ(Π) of it.

Like in the non-deformed case, the only contribution comes when the argument of
the logarithm becomes negative (notice, after imposing the renormalization conditions,
the µ2 in the argument of the logarithms will be replaced by ∆0 as previously defined,
which is always positive for x ∈ [0, 1]), and therefore ℑ log ∆

∆0
= −π. Hence, recalling

that the integration domain on the x for the imaginary part is

|x| < 1

2
± 1

2

√
1− 4

m2

p2
(3.120)

the imaginary part of the integral in the amplitude is given by

g2

κ2

{
π

4(4π)2

∫ L2

L1

dxF (p, x)− 9π
Θ(0, 2, j, 2)

(2π)4

∫ L2

L1

dx∆

}
(3.121)

where we called

L1 =
1

2
− 1

2

√
1− 4

m2

p2
L2 =

1

2
+

1

2

√
1− 4

m2

p2
. (3.122)

Computing everything explicitly, and recalling that F (p, x) and G(p, x) are defined
respectively in eq. (3.109) and (3.111), we get (recall that we are using the metric
convention +−−−)∫ L2

L1

F (p, x)dx =

∫ L2

L1

(
p20
(
1− 6x2

)
+ p2(2x(x+ 1) + 1)

)
(3.123)

=

√
1− 4

m2

p2

(
8

3
p2 − 5

3
p20 −

2

3
m2 − 4

m2

p2
p20

)
(3.124)
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∫ L2

L1

∆dx =

∫ L2

L1

(m2 − p2x(1− x))dx (3.125)

=

√
1− 4

m2

p2

(
−2

3
m2 +

1

6
p2
)

(3.126)

(notice that we switched p2 = p20 − p2). To get a fully numerical computation, we
need to compute

I = Θ(0, 2, j, 2) =

∫
cos2 α0 cos

2 αjdΩ (3.127)

The cosines of αj are called directional cosines. We have

cosαj =
kj√

k20 + k21 + k22 + k23
(3.128)

so that by definition we have

3∑
i=0

cos2 αj = 1 (3.129)

Since j is fixed, we can assume without loss of generality that j = 1. Using the above
relation we can substitute cos2 α0 by 1−

∑3
i=1 cos

2 αi so that

I =

∫
cos2 α1dΩ︸ ︷︷ ︸

I2

−
∫

cos4 α1dΩ− 2I (3.130)

where we used the fact that the integral of the product of any two different directional
cosines does not depend on which pair we choose, because Euclidean space is isotropic.
In the same way, we can write

I2 =

∫
cos2 α1dΩ =

∫
dΩ− 3I2 = S4 − 3I2 (3.131)

so that

I2 =
S4
4

(3.132)

where S4 is the surface of a n = 4 dimensional sphere. We are therefore reduced to

I =
S4
12
− 1

3

∫
cos4 α1dΩ (3.133)

Now we only have one integral left, and this we can compute directly. In fact, the
sperical surface element in n dimensions in Euclidean space and in hyperspherical
coordinates is given by (we are considering a fixed radius r = 1, since we already
integrated over the radius in the formula where Θ was introduced in the first place)

dΩ = sinn−2(ϕ1) sin
n−3(ϕ2) . . . sin(ϕn−2)dϕ1 . . . dϕn−1 (3.134)
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where ϕ1, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π]. In our case n = 4 and therefore we
have

dΩ = sin2(ω) sin(θ)dωdθdϕ (3.135)

Such an explicit choice of coordinate brakes the symmetry of Euclidean space, since
we are now choosing a preferred axis. In particular, the directional cosine should be
taken with respect to this preferred axis, in the same way in which in three dimension
the only directional cosine is the one taken with respect to the preferential axis, which
in three dimension is the z axis. Therefore we have∫

cos4(ω) sin2(ω) sin(θ)dωdθdϕ =
π2

4
(3.136)

Furthermore, recalling that

Sd =
2π

d
2

Γ(d2)
=⇒ S4 = 2π2 (3.137)

we have

I =
π2

6
− π2

12
=
π2

12
(3.138)

Therefore, the imaginary part of the integral becomes

g2

16πκ2

√
1− 4

m2

p2

{
p20

(
− 5

12
− m2

p2

)
+ p2

(
2

3
− 1

8

)
+m2

(
−1

6
+

1

2

)}
(3.139)

=
g2

16πκ2

√
1− 4

m2

p2

{
p20

(
− 5

12
− m2

p2

)
+

13

24
p2 +

1

3
m2

}
(3.140)

Recalling from eq. (3.43) that ℑΠU (p2) = g2

16π

√
1− 4m

2

p2
we can write

ℑΠ(1)(p2) = ℑΠU (p2)
{
1 +

1

κ2

[
p20

(
− 5

12
− m2

p2

)
+

13

24
p2 +

1

3
m2

]}
(3.141)

where the index (1) just means that this is the amplitude corresponding to the first
possibility of the choice of momenta.

We could perform the same integrals using a hard cutoff instead of dimensional
regularization. In fact, from a principled point of view, we are expanding in powers
of 1/κ, which means that momenta should have a momentum smaller than κ. This
in turn implies that we should not be able to integrate up to infinity in momentum
space when integrating virtual momenta. Of course, the finite part of any integrand
does not depend on the choice of regularization, but limiting ourself to a hard cutoff
makes the approximations used in the expansion in powers of 1/κ explicit at all steps.
In particular, if we assume that our momenta are organized according to the following
relation

p, k ≪ Λ≪ κ (3.142)

where Λ is the cutoff scale, then our expansion in powers of 1/κ is fully justified.
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Therefore, we compute the same integral using a cutoff in momentum space. We
have what follows:

1) ∫
d4k

(2π)4
k20

(k2 +∆)3
(3.143)

If we go to spherical coordinates this integral becomes (using Mathematica)

1

4

S4
(2π)4

∫ Λ

0
dk

k5

(k2 +∆)3
=

1

32π2

[1
4
(−3− 2 log∆)

+
1

4

(
∆(3∆ + 4Λ2)

(∆ + Λ2)2
+ 2 log(∆ + Λ2)

)]
(3.144)

2) ∫
d4k

(2π)4
1

(k2 +∆)3
(3.145)

In this case going to spherical coordinates we have (again with Mathematica)

S4
(2π)4

∫ Λ

0
dk

k3

(k2 +∆)3
=

1

8π2
Λ4

4∆(∆ + Λ2)2
(3.146)

3) ∫
d4k

(2π)4
k2i k

2
j

(k2 +m2)3
i ̸= j (3.147)

To compute this with a cutoff we must proceed as before, and we go in spherical
coordinates. Using the relations ki = |k| cos(αi) (where αi is the angle which
the vector k forms with respect to the i-th axis) we have∫

d4k

(2π)4
k2i k

2
j

(k2 +∆)3
=

1

(2π)4

∫
dΩ cos2 αi cos

2 αj

∫ Λ

0
dk

k7

(k2 +∆)3
(3.148)

We know from eq. (3.138) that the angular integral corresponds to Θ(0, 2, j, 2) =
π2

12 , and the radial integral can be computed explicitly obtaining∫ Λ

0
dk

k7

(k2 +∆)3
=

1

4
∆(5 + 6 log∆)

+
−5∆3 − 4∆2Λ2 + 4∆Λ4 + 2Λ6 − 6∆(∆ + Λ2)2 log(∆ + Λ2)

4(∆ + Λ2)2

(3.149)

As in the dimensional regularization case, the divergencies can be absorbed in the
counterterms, but here we are only interested in the parts which can contribute an
imaginary part to the integral, which are once again the logarithms. Notice here
that the logarithms of the form log(∆ + Λ2) cannot contribute any immaginary part
because, although ∆ can be negative, the sum ∆ + Λ2 cannot (Λ2 is positive and
very large). Therefore, limiting ourselves to the logarithms, the contribution from the
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above integrals become respectively∫
d4k

(2π)4
k20

(k2 +∆)3
→ − 1

4(4π)2
log∆ (3.150)

∫
d4k

(2π)4
1

(k2 +∆)3
→ 0 (3.151)

2

∫
d4k

(2π)4
k20k

2

(k2 +m2)3
→ π2

12

1

(2π)4
9∆ log∆ (3.152)

We know from the previous equations, and in particular from eq. (3.121) and (3.138),
that these are the same coefficients as before. We obtain therefore the same imaginary
part, as was expected.

We now pass to the second possibility, namely

iΠ(p2) =

k

p⊕ S(k)

iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ

i

(p⊕ S(k))2 −m2 + iϵ
(3.153)

Every consideration goes exactly as before, but this time we need to compute

∆shif+Wick
1 [(S(k)⊕ p)2], ∆shif+Wick

2 [(S(k)⊕ p)2] (3.154)

In fact, contrary to the previous case, this time there is a 1/κ contribution to the
expansion of the denominator. The explicit expression is given by

iΠ(p2) = iΠU (p2) (3.155)

− g2

κ

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆1[(p⊕ S(k))2]
[(p− k)2 −m2 + iϵ]2

(3.156)

− g2

κ2

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆2[(p⊕ S(k))2]
[(p− k)2 −m2 + iϵ]2

(3.157)

We follow the same steps as before. We have

∆1[(p⊕ S(k))2] = 2(k− p)(p0k− k0p) (3.158)

∆2[(p⊕ S(k))2] =
(
k30(−p0) + k20

(
2p20 − 2k2 + 2kp− p2

)
− k0p0

(
p20 − k2 + p2

)
− p20k(k− 2p)

)
(3.159)
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Since the denominators are always the same as before, we can treat them in the same
way, obtaining

− g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

1 [(p⊕ S(k))2]
[k2 −∆(x) + iϵ]3

(3.160)

− g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

2 [(p⊕ S(k))2]
[k2 −∆(x) + iϵ]3

(3.161)

The shift is again k 7→ k + p(1− x) and the numerators become

∆shift
1 [(p⊕ S(k))2] = 2(k+ p(1− x)− p)(p0(k+ p(1− x))

− p(k0 + p0(1− x))) (3.162)

∆shift
2 [(p⊕ S(k))2]

= (k0 + p0(1− x))2
(
2p20 − 2(k+ p(1− x))2 + 2p(k+ p(1− x))− p2

)
− p0(k0 + p0(1− x))

(
p20 − (k+ p(1− x))2 + p2

)
− p0(k0 + p0(1− x))3 − p20(k+ p(1− x))(k+ p(1− x)− 2p) (3.163)

We can now perform the Wick rotation. The deformed part of the amplitude becomes

i
g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

1 [(p⊕ S(k))2]
[k2 +∆(x)]3

(3.164)

+ i
g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

2 [(p⊕ S(k))2]
[k2 +∆(x)]3

(3.165)

Notice that the iϵ has gone away and there is a global sign change coming from
(−k2 −∆)3 = −(k2 +∆)3. The additional i comes from the metric. We also remove
from both ∆shift+Wick

1 [(p⊕S(k))2] and ∆shift+Wick
2 [(p⊕S(k))2] the irrelevant factors

(proportional to an odd power component of k), and using the isotropy of Euclidean
space. We have

∆shift+Wick
1 [(p⊕ S(k))2] = +6p0k

2
0 (3.166)

∆shift+Wick
2 [(p⊕ S(k))2]

= k20[p
2
0(−6x2 + 6x− 5) + p2(2x2 − 2x+ 1)] + 2k20k

2

+ p40x
3 − p40x2 − 2p20p

2x4 + 5p20p
2x3 − 5p20p

2x2 + 2p20p
2x (3.167)

We now use the same integrals as before in the cutoff regularization, eq. (3.150),
(3.151), (3.152). Applying these we have

i
g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift=Wick

1 [(p⊕ S(k))2]
[k2 +∆(x)]3

= i
g2

κ

∫ 1

0
dx6p0

∫
d4k

(2π)4
k20

[k2 +∆(x)]3
(3.168)

= −ig
2

κ

1

64π2

∫ L2

L1

dx 6p0 log
∆

|∆0|
(3.169)
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i
g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

2 [(p⊕ S(k))2]
[k2 +∆(x)]3

(3.170)

= 0− 1

64π2
i
g2

κ2

∫ L2

L1

dx[p20(−6x2 + 6x− 5) + p2(2x2 − 2x+ 1)] log
∆

|∆0|
(3.171)

+ i
π2

12

9

(2π)4
g2

κ2

∫ L2

L1

dx∆ log
∆

|∆0|
(3.172)

This of course means that

Π(2)(p2) = ΠU (p2)− g2

κ

1

64π2

∫ L2

L1

dx 6p0 log
∆

|∆0|
(3.173)

− 1

64π2
g2

κ2

∫ L2

L1

dx[p20(−6x2 + 6x− 5) + p2(2x2 − 2x+ 1)] log
∆

|∆0|
(3.174)

+
3

64π2
g2

κ2

∫ L2

L1

dx∆ log
∆

|∆0|
(3.175)

Once again, each logarithm will contribute −π to the imaginary part, and computing
the integral explicitly we end up with

ℑΠ(2)(p2) = ℑΠU (p2) + g2

πκ

3p0
32

√
1− 4

m2

p2

+
g2

16πκ2

√
1− 4

m2

p2

(
p0

(
−1

6
+

2

3

m2

p2

)
+

1

24
p2 +

1

2
m2

)
(3.176)

Recalling from eq. (3.43) that ℑΠU (p2) = g2

16π

√
1− 4m

2

p2
we finally obtain

ℑΠ(2)(p2) = ℑΠU (p2)
{
1 +

1

κ

(
3

2
p0

)
+

1

κ2

[
p0

(
−1

6
+

2

3

m2

p2

)
+

1

24
p2 +

1

2
m2

]}
(3.177)

We now pass to the third option. In this case we have

iΠ(p2) =

S(k)

k ⊕ p

iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ

i

(k ⊕ p)2 −m2 + iϵ
(3.178)

which expanded to the first two non-trivial orders in powers of 1/κ is

iΠ(p2) = iΠU (p2) (3.179)

− g2

κ

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆1[(k ⊕ p)2]
[(p+ k)2 −m2 + iϵ]2

(3.180)
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− g2

κ2

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆2[(k ⊕ p)2]
[(p+ k)2 −m2 + iϵ]2

(3.181)

Notice the presence of (p + k)2 in the denominator. This has no impact on the
non-deformed amplitude, because we can simply switch k 7→ −k, the metric remains
invariant as well as the integration domain, and we recover the usual integral. In the
deformed terms, however, we have to keep in mind that we must send k 7→ −k also
in the numerator before doing the Feynman trick, so that we can once again use the
same steps af before.

Apart from this, every consideration goes exactly as before, and this time we need
to compute

∆shif+Wick
1 [(k ⊕ p)2], ∆shif+Wick

2 [(k ⊕ p)2] (3.182)

once again. We have

∆1[(k ⊕ p)2] = 2k(k0p− p0k) (3.183)

∆2[(k ⊕ p)2] = (k0 + p0)
(
p0
(
k0(k0 + p0) + k2

)
− 2k0kp− k0p2

)
− p20k2 + k

(
p2 − p20

)
(k+ p) +

k2p2

3
(3.184)

where we used the identity

(kp)2 =
∑
i,j

kip
ikjp

j 7→
∑
i

k2
i (p

i)2 7→ k20p
2 7→ 1

3
k2p2. (3.185)

We now send k 7→ −k. It is obvious that ∆1[(k ⊕ p)2] is not affected by such a
change. On the other hand ∆2[(k ⊕ p)2] is modified. We have

∆1[(k ⊕ p)2]new = 2k(k0p− p0k) (3.186)

∆2[(k ⊕ p)2]new = (p0 − k0)
(
p0
(
k2 − k0(p0 − k0)

)
− 2k0kp+ k0p

2
)

− p20k2 − k
(
p2 − p20

)
(p− k) +

k2p2

3
(3.187)

Since now the denominators are again the same as before, we can treat them in the
same way, obtaining

− g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

1 [(k ⊕ p)2]new
[k2 −∆(x) + iϵ]3

(3.188)

− g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

2 [(k ⊕ p)2]new
[k2 −∆(x) + iϵ]3

(3.189)

The shift is again k 7→ k+ p(1− x), and performing the Wick rotation the amplitude
becomes

i
g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

1 [(k ⊕ p)2]new
[k2 +∆(x) + iϵ]3

+ i
g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

2 [(k ⊕ p)2]new
[k2 +∆(x) + iϵ]3

(3.190)
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The numerators are

∆shift+Wick
1 [(k ⊕ p)2]new = −2p0k2 (3.191)

∆shift+Wick
2 [(k ⊕ p)2]new = −3k20p20x+ k20p

2
0 + 2k20p

2x− k20p2

+ p40x
3 − p40x2 + p20k

2x− 2p20k
2

− p20p2x3 − p20p2x2 + 3p20p
2x− p20p2 +

4k2p2

3

+
4p4x2

3
− 5p4x

3
+

p4

3
(3.192)

Once again, being in the Eulidean space, we can switch any isolated k2 with 3k20,
obtaining

∆shift+Wick
1 [(k ⊕ p)2]new = −6p0k20 (3.193)

∆shift+Wick
2 [(k ⊕ p)2]new = k20[−5p20 + p2(2x+ 3)]

+ p40x
3 − p40x2 − p20p2x3 − p20p2x2 + 3p20p

2x− p20p2

+
4p4x2

3
− 5p4x

3
+

p4

3
(3.194)

Notice that the 1/κ contribution is numerically equivalent to the previous case, but
with a sign difference, so we don’t need to compute it. For what remains, since we
are only interested in the logarithmic contribution, using eq. (3.150), (3.151), (3.152),
since each log contributes a −π, and since∫ L2

L1

dx[−5p20 + p2(2x+ 3)] =

√
1− 4

m2

p2
(
p20 + 4p2

)
(3.195)

we end up with

ℑΠ(3) = ℑΠU (p2)− g2

πκ

√
1− 4

m2

p2
3p0
32

+
g2

64πκ2

√
1− 4

m2

p2
(
p20 + 4p2

)
(3.196)

Recalling from eq. (3.43) that ℑΠU (p2) = g2

16π

√
1− 4m

2

p2
we finally obtain

ℑΠ(3) = ℑΠU (p2)
[
1− 1

κ

(
3

2
p0

)
+

1

κ2

(
1

4
p20 + p2

)]
(3.197)

Finally, we consider the last graph.

iΠ(p2) =

S(k)

p⊕ k
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iΠ(p2) = (ig)2
∫

d4k

(2π)4
i

k2 −m2 + iϵ

i

(p⊕ k)2 −m2 + iϵ
(3.198)

The computations for this graph are exactly the same with the previous with k ↔ p
up to the shift, so we have

iΠ(p2) = iΠU (p2) (3.199)

− g2

κ

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆1[(p⊕ k)2]
[(p+ k)2 −m2 + iϵ]2

(3.200)

− g2

κ2

∫
d4k

(2π)4
1

k2 −m2 + iϵ

∆2[(p⊕ k)2]
[(p+ k)2 −m2 + iϵ]2

(3.201)

and

∆1[(k ⊕ p)2]new = −2p(k0p− p0k) (3.202)

∆2[(k ⊕ p)2]new = −p
(
k2 − k20

)
(k− p)− k20p2

+ (k0 − p0)
(
k0
(
p2 − p0(k0 − p0)

)
+ p0k

2 − 2p0kp
)
+

k2p2

3
(3.203)

Since now the denominators are again the same as before, we can treat them in the
same way, obtaining

− g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

1 [(k ⊕ p)2]new
[k2 −∆(x) + iϵ]3

(3.204)

− g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift

2 [(k ⊕ p)2]new
[k2 −∆(x) + iϵ]3

(3.205)

The shift is again k 7→ k + p(1 − x), and performing then the Wick rotations the
amplitude becomes

i
g2

κ

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

1 [(p⊕ k)2]new
[k2 +∆(x) + iϵ]3

(3.206)

+ i
g2

κ2

∫ 1

0
dx

∫
d4k

(2π)4
∆shift+Wick

2 [(p⊕ k)2]new
[k2 +∆(x) + iϵ]3

(3.207)

and the numerators (after the same simplifications) become

∆shift+Wick
1 [(k ⊕ p)2]new = 0 (3.208)

∆shift+Wick
2 [(k ⊕ p)2]new = k20[p

2
0(−6x+ 1) + p2(10x− 5)]

+ p40x
3 − p40x2 − 2p20p

2x3 + 2p20p
2x2 + p20p

2x

− p20p2 + p4x3 − 5p4x2

3
+

p4x

3
+

p4

3
(3.209)

Recalling once more eq. (3.150), (3.151), (3.152), since each log contributes a −π and
since ∫ L2

L1

dx[p20(−6x+ 1) + p2(10x− 5)] = 2

√
1− 4

m2

p2
p20 (3.210)
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we end up with

ℑΠ(4)(p2) = ℑΠU (p2) + g2

πκ2

√
1− 4

m2

p2

(
1

32
p0

)
(3.211)

Recalling from eq. (3.43) that ℑΠU (p2) = g2

16π

√
1− 4m

2

p2
we finally obtain

ℑΠ(4) = ℑΠU (p2)
[
1 +

1

κ2

(
1

2
p20

)]
(3.212)

3.4.1.1 Summary of the individual diagrams and total 1-loop amplitude

We considered the following diagrams

iΠ(1)(p2) =

k

S(k)⊕ p

iΠ(2)(p2) =

k

p⊕ S(k)

iΠ(3)(p2) =

S(k)

k ⊕ p

iΠ(4)(p2) =

S(k)

p⊕ k

Each of them gives the imaginary part to the amplitude respectively in eq. (3.141),
(3.177), (3.197), (3.212). To get the complete contribution, we just sum the four
different results

ℑΠTOT (p2) = 1

4

(
ℑΠ(1)(p2) + ℑΠ(2)(p2) + ℑΠ(3)(p2) + ℑΠ(4)(p2)

)
(3.213)

where the factor 1/4 is necessary to get the correct κ→∞ limit. We get

ℑΠTOT (p2) = ℑΠU (p2)
{
1− 1

κ2

[
p20

(
1

48
+

1

12

m2

p2

)
− p2 19

48
− 5

24
m2

]}
(3.214)
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Notice the remarkable fact that, although some of the diagrams contain a contribution
proportional to 1/κ, this contribution goes away after we sum all the contributions
from every diagram, leaving a leading contribution proportional to 1/κ2.

Notice the important point that we chose our initial particle to have momentum
S(p), but we may just as well have decided to take a particle with initial momentum
−p. In this case momentum conservation would amount to

(−p)⊕ p2 ⊕ p3 (3.215)

which is immediately satisfied if p2 ⊕ p3 = S(−p) (in order to avoid confusion, it is
understood that the equivalent computations using the momenta p∗ would amount to
having a particle with momentum p∗, so that p2⊕p3 = S(p∗)). It is therefore sufficient
to switch every p in eq. (3.45), (3.46), (3.47), (3.48) with S(−p) and perform the same
computations again. Since we are expanding up to second order in 1/κ, the final result
will be the same as before plus some additional contribution. Since we have already
shown in detail the previous computations, here we limit ourselves to present the
additional contribution to the numerator of the sum of the four diagrams after all
the shifts, Wick rotation, and Euclidean simplifications have been performed. We call
δ∆shift+Wick

2 the additional contribution to the sum of the numerators. We have

δ∆shift+Wick
2 =

8k20p
2

κ2
+

8p2
(
p20
(
−x2 + x− 2

)
+ p2(x− 1)x

)
κ2

(3.216)

where we included that 1/κ powers to show that also in this case we have no 1/κ
contribution after summing all four diagrams contributions. Notice that, because of
eq. (3.151), the term with no k in the numerator does not contribute to the imaginary
part, since it does not generate a log term upon integrating over k. The only term
which contributes is the term 8k20p

2

κ2
, and we know from eq. (3.150) that it contributes

to the total amplitude as

−8p2 1

64π2
log∆ (3.217)

and since the log contributes as −π to the imaginary part we only need to compute
the quantity

−g
2

κ2
1

64π

∫ L2

L1

8p2dx = −ℑΠU (p2)
(
2
p20
κ2
− 2

p2

κ2

)
. (3.218)

In other words, calling ℑΠS(p) the total amplitude ℑΠTOT (p2) in eq. (3.214) cor-
responding to an initial on-shell particle of momentum S(p), and calling ℑΠ−p the
equivalent quantity with momentum −p, we have

ℑΠS(p) −ℑΠ−p = ℑΠU (p2)
(
2
p20
κ2
− 2

p2

κ2

)
. (3.219)

The quantity p2

κ2
=

m2
ψ

κ2
is invariant, but the quantity p20

κ2
is sensible to the particles

energy, which means that this difference can be experimentally highlighted by going
to higher energies.
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3.5 Mass distribution width

In section 2.18 in chapter 2 we addressed possible phenomenological consequences of
the deformation of CPT symmetry, but we did not consider for the moment possible
contributions coming from the higher order corrections to the propagator of the de-
caying particle. Such corrections would induce a widening of the mass distribution,
and such contributions need to be taken into account.

More formally, given a mass distribution function ω(m;M,Γ), where m is the
resonant mass, and with mean mass M and decay width Γ, one can describe the time
and momentum dependent decay amplitude with the expression

a(t,p) =

∫ ∞

−∞
dmω(m;M,Γ) e−it

√
m2+p2

. (3.220)

The decay probability is then given by the usual formula P = |a(t,p)|2. Since we are
interested in ultra-relativistic particles (we need high momenta and energies in order
to counterbalance the large value of κ in the denominator), we consider the relativistic
Breit-Wigner distribution

ω(m;M,Γ) =
f(M,Γ)

(m2 −M2)2 +M2Γ2
, (3.221)

f(M,Γ) =
2
√
2

π

MΓ
√
M2(M2 + Γ2)[

M2 +
√
M2(M2 + Γ2)

]1/2 . (3.222)

Notice that f(M,Γ) is independent of m. Since we want to understand the effect
of deformation, we now switch the energy E =

√
m2 + p2 at the exponent for its

antipode S(E) (see eq. (2.533)). Furthermore, one can show that

a(t,p) =

∫
dm

f(M,Γ)

(m2 −M2)2 +M2Γ2
e−it(
√
m2+p2−p2/κ)

= e−it(
√
M2+p2+iMΓ−p2/κ). (3.223)

The new, corrected decay width Γ̃ (which takes into consideration the non-trivial mass
distribution width) can be now computed by taking into account the real part of the
exponent in eq. (3.223) (which will describe the exponential decay of the amplitude).
However, the only effect of deformation comes into play in the term −itp

2

κ , i.e. in
the imaginary part, so no correction to Γ can be obtained from a non-trivial mass
distribution width. Indeed, one explicitly has

Γ̃ = 2ℑ
(√

M2 + p2 + iMΓ− p2

κ

)
=
√
2
[√

(M2 + p2)2 +M2Γ2 − (M2 + Γ2)
]1/2

. (3.224)

so that the only corrections are the same that would be present in the canonical,
non-deformed context.

3.6 Summary

In this work, we have presented our model of scalar field theory, and analysed its
features and the possible phenomenological consequences coming from our results.
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We first introduced the framework of κ-Minkowski spacetime and κ-Poincaré Hopf
algebra, which are the fundamental ingredients for any other construction. Before
going to the complex scalar field, we tackled the interesting problem of the boost of
a two-particle state system. The determination of the finite boost of a two-particle
system allows us to draw interesting phenomenological consequences for any type of
particle, since the results are purely of kinematical nature.

We then passed to the complex scalar field. After some preliminary mathematical
work concerning the Weyl maps, the action of derivatives on star products, and the
integration-by-parts relations, we introduced the complex scalar field action and com-
puted the EoM (which turned out to be the canonical Klein-Gordon equations). This
allowed us to derive an explicit formula for the on-shel fields ϕ, ϕ†. Furthermore, using
the surface terms obtained during the integration-by-parts, we obtained the Noether
charges coming from the continuous translation symmetry of the action.

To compute the remaining Noether charges we used the symplectic form, which
was also important for the fact that it allowed us to obtain the creation/annihilation
operators commutation relation. Together with the charges, these allowed us to check
that the algebra satisfied by the charges is the canonical Poincaré algebra. Notice
that, despite the fact that the EoM are the canonical Klein-Gordon equations, and
the fact that the charges satisfy the canonical Poincaré algebra, there are still effect
of deformation on single-particle states which are made manifest by looking at the
non-trivial interaction between discrete and continuous transformations. Here we
explicitly checked that, in the deformed case, we have [Ni, C] ̸= 0. Furthermore, κ-
deformation affects in non-trivial way the features vacuum expectation values of fields.
In this work, we discussed in detail Greenberg’s theorem, showing that it does not
hold in general in the κ-deformed context. We then explored some phenomenological
consequences of the fact that [Ni, C] ̸= 0, by boosting a particle and an antiparticle,
both originally at rest.

We then proceeded to compute the propagator and the imaginary part of the 1-loop
correction to it. To do so, we exploit the path integral formalism for the determination
of the tree-level propagation, and we assume a deformed conservation of momenta
at each vertex. Because of this, a single diagram in the non-deformed context is
translated into four different diagrams in the deformed context. We computed all of
them for initial momentum of a particle given by S(p) and −p, obtaining a difference
in the imaginary part proportional to p20/κ2. We conclude with some comments on
the relevance of a non-trivial mass distribution width on the decay times of boosted
particles and antiparticles.
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