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Abstract
Properties of Hyperon Decays

Nora Salone

Hyperons – bound states made of the three lightest quark flavors – play a significant role in
our quest to understand the composition of matter. At low energies, where perturbative Quan-
tum Chromodynamics breaks down, baryon interactions are dominated by forces keeping the
quarks confined within the hadronic boundary. Hyperons, owing to their similarities to pro-
tons and neutrons, offer complementary information on the structure of matter, which can be
probed via electromagnetic interaction. On another note, the observed baryonic asymmetry in
the Universe has not been explained by the CP violation mechanism assumed in the Standard
Model. Strange baryons offer a unique insight into new CP violation effects investigated in
this thesis through weak nonleptonic decays.

At electron–positron colliders, hyperon–antihyperon pairs are copiously produced in vec-
tor charmonia decays in an inherently polarized state. We study the case where both baryons
transition to fully hadronic final states, where the interference of the parity-conserving and
parity-violating amplitudes results in an anisotropic distribution of the daughter particles.
The related decay asymmetry parameters and the polarization observables can be extracted
from the joint angular distribution of the final decay products. Using the spin-correlation
terms within the pair, the baryon and antibaryon asymmetries are simultaneously measured,
making these observables excellent candidates for testing CP symmetry.

This work presents a feasibility study of CP-violation tests for hyperon pairs produced in
an electron–positron collider with a longitudinally polarized electron beam. The information
from the production process with this new assumption is encoded in a “production matrix”
and successively modified to account for the nonleptonic decays of the pair. Uncertainties
of the CP-violation observables built on the decay asymmetries are parametrized in terms
of the spin-polarization observables and extracted using an asymptotic maximum likelihood
method. It is shown how the uncertainties are reduced in the presence of the beam polariza-
tion, identifying hyperon nonleptonic decays as a CP-violation source complementary to the
kaon sector.

The spin-entanglement and polarization properties of the produced hyperons are further
studied in the semileptonic decays of the pair. The same modular framework is used to derive
the “decay matrix” describing a baryon semileptonic transition in a general way. Parameters
related to the semileptonic form factors are defined, and their statistical uncertainties are also
extracted using the asymptotic maximum likelihood method. The uncertainties depend on the
initial baryon polarization and the spin-correlation properties within the produced pair. This
dependence on the spin-polarization observables is shown, and the impact of the variables is
compared for different semileptonic decays. In parallel, the modular framework is applied to
radiative and Dalitz decays of spin-1/2 baryons to obtain their decay matrices.

HTTP://WWW.NCBJ.GOV.PL
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Streszczenie
Properties of Hyperon Decays

Nora Salone

Hiperony – hadrony zbudowane z trzech najlżejszych kwarków – odgrywają ważną rolę w
naszych próbach zrozumienia struktury materii. Przy niskich energiach nie można opisać
oddziaływań silnych przy pomocy rachunku zaburzeń i są one zdominowane przez siły utrzy-
mujące kwarki wewnątrz hadronów. Hiperony, zewzględu na ich podobieństwo do protonów i
neutronów, mogą uzupełnić naszą wiedzę na temat oddziaływań elektromagnetycznych z ma-
terią. Dodatkowo, słabe rozpady hiperonów dają wgląd w mechanizmy naruszenia symetrii
CP. Jest to niesłychanie ważne, ponieważ mechanizm łamania CP w Modelu Standardowym
jest niewystarczający do wyjaśnienia obserwowanej asymetrii pomiędzy materią i antyma-
terią we Wszechświecie.

Zderzacze elektronowo-pozytonowych umożliwiają produkcję spinowo spolaryzowanych
par hiperon-antyhiperon z dużą częstościąw rozpadach charmonium. W słabych hadronowych
rozpadach hiperonów interferencja pomiędzy amplitudami dla przejścia zachowującego i dla
przejścia naruszającego parzystość prowadzi do niejednorodnego rozkładu cząstek wtórnych.
Te rozkłady są opisywane poprzez parametr asymetrii rozpadu oraz parametr rotacji wek-
tora polaryzacji. Polaryzacja oraz korelacja pomiędzy spinami w parze hiperon-antyhiperon
pozwala na precyzyjne testy symetrii CP w jednym eksperymencie.

W niniejszej pracy zbadano możliwość przeprowadzenia testów naruszenia CP dla par
hiperon-antyhiperon produkowanych w zderzaczach elektron-pozyton ze spolaryzowaną pod-
łużnie wiązką elektronów. Informacja o stanie spinowym w procesie produkcji jest reprezen-
towana poprzez “macierz produkcji” która jest następnie mnożna poprzez macierze reprezen-
tujące rozpady hiperonu i anty hiperonu.

Błędy parametrów opisujących naruszenie symetrii CP zbudowanychw oparciu o parame-
try rozpadu słabego są opisane wykorzystując asymptotyczne metody rachunku prawdopodo-
bieństwa. Pozwoliło to na ustaleniu jak błędy statystyczne zmieniają się w zależności od po-
laryzacji wiązki.

Polaryzacja i korelacje spinowe mogą być także wykorzystane w badaniach rozpadów
półleptonowych. Do opisu procesu w podejściu modułowym konieczne jest wyprowadzenia
odpowiednich “macierzy rozpadu” zależnych od parametrów związanych z form faktorami
półleptonowymi. Niepewności pomiarowe tych parametrów wyznaczyliśmy także przy uży-
ciu asymptotycznych metod statystycznych. Niepewności te zależą od początkowej polaryza-
cji barionów i od korelacji spinowych pomiędzy hiperonem i antyhiperonem.

Wyznaczyliśmy zależność błędów od tych zmiennych dla różnych rozpadów półleptono-
wych. Ponadto wyprowadziliśmy w podejściu modułowym ogólne wzory opisujące rozpady
radiacyjne i rozpady Dalitza barionów o spinie 1/2.

HTTP://WWW.NCBJ.GOV.PL
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1
Hyperon phenomenology

In this chapter, I give an introductory account of the main topic of this work, the hyperons.
The following presentation assumes the reader has a basic knowledge of particle physics and
related mathematical concepts from group theory and quantum field theory. For example, the
description of special unitary group, renormalization, or hadronic state will not be given: for
details, see e.g. Refs. [1–3].

Most of the visible mass in our Universe is composed of stable nuclei, which in turn
are composed of nucleons – bound states of quarks – i.e. protons and neutrons. The Stan-
dard Model (SM) describes quark interactions in different energy regimes, understood to a
varying degree. In particular, to investigate the structure of matter it is vital to understand
hadronic interactions in the regime of confinement, where perturbative Quantum Chromody-
namics (QCD) breaks down. Furthermore, the experimental evidence of baryonic asymmetry
in our Universe is not fully accounted for by the Charge-conjugation and Parity (CP) violation
mechanism formulated in the SM.

Hyperon decays offer a unique insight into a better understanding of the formation of mat-
ter. On the one hand, neglecting the mass difference between the three lightest quarks endows
QCDwith an approximate SU(3) flavor symmetry. This implies that hyperons can be obtained
from nucleons via the quark flavor replacement D, 3 ↔ B. The concept of flavor is briefly
presented in Section 1.1.1, and is followed by a categorization of composite particles based
on their quark flavor content. Section 1.1.2 presents an overview of the strong interaction and
other forces in which quarks participate.

The close relation between hyperons and the components of nuclei makes them ideal can-
didates to supply complementary information about the structure of matter. This is achieved
by the extraction of space-like form factors, in processes where baryons are probed via elec-
tromagnetic (EM) interaction. Additional insights can be extracted from hyperon time-like
form factors (FFs), investigated via electron–positron annihilation into hyperon–antihyperon
pairs. When the complex-valued time-like FFs overlap, the result is an inherent polarization
of the produced particles. Hyperon FFs, as well as their relation to baryon polarization in
the production process, are illustrated in more detail in Section 1.1.3 and in the first part of
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Section 1.2.

On the other hand, the polarization is measured via the anisotropic distribution of the
final-state particles, via the “self-analyzing” hyperon nonleptonic decays. The resulting decay
asymmetry can be defined for both particle and antiparticle and is therefore used to define tests
of direct CP violation in the hyperon sector (see Sections 1.3.1, 1.3.2).

1.1 Strange baryons and their interactions

1.1.1 Quark model

Many studies about the “strange” particles have been conducted since their first detection in
1947 (Fig. 1.1). The findings by Rochester and Butler [4] were quickly followed by Powell

Figure 1.1: Early cloud chamber picture of strange particle tracks, where
track a (later identified with kaon  +) decays into the dilepton `+ + a` (track

b) [4].

[5] and Anderson [6] in observing an unexpected “V” shape in the spatial arrangement of
the decay products. We now identify the lighter particles with the kaons and the heavier
ones with the hyperons. Later experiments highlighted a peculiar behavior in these particles:
they appeared to be produced in very fast processes, with time scales around 10−23 s, and
to decay with longer lifetimes in the range of 10−10 s – as remarked by Pais [7]. Gell-Mann
[8] along with Nakano and Nishima [9] developed this “strangeness” into the eponymous
quantum number S. To be compatible with experimental observations, the strange particles
– always produced in pairs – were assigned opposite values of S, while every other known
baryon or lepton had ( = 0.
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At that time, an SU(2) isospin symmetry, based on the similar features of the neutron
and the proton, had already been proposed. The strangeness quantum number was included
in this pattern, generalizing it to a SU(3) flavor symmetry. These concepts were the basis
for the Eightfold Way by Gell-Mann and Ne’eman [10–12], which finally developed into the
quark model by Zweig [13] and, independently, by Gell-Mann [14]. This provided a theory
that classified all known hadrons as rearrangements of three elementary “quarks” via their
flavor label: u-up, d-down, and s-strange. At present, we know that quarks come in three
additional flavors, c-charm, b-bottom, and t-top; given the topic of this thesis, I will restrict
the discussion to the three lightest quark flavors.

Historically, themotivation behind the SU(2) symmetry lies in the phenomenological find-
ings about the nuclear force, which appeared to be approximately independent of the electric
charge. Due to their similar masses, the proton and neutron were thought of as components
of an � = 1/2 isospin doublet, i.e. “spin-up” (�3 = 1/2) and “spin-down” (�3 = −1/2) states
of the nucleon in analogy to the spin-1/2 algebra [2]. The inclusion of an additional quark
flavor results in the aforementioned SU(3) group structure, where the isospin doublet role is
assigned to u and d, while s is an isospin singlet of �3 = 0.

In group theory, one can identify a subset of simultaneously diagonalizable generators
of a group, which may be represented by a set of matrices. Simultaneous eigenstates may
be arranged in an irreducible representation of the group, i.e. in a group of matrices that
cannot be “reduced” to a block-diagonal shape. These eigenstates can be displayed in a weight
diagram, label of a given representation, of dimension equal to the number of commuting
generators. In the case of SU(3), the weight diagrams are planar, since there are two such
generators: the hypercharge Y and the third component of isospin �3. They are defined as

. = B + ( =
#D + #3 − 2#B

3
, �3 = & − .

2
=
#D − #3

2
. (1.1)

The above combinations of #flavor reflect the isospin assignments to u, d and s. In addition, �3
and Y are linked to the electrical charge Q, baryon numberB and strangeness S. Quark electric
charges are fractional, distributed in a way that results in a net integer charge for any hadron.
S is assigned to be ( = −1 for any s quark present, and ( = 1 for any B̄. It is conventional
to attribute B = 1 to any baryon, and B = −1 to any antibaryon: since these are @@@ bound
states, it follows that any (anti)quark has B = (−)1/3. This prescription indicates whether a
given particle is a baryon. For example, bound states of @@̄, the so-called mesons, have baryon
number B = 0 = 1/3 − 1/3; the same goes for any non-quark lepton (electrons, neutrinos,
etc.).

Before presenting the relevant quark combinations following from the simple three-flavor
quark model, some remarks about spin and parity are in order, as they will serve as additional
labels of the particle states. For any bound state, the total angular momentum ®� is from the
composition of orbital angular momentum ®! and spin ®(. Quarks are spin-1/2 particles obeying
the Fermi statistics. Therefore, the possible spin configurations for ground-state mesons and
baryons are � = 0 and � = 1/2, 3/2, respectively. For completeness, I also include the vector
meson resonances of � = 1.
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These states may also be categorized using their behavior under the parity transforma-
tion P, the inversion of the spatial coordinates. Conventionally, the parity eigenvalues for the
relevant quarks are

%D ≡ %3 ≡ %B = 1 . (1.2)

Under such a prescription, the parity assignments for the lowest-lying mesons and baryons
are

%meson = %@%@̄ (−1)!12 = −1, %baryon = %@%@%@ (−1)!12 (−1)!3 = 1 (1.3)

with inter-quark orbital angular momenta !12 = !3 = 0. Finally, some nomenclature: under
a Lorentz transformation, a spin-1 particle behaves like a Lorentz vector, hence the name. A
spin-0 particle is described by a Lorentz-invariant structure, hence it is called scalar; if its
intrinsic parity is negative, it is a pseudoscalar.

The lightest mesons made of D, 3, and B quarks may be organized into the �% = 0− pseu-
doscalar and �% = 1− vector nonets according to their minimal quark content and quantum
numbers, depicted in Fig. 1.2. A similar diagram may be obtained for the three-flavor @@@

-1 -1/2 0 1/2 1 �3

 0  +

c−

 −
 ̄0

c+
c0 [

[′

-1 -1/2 0 1/2 1

-1

0

1

�3

.

 ∗0  ∗+

d−

 ∗−
 ̄∗0

d+
d0

l

q

Figure 1.2: Weight diagrams for the pseudoscalar (left) and vector (right)
meson nonets, in terms of isospin �3 and hypercharge Y.

configuration: the resulting particles are organized into the �% = 1
2
+ baryon octet in Fig. 1.3.

-1 -1/2 0 1/2 1

-1

0

1

�3

. = B + (
= ?

Σ−

Ξ−
Ξ0

Σ+Σ0Λ

Figure 1.3: Weight diagram for the �% = 1
2
+ baryon octet.
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As quarks are fermions, they must obey the Pauli exclusion principle [15] also within the
confinements of baryons, and be described by a totally antisymmetric wavefunction: this must
be true for any quark flavor combination. In principle, Gell-Mann and Zweig [13] predicted
baryons of equal-flavor quarks: these states are naturally symmetric under (* (3)flavor. In
addition, any ground state, i.e. lowest-lying ! = 0 state, would also be symmetric under
spatial inversion. This implies that a ground-state baryon cannot have quarks in a spin-aligned
configuration, i.e. with total spin � = 3

2 . This conclusion was challenged by the discovery
of the Δ++(DDD) resonance in proton-pion scattering [6], and of the triply-strange Ω− (BBB)
state [16]. These same-flavor ground-state baryons with spin-parity 3

2
+ seemed to be totally

symmetric under the exchange of any two quarks.

The solution proposed shortly thereafter [17–19] addressed the apparent violation of the
Pauli principle and was also the reason behind the naming of Quantum “Chromo” Dynamics:
the color charge. Each quark possesses a distinct color charge, r-red, b-blue, or g-green
– the combination of which gives white, i.e. a colorless hadron. A proper antisymmetric
combination of the three color charges, included in the total wavefunction, restores the correct
fermionic statistics of baryons. A visual representation of the lowest-lying spin- 3

2
+ baryon

decuplet, including the mentioned Δ++ and Ω−, is presented in Fig. 1.4.

-3/2 -1 -1/2 0 1/2 1 3/2

-2

-1

0

1

�3

. = B + (
Δ− Δ0 Δ+ Δ++

Σ∗−
Σ∗0

Σ∗+

Ξ∗−
Ξ∗0

Ω−

Figure 1.4: Weight diagram for the �% = 3
2
+ baryon decuplet.

1.1.2 The Standard Model

The study of hyperons is motivated by our inability to directly observe interactions within
and between composite particles like the strange baryons. We understand the elementary
components of hadrons and their dynamics as asymptotically free particles, i.e. in the higher
region of the energy spectrum. However, the same level of insight has not been reached for
the mutual interaction of quark bound states at lower energies. In this work, hyperons will be
studied in the low-energy regime, irrespective of the underlying quark dynamics: however, it
is still worthwhile to present the theories governing quark–quark interactions. For more detail,
I refer to Refs. [3, 20], and many other introductory textbooks on quantum field theory.
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The previous section includes some examples of how the constituent quarks may be com-
bined to form hadronic structures. In addition to u, d, s, quarks may come in three heavier
flavors: as a whole, they are arranged in “generations” according to Fig. 1.5. Within the

three generations of matter
(fermions)

I II III

interactions / forces
(bosons)

u

up

c

charm

t

top

d

down

s

strange

b

bottom

Q
U
A
R
K
S

e

electron

µ

muon

τ

tau

νe

electron
neutrino

νµ

muon
neutrino

ντ

tau
neutrinoL

E
P
T
O
N
S

g

gluon

γ

photon

W

W boson

Z

Z boson

G
A
U
G
E

B
O
S
O
N
S

V
E
C
T
O
R

B
O
S
O
N
S

H

Higgs

S
C
A
L
A
R

B
O
S
O
N
S

Figure 1.5: Elementary particles in the Standard Model of Particles (SM) –
picture created with open-source code by I. Neutelings.

hadrons, quarks are “glued” together by spin-1 massless mediators of the strong interaction,
the so-called gluons. The Lagrangian describing quark-gluon interactions is

LQCD = − 1
4

�0
`a︷                                   ︸︸                                   ︷(

m`�
0
a − ma�0` + 6 5 013�1`�3a

)
�
`a
0

+ @̄2 5 B
(
8(W`)BB′ (X22′m` − 86�`0 (C0)22′) − X22′XBB′< 5

)
@2′ 5 ′B′ ,

(1.4)

where color, flavor, and spinor indices (c, f and s, respectively) have been written explicitly.
The remaining Latin indices label the underlying SU(3) color symmetry, appearing in the
structure constant 5 013 and in the generators C0. Sums over repeated indices are assumed,
running over the spinor components B = 1, ..., 4, the number of flavors 5 = 1, ...6, the color
charges 2 = 1, 2, 3, and the group generators 0 = 1, ..., 8.

The non-Abelian (non-commutative) nature of this theory is highlighted by the 6 5 013�1`�3a
term, representing gluon self-interaction. This has deep implications: on the one hand, it
clarifies how baryons are described as having three valence quarks, immersed in a sea of

https://tikz.net/sm_particles/
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continuously created and annihilated quark–antiquark pairs. On the other hand, in the pro-
cess of renormalizing the gluon propagator, higher-order graphs with four-gluon vertices bal-
ance the contributions of fermionic (quark-quark-gluon) loops. This results in the energy-
dependent behavior of the strong coupling constant UB depicted in Fig 1.6, entering Eq. 1.4

Figure 1.6: Strong interaction coupling constant UB as a function of the en-
ergy scale Q [21].

via UB = 62/4c.

At high energies, the coupling constant is small enough to be a proper expansion parame-
ter for the perturbative approach. Quarks are described in terms of their point-like interactions
with the force mediators – in the so-called asymptotic freedom regime [22, 23]. The opposite
behavior is found at low energies: the size of UB increases, and for a proper dynamical de-
scription, one needs to consider the composite particles as the relevant degrees of freedom,
which is also known as the quark confinement [24] phenomenon. Here lies one of the main
issues with hadron nature: despite being well established in theory, the experimental evidence
for their quark structure is entirely indirect. It is mainly derived from a posteriori deductions
based on the processes involving mesons or baryons – be it scattering or decay.

I have briefly covered some basic notions of baryon structure and the force responsible for
the binding of the building blocks of matter. The quarks also participate in electromagnetic
and weak interactions when coupling to quarks or other leptons. In the spirit of this section,
a few introductory remarks about these interactions at the subhadronic level are presented. In
later Sections 1.2 and 1.3, I will cover hyperon electromagnetic production and weak decays,
respectively, in a qualitative approach that is better suited for their composite nature.
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The EM interaction of point-like electrically charged fermions is described by the Quan-
tum Electrodynamics (QED) Lagrangian

LQED = −1
4

�`a︷              ︸︸              ︷
(m`�a − ma�`) �`a + k̄(8 /m − <)k − 4k̄ /�k . (1.5)

The electromagnetic field strength tensor �`a contains the dynamics of the four-vector poten-
tial �`, and its interaction strength to a fermion–antifermion pair is quantified by the electric
charge e. In this notation, the quark field @2 5 B in Eq. 1.4 is replaced by the more general
spinor k, to describe the EM interaction between any two fermions, be it leptons or quarks.
The color and flavor indices are absent, as QED does not depend on them, and the matrix
products between k̄ and k are performed over spin indices, which are left implicit. As in
the strong interaction, the EM force is mediated by a massless spin-1 particle, the photon.
Contrary to QCD, QED is an Abelian theory, meaning there is no self-interaction between
the mediator bosons – the structure constant 5 012 is absent. A direct consequence is that the
running EM coupling UEM = 42/4c increases with the energy scale, i.e. is weaker at longer
distances, exhibiting the phenomenological characteristics of the EM force.

Strong and EM interactions are both characterized by invariance under P transformation:
this is reflected in the Lagrangians of Eq. 1.4 and 1.5. Therefore, when searching for a proper
description for nuclear V decays, the first proposal for the neutron-proton-electron vertex was
presented by Fermi in complete analogy with QED [25], showing explicit P conservation:

LV = −��√
2

(
k̄?W`k=k̄4W

`ka4 + h.c.
)
. (1.6)

The discovery of P violation in V decays of 60Co nuclei in 1957 by Wu and collaborators
disrupted this picture [26]. The momenta of the produced electrons exhibited a manifest
asymmetry incompatible with an isotropic distribution, regardless of the orientation of the
magnetic field surrounding the decaying nuclei. In other words, for opposite orientations of
the nuclear spin, the electrons were emitted in a preferred direction: had P been conserved,
equal emission rates in opposite directions should have been observed.

To account for P violation, a pseudoscalar (k̄W5k) term was added to the Fermi vertex,
and later generalized by Feynman and Gell-Mann [27] and, independently, by Sudarshan and
Marshak [28], to the “V–A” structure

L = − ��
2
√

2

(∑
;

k̄;W` (1 − W5)ka;︸                    ︷︷                    ︸
!`

+

�`︷               ︸︸               ︷
�̄�W

` (1 − W5)*
) (
!` + �`

)† + h.c. . (1.7)

TheVector−Axial-vector terminology derives from the covariant characteristics of the fermion-
fermion terms under Lorentz transformations, i.e. the (polar) vector k̄W`k and the axial-
vector k̄W`W5k. !` and �` are the leptonic and hadronic parts of the charged weak current,
respectively: they represent the separate interactions between the lepton-neutrino pair and
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different quark flavors, symbolized by the operators*, �. The version of the weak current in
Eq. 1.7 reflects the current knowledge of the quark model and the later addition by Cabibbo
[29]

�� = cos \�� + sin \�( (1.8)

of mixing between the three lightest quark flavors to account also for strangeness-changing
transitions. Furthermore, Eq. 1.7 displays violation of charge-conjugation symmetry C,
namely the transformation mapping a particle into its antiparticle. As with P symmetry, the
assumption of C conservation followed from analogy with QED and QCD and held until con-
tradicting experimental evidence was found in charged pion decays (see Section 1.3).

The “V−A” effective-field theory already presents all the relevant features that are needed
in this work to discuss different types of hyperon decays in Sections 1.3.2, 1.3.3. However,
what was recounted until now is far from the current formulation of weak interactions. The
phenomenological indication for a short-range force pointed to the presence of a massive me-
diator, which clashed with the description of the weak theory as a non-Abelian gauge theory.
The formulation by Yang and Mills [30] envisaged an underlying local gauge invariance un-
der the symmetry group SU(2), giving rise to three massless spin-1 quanta of electric charges
0, ±1. The explicit addition of a mass term for the gauge fields would have broken the initial
gauge invariance and raised issues with renormalization, proven for massless fields by t’Hooft
and Veltman [31].

Glashow, Weinberg [32], and Salam [33] ultimately reconciled the presence of massive
weak mediators with the gauge invariance of the original theory via spontaneous symmetry
breaking. This mechanism happens when the vacuum state of the theory does not exhibit
invariance under transformations from the symmetry group of the original Lagrangian. It is
also known as the Higgs mechanism [34, 35], where the Higgs field, a complex scalar isodou-
blet, generates a non-zero vacuum expectation value that breaks the local gauge invariance
(* (2) ×* (1) of the Lagrangian. The final result is the appearance of one massless and three
massive vector quanta (the EM and weak mediator bosons W, ,±, /), and a massive scalar
field (the Higgs boson). Consequently, masses of quarks and leptons are generated through a
Yukawa-type interaction term with the Higgs scalar field, without losing the initial assump-
tion of local gauge invariance at the Lagrangian level. This also implies that the weak and the
electromagnetic forces are formulated as different realizations of the same theory, a concept
that goes under the name of electroweak unification.

1.1.3 Structure probing and Form Factors

In the previous sections, it was discussed how the current knowledge of the internal structure
of baryons is inferred from the Quark Model, finding strong experimental confirmation in
hadronic processes of different interactions. This reiterates the message that hadrons, com-
posed of quarks, follow different manifestations of the same laws of nature governing the
building blocks. Thus, the point-like interaction vertices must be modified to account for
their composite structure.
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Form factors (FFs) are scalar functions used to parameterize the deviation of hadronic
interaction from the elementary vertices presented in the Lagrangians of Section 1.1.2: a
schematic representation of an FF is depicted in Fig. 1.7. More specifically, they depend on

�1

�2

Figure 1.7: Decay of baryon �1 into baryon �2 and a vector boson, rep-
resented by the wiggly line. The blob symbolizes the boson-baryon-baryon

vertex modified by the presence of form factors.

the transferred momentum squared @2 of the reaction they are parameterizing, meaning that
they may be investigated in different kinematical regions. For instance, Fig. 1.8 depicts the
typical setup of a fixed-target experiment, where the form factors, represented as the blob, are
defined in the space-like region @2 < 0. Here, the mediator photon acts as a probe to extract

�1 �1

4−4−

Figure 1.8: Diagrammatic description of EM elastic electron-baryon scat-
tering 4−�1 → 4−�1.

information on the intrinsic structure of baryons. Even if a hadron is neutral, the individual
quarks carry electric charge, hence electromagnetic scattering is an efficient tool for structure
probing at low energies [36]. This is the primary experiment to study the composition of
nucleons [37]: however, it cannot be applied directly to unstable particles such as hyperons.

Strange baryons are better suited for investigation through other types of processes such
as Dalitz decays or electron–positron annihilation to a hyperon-antihyperon pair (time-like re-
gion, @2 > 0, Fig. 1.9). Crossing symmetry and analytic properties are then used to connect
the different kinematical regimes of Fig. 1.8 and Fig. 1.9. It is important to note that form fac-
tors are labeled differently based on the baryon vertex they parameterize. A process with the
same baryon in the initial and final state is described by elastic form factors (EFFs) (Fig. 1.8).
If the initial and final hadrons are different, transition form factors (TFFs) are used. In this
work, both types of form factors will be considered: in Section 1.2, I will illustrate the con-
nection between EFFs of hyperon produced in 4+4− collisions and the polarization features
of the final-state pair; they will be useful to understand the hyperon polarization discussed in
Chapter 2. In Section 1.3.3, I will discuss how the EM transition matrix element is modified
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.1

.2

4+

4−

4+

4−

.

.̄

Figure 1.9: Dalitz decay .1 → .24
+4− (left) and EM annihilation 4+4− →

..̄ (right). The letter . is used to denote a hyperon.

according to the conservation laws of the weak interaction: TFFs related to hyperon semilep-
tonic decays are reviewed in Chapter 3, and a feasibility study on their statistical uncertainties
is presented.

1.2 Electromagnetic production

As mentioned at the beginning of this chapter, hyperons are produced in processes character-
ized by zero net strangeness final states, specifically flavor-conserving interactions. Examples
of such processes are the strong production of hyperons and kaons in proton-pion interactions
or the EM annihilation of 4+4− to hyperon–antihyperon pairs. I will focus exclusively on the
latter when describing the production of ..̄ pairs.

The point-like vertex from the QEDLagrangian 1.5 is modified to account for a composite
structure by including any EM-allowed term, each weighted by an FF. The matrix element of
a P- and C-conserving transition between two spin-1/2 baryons �1, �2 is [38]

〈�2 | 9 ` |�1〉 = 4
[(
W` + "1 − "2

@2 @`
)
�1(@2) + 8f`a@a

"1 + "2
�2(@2)

]
, (1.9)

where "1,2 denote the masses of baryons �1,2, and @ = ?1 − ?2 represents the transferred
momentum of the transition. To describe a baryonic transition of a different type, e.g. a weak
decay, one would need to consider additional Lorentz-invariant structures (and the associated
FFs) to keep track of P- or C-violating terms. This will be outlined in Section 1.3.3 and in
Chapter 3.

The structure functions �1(@2) and �2(@2) are called Dirac and Pauli FFs [39], respec-
tively. They may be recombined into the Sachs FFs [40]

�� (@2) = �1(@2) + @2

("1 + "2)2 �2(@2); �" (@2) = �1(@2) + �2(@2) (1.10)

also called electric and magnetic FFs to underline their relation to the charge and magnetiza-
tion densities of the described baryon. The linear combinations in Eq. 1.10 have the added
value of simplifying significantly cross-section or decay width formulae. When computing
the modulus square of the transition matrix element of Eq. 1.9, any mixed term �1�

∗
2 , �

∗
1�2

disappears when the Sachs FFs are used, leaving a simpler |�",� (@2) | dependence.
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Let us now consider the process 4+4− → k(22̄) → ..̄ , where the intermediate pho-
ton couples to vector charmonia states, producing hyperon–antihyperon (..̄ ) pairs. High-
precision spin-polarization studies using �/k decay events have been carried out in recent
years [41–43] by the BESIII Collaboration [44], and constitute the principal production set-
ting for the ..̄ pairs investigated in Chapters 2 and 3. This annihilation probes the time-like
@2 > 4"2

.
region, above the “two-pion threshold”, where the hyperons’ EFFs are complex-

valued. This feature is rooted in the optical theorem [20], where an imaginary part originates
if the transferred energy @2 crosses the threshold for the physical production of a possible
intermediate state. To be more precise, let us take our W∗ → ..̄ process: the lightest pos-
sible intermediate hadronic state would be W∗ → c+c− → ..̄ . If the transferred energy is
enough for the physical production of the intermediate pions, @2 ≥ 4<2

c , the amplitude gains
a non-zero imaginary part.

The relative phase ΔΦ is defined as

�
k

�

�
k

"

= 48ΔΦ

������k��k
"

����� (1.11)

where the apex k stands for “psionic” FFs [45]. Another useful quantity is the ratio Uk ∈
[−1, 1]

Uk =
@2 |�k

"
|2 − 4"2

.
|�k
�
|2

@2 |�k
"
|2 + 4"2

.
|�k
�
|2
. (1.12)

A complete derivation of the cross-section of this process in the covariant formalism has
been provided in Ref. [45]. Without any specific assumption on the spin state of the produced
hyperons, one may identify two distinct scenarios: either both final particles are polarized,
or neither is. The ..̄ pair results from the decay of the spin-1 charmonium state. Angular
momentum and parity conservation require the spin vectors of the pair to be spin-correlated,
i.e. aligned in the same direction. They also imply that there are only two partial waves for
the final state, ((! = 0), � (! = 2) - exemplified by the �B, �3 FFs [46].

We can also write the polarization vector of the produced Y (.̄ ); it has the following
dependence on the production parameters Uk, ΔΦ and the scattering angle \ [45]:

P. =

√
1 − U2

k
cos \ sin \

1 + Uk cos2 \
sinΔΦ ŷ . (1.13)

A relevant feature of Eq. 1.13 is its dependence on the relative phase between electric and
magnetic FFs�k

�,"
. It exemplifies how this annihilation process can produce baryon–antibaryon

pairs in an inherently polarized state. The �k
�,"

form factors are linearly related to �B, �3
[46], implying that the polarization in Eq. 1.13 arises naturally from the interference between
the partial waves in the production process.

Notably, Eq. 1.13 is obtained assuming the ..̄ pair is produced in collisions of beams of
unpolarized 4−, 4+. The polarizations P. , P.̄ are aligned and orthogonal to the scattering
plane, parallel to the ŷ direction of the center-of-mass (CM) coordinate system, as shown in
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Figure 1.10: Orientation of the..̄ polarization vectors relative to CM frame
({x̂, ŷ, ẑ}) and the rest frame of the produced (anti)hyperon Y (.̄ ) – picture

modified from Ref. [47].

Fig. 1.10. In the presence of a longitudinally polarized 4− beam, P.,.̄ acquire two additional
components along the remaining directions x̂, ẑ [46]. In Chapter 2, the beam polarization %4
is kept as a variable for our system, and a feasibility study is performed, based on its impact
on the polarization vectors of the produced pair.

In the following subsections, I will outline a few definitions regarding the spin-density
matrix [48] and the helicity formalisms [49]: their combined application is the pillar of both
the analyses in Chapters 2 and 3.

1.2.1 Spin-density matrix

In quantummechanics, particle states are described by wave functions andmay be represented
via the state vector “ket” |k〉. Linear combinations of kets and their complex conjugates (〈k |,
“bra”) span the complex vector space where particles live. A set of identical kets describes a
pure ensemble. However, most physical ensembles consist of objects in different pure states,
each weighted by its probability – the so-called mixed ensembles. In both cases, the density
operator d contains all the relevant information about the system. For a mixed ensemble,

d =
∑
:

l: |k:〉 〈k: | (1.14)

is hermitian and Tr(d) = 1 - provided that proper normalization is implemented, i.e.
∑
: l: =

1. The case of the pure ensemble is obtained from Eq. 1.14 when there is only one state |k〉,
i.e. : = 1. The expectation value of any observable O measured on a mixed ensemble is
defined as

〈O〉 =
∑
8,:

l: 〈k: |O|k8〉 〈k8 |k:〉 = Tr(dO) . (1.15)

The above definitions and properties also encompass the case of a pure ensemble, i.e. : = 1.
For a particle of arbitrary spin j, its spin-density matrix may be written in this formalism [50].
That is, expressed in a basis of hermitian matrices, as a function of the polarization parameters
of such state. The choice of basis depends on the spin of the described particle: in the case of
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spin-1/2 baryons [50, 51], Pauli matrices are used in

d1/2 =
1
2

3∑̀
=0
%`f

` , (1.16)

where %0 is the cross-section term, P is the baryon polarization vector and f` = (1,2).

1.2.2 Helicity formalism

In this work, final-state angular distributions for production and decay processes are analyzed
using the helicity formalism [49], where the spin of the particles is quantized along the flight
direction of the state, rather than along a specific axis. This gives rise to rotationally invariant
states, since the helicity operator is defined as the spin projection along the particlemomentum
direction _ = S · p̂. The quantization along the momentum ensures the states are also invariant
under a boost between the CM frame and the rest (“helicity”) frames of the produced particles.
This framework is particularly suitable to analyze the subsequent decays of the produced ..̄ ,
typically via the weak interaction, which will be presented in Sections 1.3.2 and 1.3.3.

A two-particle state in the CM frame is defined as

|Ω, _1, _2〉 := '(q, \, 0) |_1, _2〉 (1.17)

where _1,2 denote the particle helicities and '(q, \, j) is the rotationmatrix. In this definition,
I follow closely the notation fromRef. [52], except for leaving implicit the particle momentum
p. Eq. 1.17 represents the successive transformations that connect the production frame to
the helicity frame of any particle of choice: a rotation to align the particle momentum with
the desired axis, followed by a boost. This breaks down into three successive rotations about
the coordinate axes, although two are already enough to complete the alignment – hence,
j = 0. In Chapter 3, I will explain in detail how to use the additional free angle to simplify
the description of a three-body decay process.

Going back to the production process, the spin-density matrix in this formalism is [52]

d
_. ,_.̄ ;_′

.
,_′

.̄

.,.̄
∝

∑
:=±1

〈\, 0, _. , _.̄ |( |0, 0, _,−_〉 〈0, 0, _,−_ |(† |\, 0, _′. , _′.̄ 〉 , (1.18)

where _, :, _. , _.̄ represent the positron, vector meson, hyperon and antihyperon helicities,
respectively. Helicity states are projected on angular momentum eigenstates using theWigner
rotation matrix [53]

〈�, ", _′. , _′.̄ |Ω, _. , _.̄ 〉 =
√

2� + 1
4c

D�
",_.−_.̄ (Ω)X_. ,_.̄ X_′. ,_′.̄ . (1.19)

After further simplifications (see Ref. [52]), the production spin-density matrix reduces to
the simple form

d
_. ,_.̄ ;_′

.
,_′

.̄

.,.̄
∝ �_. ,_.̄ �

∗
_′
.
,_′

.̄

d
_.−_.̄ ,_′.−_′

.̄

1 (\) (1.20)



1.2. Electromagnetic production 15

i.e. it is described in terms of the transition amplitudes between helicity states �_. ,_.̄

� =

(
ℎ1 ℎ2

ℎ2 ℎ1

)
. (1.21)

The “helicity amplitudes” ℎ1,2 describe the..̄ vertex and are related to the psionic FFs�k
�,"

.
Furthermore, when looking for the un-normalized final angular distribution, the relevant in-
formation contained in the two complex FFs can be described using two real parameters Uk
and ΔΦ, similarly to Eq. 1.11 and 1.12. The elements of �_. ,_.̄ are arranged according to
the helicity combinations of the produced pairs, with rows numbered <1 = 1/2,−1/2 from
top to bottom, and columns <2 = 1/2,−1/2 from left to right.

It is useful to express the spin-density matrix for the 1/2−1/2 EM production employing
[54]

d.,.̄ =
1
4

3∑
`,ā=0

�`āf
.
` ⊗ f.̄ā (1.22)

where the Pauli matrices represent the spin-1/2 bases for the ..̄ pair, given in their respective
helicity frames. The matrix coefficient �`ā can be extracted by projecting Eq. 1.20 on the
proper Pauli matrices basis, and summing over the (anti)hyperon helicity indices. The result
is a 4× 4 matrix of real-valued coefficients containing all the relevant information on the pro-
duction process polarization observables, encoded via Uk andΔΦ. Two additional parameters
Vk and Wk can be defined to express �`a in a compact way:

Vk =

√
1 − U2

k
sin(ΔΦ), Wk =

√
1 − U2

k
cos(ΔΦ) . (1.23)

Uk, Vk, and Wk are functions of the modulus and of the relative phase between the two
“helicity amplitudes” ℎ1, ℎ2, representing the possible independent helicity configurations
of the spin-1/2 pair created in a parity-conserving EM interaction. The rewriting presented in
Chapter 2 follows from Ref. [52] and is an alternative option to using the psionic form factors
�
k

�,"
outlined in Section 1.1.3.

Among the elements of the production matrix �`a , �00 represents the cross-section term,
�08 and �80 the Cartesian components of the (anti)hyperon polarization vectors, and �8 9 the
spin-correlation terms within the ..̄ pair. The link to �`ā elements in Cartesian components
is given directly in Ref. [55]. As mentioned above, a polarized beam affects the polariza-
tion vectors of the produced pairs. This implies that the spin-density matrix gains additional
components directly dependent on the beam polarization, as presented in Chapter 2.

The discussion so far was specific to the ..̄ pair, and the indices in the presented formu-
lae reflected this aspect. However, it is important to note that this formalism is completely
general and may be applied to any spin-1/2 baryon–antibaryon �1�̄2 pair produced in 4+4−

annihilation. The polarization observables would differ only by the involved FFs, “elastic” or
“transition” depending on whether �1 = �̄2.
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Figure 1.11: Charged pion decay c+ → `+a` (a) and its charge-conjugated
(b), parity-reversed (c), and CP-transformed (d) process. The circular arrows
represent the handedness of each particle; the straight arrows, their linear

momentum.

1.3 Weak decays

After describing the production process, let usmove on to the next step: hyperon decays. From
their lifetimes, we infer that any decay of a ground-state octet hyperon (except the radiative
decay of Σ0) happens via flavor-changing weak processes. This interaction, as outlined in
Section 1.1.2, also violates the spatial inversion P and the charge conjugation C. After the
first observation [26], this non-conservation was confirmed in charged pion decays: given the
fundamental role of C and P in strong and EM interactions, the effort to restore at least some
symmetry came as no surprise. Charged pions decay into muon-neutrino pairs with helicities
fixed by angular momentum conservation according to the relation

_c = 0 = (S` + Sa + L)︸           ︷︷           ︸
Sc

·p̂a = −_` + _a , (1.24)

where _c , _`, _a are the pion, muon and neutrino helicities, respectively; Sc , S`, Sa are
the spin vectors of the involved particles, and L the relative orbital angular momentum of the
muon-neutrino pair.

Both leptons are left-handed – measured with negative helicity – in the decay of, e.g. c+

(Fig. 1.11a). The C-transformed process conserves the helicity configuration, since charge
conjugation leaves momenta and spins unchanged (Fig. 1.11b). Similarly, a spatial inversion
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involves the original particles with reversed momenta and untouched spins, due to the axial-
vector nature of the latter. By definition, helicities also change sign, which brings the decay
of a c+ into a right-handed lepton pair (positive helicities), depicted in Fig. 1.11c. Although
the transformed processes were not observed, experimental findings on the CP-transformed
decay, i.e. c− → `− ā` (Fig. 1.11d), yielded results consistent with the conservation of the
combination of charge-conjugation and parity. This was taken as the (premature) confirma-
tion that some level of symmetry would be preserved by the weak interaction, in line with the
characteristics of strong and EM forces. In the next sections, I will outline the topic of viola-
tion of CP-symmetry in particle physics, followed by a quick overview of the hyperon decays
studied in Chapters 2 (“nonleptonic”) and 3 (“semileptonic”), with a focus on the attainable
information each system offers in this regard.

1.3.1 CP violation

Charged pion decays offered short-lived confirmation of CP-conservation in weak interac-
tions: in the early 1960s its violation (CPV) was observed in kaon decays [56], and confirmed
in recent years in B [57–59] and D [60] meson decays. These experimental findings were ex-
plained and included in the weak sector of the SM through the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [61]

+CKM =
©«
+D3 +DB +D1

+23 +2B +21

+C3 +CB +C1

ª®®¬ . (1.25)

The matrix above generalized Cabibbo’s formulation (Eq. 1.8) to account for charged weak
interactions between six quark flavors, and consolidated the pivotal role of CPV in particle
interactions. In particular, this phenomenon relates to the formation of matter in the early
stages of our Universe: assuming an initial stage of thermal equilibrium, the creation and an-
nihilation of baryon–antibaryon pairs is affected by the expansion process, until the densities
of � and �̄ reached asymptotic values. CP invariance requires these densities to be the same,
but this clashes with the experimental observation from light isotopes formed in Big Bang
Nucleosynthesis. According to Sakharov’s conditions [62], CPV is a necessary condition for
the dynamical generation of baryonic asymmetry, i.e. the abundance of baryonic matter over
antimatter in our Universe. So far, all experimental observations are consistent with the SM
predictions, and concern only mesons. However, the detected CPV signal is not sufficient
to account for the observed asymmetry. This implies that the dominant CPV source may
be found in beyond-the-SM (BSM) formulations: to explain baryon asymmetry, the baryon
sector is especially relevant to investigate, due to the lack of empirical data.

It should be noted that there are different manifestations of CPV. It is called “direct”, when
it stems from the direct comparison of particle–antiparticle observables, such as decay rates,
or “indirect”, when it results from particle–antiparticle mixing, such as  0 −  ̄0 oscillations.
The latter is only viable for neutral mesons, as charge conservation forbids hadrons and lep-
tons to mix with their antiparticles. This puts hyperon decays in the roster of direct CPV
sources. Furthermore, one may draw a direct comparison between meson and baryon CPV
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in the strange sector, by looking at the “nonleptonic” Δ( = 1 decays of kaons and hyperons.
This will be discussed in the next sections, where I will give an overview of the hyperon decay
modes involved in my research.

1.3.2 Nonleptonic decays

“Nonleptonic” decays are characterized by a fully hadronic final state, e.g. Λ → ?c−. For
ground-state hyperons, only two-body nonleptonic decays are possible, and the relative tran-
sition matrix is [21]

M = ��<
2
c+ D̄ 5 (� − �W5) D8 . (1.26)

The structure of Eq. 1.26 resembles that of Eq. 1.6 with fundamental modifications in the spin
structures. Since the pion is a pseudoscalar meson, any baryon–pion final state has negative
intrinsic parity, which implies that the dimensionless constants A and B are a pseudoscalar and
a scalar, respectively. They correspond to the P-violating S and P-conserving P partial-wave
amplitudes. Without making any restrictions on the spin orientations of the initial and final
baryons, the transition rate [63]

' = 1 + U(8̂ 5 · n̂ + 8̂8 · n̂) + Vn̂ · (8̂ 5 × 8̂8) + W8̂ 5 · 8̂8 + (1 − W)8̂ 5 · n̂8̂8 · n̂ (1.27)

is written in terms of the final baryon momentum direction n̂, the initial and final baryon
polarization vectors 8̂8, 5 , and the decay parameters U, V and W. They satisfy the constraint
U2 + V2 + W2 = 1 and carry the information about the interference between the P-violating and
P-conserving amplitudes, and their moduli:

U =
2<((∗%)
|( |2 + |% |2

, V =
2=((∗%)
|( |2 + |% |2

, W =
|( |2 − |% |2
|( |2 + |% |2

. (1.28)

In Chapter 2, I present a special case of Eq. 1.27 for polarized hyperons produced in 4+4−

collisions and decaying into final-state baryons which polarization is unmeasured, i.e. its
polarizations are summed over. This reflects an experimental setting without a final-state
polarimeter, which is the case for the BESIII spectrometer [64]. More importantly, the infor-
mation about the initial polarization can be extracted from the decay through the U parameter,
representing the anisotropy of the distribution of the final-state particles. Since this is done
without an external polarimeter to measure the decaying hyperon polarization, this type of
decay is also called “self-analyzing”.

As mentioned above, hyperon decays are an important source for tests of direct CPV
phenomena. The possible CP-symmetry tests built on the observables in Eq. 1.28 are outlined
in Chapter 2 and rely on the comparison between particle and antiparticle properties. Also, it
is important to note that CPV effects could arise from the interference between Δ� – transition
isospin – amplitudes. The term Δ� quantifies the difference in the value of isospin between
the initial and final state of a decay – assuming the final state can have more than one value
of final isospin I. For example, the final state of the decay Σ+ → =c+ can have two final
isospin values � = 1/2, 3/2, resulting from the composition of isospins � = 1 (pion), � = 1/2
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Figure 1.12: Feynman diagrams detailing the lepton-lepton interactions for
the nonleptonic (left) and the semileptonic (right) decay of the Λ hyperon.

(nucleon). The Σ+ hyperon belongs to an isospin triplet of (�, �3) = (1, 1), meaning that the
possible values of transition isospin are 1/2 ≤ Δ� ≤ 5/2. If we restrict our discussion to the
two lowest amplitudes, we can quantify the hierarchy between the Δ� = 1/2 “leading-order”
(LO) and the sub-leadingΔ� = 3/2 amplitudes. The relative size of the subleading amplitudes
is around 3-5% for all the ground-state baryons, and this result was confirmed (Chapter 2) by
the recent results from BESIII [65]. This implies that CPV observables are described, to a
good approximation, by LO Δ� amplitudes. In comparison, CPV effects in the corresponding
Δ( = 1 strange meson decays originate entirely from an interplay of LO and sub-leading
amplitudes, making hyperon CPV effects easier to study – despite the former being the only
hadronic system where the direct Δ( = 1 CPV was properly observed.

1.3.3 Semileptonic decays

Ground-state hyperons may also decay into a baryon and a charged lepton–neutrino pair.
These decays are called “semileptonic” (SL), due to the mixed composition of the final state.
They are the same as neutron V decays, except for the branching fractions: in V decays, a u
quark transitions to a d quark, and this contributes to 100% of the decay width of the neu-
tron. Hyperons exhibit D − 3 and strangeness-changing SL transitions, but these only amount
to a small fraction ($ (10−4)) of the possible hyperon decay modes. A list of hyperon SL
decays and their properties is given in Chapter 3. From a point-like perspective, an SL tran-
sition involves a charged weak current mediated by a, boson, as in nonleptonic decays; the
difference lies in the type of fermions the, couples to. Only quarks are involved in nonlep-
tonic decays: the W boson is exchanged “internally”, while in SL decays the flavor-changing
transition results in the emission of an “external” lepton-neutrino pair (Fig. 1.12).

Despite much smaller yields compared to nonleptonic decays [21], studies of hyperon SL
transitions are important for several reasons. In addition to the measurement of CKM ma-
trix elements [66], the , boson probes the hadronic structure in regions where the involved
baryons can be assumed to be static. One may also be tempted to draw a comparison between
nonleptonic and SL decays in building direct CPV observables, however, replacing a spin-0
pseudoscalar pion with a spin-1 dilepton implies a higher level of complexity in the available
spin combinations of the daughter particles. This is reflected in the expressions for the decay
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parameters along the lines of Eq. 1.28. As shown in Ref. [63], such parameters are consid-
erably more complex, and building CPV tests is not straightforward. The aim of Chapter 3 is
to study SL transitions of polarized hyperons produced at the BESIII 4+4− collider.

To analyze these transitions in detail, the approach followed is similar to the study of
nonleptonic decays. The transition matrix contains the appropriate structures to account for
all the particles involved, in the spirit of Eq. 1.6 and 1.26, and is given explicitly in Chapter
3. Its structure recalls the V-A coupling outlined in Section 1.1.2, replacing the point-like
interaction vertices with SL FFs. The dimensionless constantsA, B (or S, P) in the nonleptonic
vertex of Eq. 1.26 are replaced by �+,�1,2,3(@

2), functions of the transferred @2.

In Section 1.2.2, the derivation of the spin-density matrix for the ..̄ production process
was outlined in the helicity formalism. A similar procedure can be applied to express decay
transitions of the produced baryon–antibaryon pairs, keeping track of the spin correlations.
This modular formalism is presented in detail in Ref. [52], and it consists of a rotation between
the mother and daughter particle helicity frames. The information carried by such rotation is
encoded in the matrix of coefficients 0`a , analogous to �`a from Eq. 1.22:

f<` →
3∑̀
=0
0`af

3
a , (1.29)

where the Pauli matrices f<` , f3a represent the mother and daughter helicity frames, respec-
tively. The explicit shape of the nonleptonic decay matrix is presented and used extensively
in Chapter 2. In Chapter 3, the corresponding matrix for SL decays is derived, following the
procedure outlined in Ref. [52] – with the modifications imposed by the higher number of
spin combinations of the final-state particles.

1.4 My contribution

In this section, I summarize my scientific contributions to the research discussed in the fol-
lowing chapters.

The first work presented in Chapter 2 focuses on analyzing hyperon–antihyperon pairs
produced in current and upcoming experimental facilities. A recent update of the Λ hyperon
decay asymmetry by the BESIII collaboration served as a driving force for this research work.
Using the helicity formalism, I produced the spin-correlation matrix describing 4+4− → ��̄

reactions for � = 1/2 baryons in the presence of a longitudinally polarized electron beam.
This general formalism is applied to the specific case of hyperon production. Specifically, the
beam polarization %4 is introduced in the derivation of the production matrix �`a and kept
as a variable to gauge its effects on the various observables: I provided plots of the hyperon
polarization as a function of %4 and its comparison to the spin-correlation terms.

I also derived the Fisher information matrix for the CP observables: as it involves the
inverse of the probability density function (PDF), this calculation was carried out both an-
alytically and numerically. I determined the Fisher matrix elements using the zeroth term
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approximation of the series describing the inverse of the PDF, along with the PDF partial
derivatives with respect to the decay parameters contributing to the CP tests (e.g. U� , q�).
These expressions are later compared to the full numerical integration for the cases of the
Σ+, Λ, and Ξ− hyperons, and the higher-order terms of the series are shown to have a lim-
ited impact on the full PDF. The statistical uncertainties for the CP observables are investi-
gated for varying values of the beam polarization %4. The precision of the CP tests increases
with increasing %4, reaching a factor-of-four improvement around the realistically achievable
%4 ∼ 0.8−0.9. The feasibility study is carried out on two types of event reconstruction, single-
(ST) and double-tag (DT), and non-zero values of %4 reduce significantly the CP observable
uncertainties in both analyses.

Finally, the current status of the CPV phenomenology is reviewed: hyperon nonleptonic
decays are expressed in terms of their partial wave-amplitudes S, P using isospin decompo-
sition, labeling them via final-state isospin I and transition isospin Δ�. For Δ( = 1 decays,
hyperons can be described with the LO amplitudes only: this is checked in light of the up-
dated data, where the Δ� = 3/2 amplitudes are computed for Λ and Ξ decays. I found the
corrections to be ∼ 3 − 5% of the size of the LO, implying that hyperon CP observables have
a lower level of complexity compared to the analogous Δ( = 1 kaon decays.

In my second work (Chapter 3), an extension of the previous framework is explored. The
spin-1/2 baryon–antibaryon pairs are studied in the context of current colliders, such as BE-
SIII, where the electron beam is unpolarized. The subsequent semileptonic decays of the
spin-entangled pair are investigated in the helicity formalism and encoded in the semileptonic
decay matrix – via the “helicity rotation” outlined in Section 1.3.3.

I derived independently the SL transition amplitude and cross-checked the vector and
axial-vector helicity amplitudes from previous studies. Employing the residual freedom of
rotation when defining helicity frames (Section 1.2.2), I defined the relative orientation of
the decay products, so that they are coplanar. Similar to the case of the nonleptonic decay
matrix used in Chapter 2, the semileptonic decay matrix is derived. From it, I also extracted
its angular dependence on the final baryon spherical angle, in order to isolate the information
carried by the helicity amplitudes. This was shown for the specific case of a semileptonic
decay and generalized to a spin-1/2 baryon–baryon transition, regardless of the nature of the
accompanying boson. The universality of said factorization is explored in detail for the cases
of a photon – virtual and real, a pseudoscalar meson, and a vector meson resonance.
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Summary of the first chapter

• Hyperons are composite particles closely related to nucleons. Their composite nature
is encapsulated in structure functions of the transferred momentum @2, the so-called
form factors.

• Hadrons, such as nucleons and hyperons, interact with other particles according to the
interactions described in the SM, i.e. strong, electromagnetic, and weak. The structure
of matter is investigated in a low-energy regime using electron–proton scattering in
the space-like region. Hyperons have a finite lifetime, and are therefore unsuitable for
fixed-target experiments: they are investigated in the time-like region, instead.

• Many such hyperons are produced at 4+4− experiments, such as BESIII. The produced
hyperons can be polarized, and the polarization is caused by a non-vanishing relative
phase between the hyperon EM FFs, complex-valued for time-like @2.

• The produced ..̄ pairs may decay via flavor-changing transitions. Nonleptonic decays
are called self-analyzing, since the polarization is measured by the anisotropic distri-
bution of the decay products – without an external polarimeter. The extracted particle
and antiparticle decay asymmetries can be compared to provide CPV observables.

• Semileptonic decays provide additional information about hadron structure via the SL
FFs. On the one hand, the spin features are too complex to build CPV observables in
the same straightforward manner as with nonleptonic decays. On the other hand, SL
decays give access to the measurement of CKM matrix elements.
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2
Study of CP violation in hyperon
decays at Super Charm-Tau Factories
with a polarized electron beam

This chapter originally appeared as “Study of CP violation in hyperon decays at Super Charm-
Tau Factories with a polarized electron beam” by N. Salone, P. Adlarson, V. Batozskaya, A.
Kupsc, S. Leupold and J. Tandean, Physical Review D 105, 11, 116022, 2022. Copyright
(2022) by the American Physical Society.

Abstract

Nonleptonic two-body weak decays of baryons are an important tool to probe the combined
charge-conjugation–parity symmetry (CP) violation. We explain why the decays of strange
baryons provide complementary information to the decays of kaons. A model-independent
parameterization of the nonleptonic decays of the Λ- and Ξ-baryons is reviewed, and the am-
plitudes are updated according to the latest experimental input. We demonstrate the potential
of performing precision tests in strange baryon decays at the next generation electron-positron
�/k factories with a luminosity of 1035 cm−2s−1. The copious production of spin-entangled
hyperon–antihyperon pairs via the �/k resonance allows for a direct comparison of the baryon
and antibaryon decay properties. Using analytic approximations and numerical calculations,
we study the quantitative impact of spin correlations and polarization in such CP tests. We
show that by using a longitudinally-polarized electron beam, the statistical precision of the CP
tests can be significantly improved compared to the experiments without polarized beams.
Furthermore, we map out further directions for possible improvements, like analysis of in-
completely reconstructed events or a combination of the isospin related processes. Altogether,
these methods are promising for the observation of a statistically significant CP-violation sig-
nal with a strength corresponding to the standard model predictions. Our conclusions should

https://doi.org/10.1103/PhysRevD.105.116022
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encourage more detailed feasibility studies, including optimization of the measurement meth-
ods and studies of systematic effects. Finally, our results call for an update of the theory
predictions with increased precision.

2.1 Introduction and summary

Although the standard model (SM) of elementary particle physics can describe the subatomic
world accurately, there are several theoretical and experimental indications that it needs to
be completed. In general, precision tests of symmetries and their violation patterns provide
guidelines towards a deeper understanding of elementary particles and their interactions. Here
we focus on charge-conjugation parity (CP) violation as a means of teasing out new physics.
It is well known that the CP-violating mechanism in the SM is not sufficient to explain the
observed imbalance between matter and antimatter in our Universe as a dynamic effect [62].
On the other hand, the processes included in the SM are strong enough to wash out any initial
imbalance before the electroweak phase transition [67, 68]. Thus, a CP violation beyond the
SM is required. In the quark sector, the existence of CP violation in kaon and beauty meson
decays is well established [56, 69, 70] and so far most observations are consistent with the
SM expectations. There are tensions like the � → c decay puzzle which require further
exploration [71]. The first CP-violating signal for charmed mesons, reported by the LHCb
experiment [72], is at the upper edge of the SM prediction. As CP-violating effects are subtle,
a detailed understanding requires a systematical mapping of various hadronic systems studied
with complementary approaches.

In the strange-quark sector, one of the most sensitive probes of non-SM contributions is
direct CP violation. The experimental result is given by the value Re(n ′/n) = (16.6 ± 2.3) ×
10−4 [73–75] determined from the decay amplitude ratios of  ! and  ( mesons into pion
pairs,

A( ! → c+c−)
A( ( → c+c−) =: n + n ′ and

A( ! → c0c0)
A( ( → c0c0)

=: n − 2n ′ . (2.1)

This direct CP-violating effect arises in the weak part of the transition amplitudes to pions due
to the interference between isospin � = 0 and � = 2 final states (|Δ� | = 1/2 and |Δ� | = 3/2
transitions, respectively). The CP-violation mechanism in the SM requires loop diagrams
where all three quark families are involved, the so-called penguin diagrams, like those shown
in Fig. 2.1. Predictions for the kaon decays have been a challenge for many years since there
are partially cancelling contributions from sub-leading types of the penguin diagrams, where
the gluon line is replaced by W, /0, see e.g. Ref. [76] and references therein. Recently, a
satisfactory understanding was reached using Lattice [77, 78] and effective field theory [79,
80] approaches to Quantum Chromodynamics (QCD). This progress ensures that the kaon
decays continue to be an important precision test of the SM.

The subject of our paper is a complementary approach to study CP violation (CPV) in two-
body nonleptonic Δ( = 1 transitions of hyperons [81–86]. For such weak two-body decays,
one also needs an interference pattern: this time between parity-even and parity-odd decay
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Figure 1: figures taken from arXiv:1712.06147, created by tikz: current–current (a), QCD
penguin (b) and electroweak penguin (c) topologies.
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Figure 2.1: Quark diagrams relevant for kaon and hyperon decays. Direct CP-
violation effects in kaon and hyperon decays in the SM are given by the (a) QCD-
penguin operators and (b) electroweak penguin operators. This figure was created

using a modified script from Ref. [79].

amplitudes. These emerge from the spin degrees of freedom of the initial and final baryon.
Since we will consider decays of a spin-1/2 baryon � to a spin-1/2 baryon 1 and a pion, the
parity-even amplitude leads to a p-wave final state while the parity-odd amplitude to an s-wave
final state. The two amplitudes are denoted % and (, respectively. In the following, we will
often write the decay generically as � (�→ 1c). When we need to be more specific, we use
indices Λ and Ξ to denote Λ → ?c− and Ξ−→ Λc−, respectively. The decay amplitude is

A ∼ (f0 + %2 · n̂ , (2.2)

where f0 is the 2 × 2 unit matrix, 2 := (f1, f2, f3) are the Pauli matrices and n̂ = q/|q|
is the direction of the 1-baryon momentum q in the �-baryon rest frame. It is important to
note that these amplitudes depend on the initial (weak) decay, which produces the two final
particles, but depend also on the (strong) final-state interaction. These ( and % amplitudes are
Lorentz scalars, which can depend only on the invariant mass of the two-body system. Yet this
quantity is fixed for a two-body decay: if we disregard the unmeasurable overall phase, the
two complex amplitudes ( and % can be fully specified by the overall normalization |( |2+ |% |2

and the size and relative phase of the interference term (∗%. These are directly related to the
partial decay width and the following two parameters [87]:

U� :=
2 Re((∗%)
|( |2 + |% |2

and V� :=
2 Im((∗%)
|( |2 + |% |2

. (2.3)

The relation of the parameters to the shape of the angular distribution, including the polariza-
tion, of the baryon 1 will be shown in Sec. 2.2. In the CP-conserving limit, the amplitudes
( and % for the charge-conjugated (c.c.) decay mode of the antibaryon � (� → 1 + c) are
( = −( and % = %. Therefore, the decay parameters have the opposite values: U� = −U�
and V� = −V� .

Two independent experimental CPV tests can be defined using these parameters,

��CP :=
U� + U�
U� − U�

and ��CP :=
V� + V�
U� − U�

, (2.4)

where ��CP(�
�
CP) ≠ 0 indicates CP violation in the � decay. The ��CP test requires measure-

ment of the angular 1(1) distribution from polarized �(�)-baryon decay. The ��CP test probes
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Table 2.1: Illustration of the expected statistical uncertainty for the CPV observ-
ables �[Λ?]CP , �[Ξ−]CP and �[Ξ−]

CP at BESIII and the proposed SCTF electron–positron
collider. The results of the published BESIII measurements are given in the first
row [94, 95]. The uncertainties given in the two remaining rows are straightforward
re-scaling based on the expected number of events. The SM prediction for �[Λ?]CP is

∼ (1 − 5) × 10−5 while for �[Ξ−]
CP it amounts to O(10−4) [90].

f(�[Λ?]
CP ) f(�[Ξ−]

CP ) f(�[Ξ−]
CP ) Comment

BESIII 1.0 × 10−2 ¹ 1.3 × 10−2 3.5 × 10−2 1.3 × 109 �/k [94, 95]
BESIII 3.6 × 10−3 4.8 × 10−3 1.3 × 10−2 1.0 × 1010 �/k (projection)
SCTF 2.0 × 10−4 2.6 × 10−4 6.8 × 10−4 3.4 × 1012 �/k (projection)

time reversal-odd transitions and can be potentially much more sensitive but it requires in ad-
dition a measurement of the 1(1)-baryon polarization. In the SM, CPV effects in the hyperon
decays are dominated by the QCD-penguin contribution, Fig. 2.1(a).

In the 1960s, hyperon decays were a tool for discrete symmetry tests on equal footing with
the kaons. The last dedicated program to observe CP violation in hyperons was performed
by the Fermilab experiments E756 [88] and HyperCP [89] at the dawn of this century. In
these experiments, the sum of the �CP observables for Ξ− → Λc− ( [Ξ−]) and Λ → ?c−

( [Λ?]), �[Ξ−]
CP + �[Λ?]

CP , was studied. Here, the SM prediction amounts to −0.5 × 10−4 ≤
�
[Ξ−]
CP + �[Λ?]

CP ≤ 0.5 × 10−4 [90]. The published result �[Ξ−]
CP + �[Λ?]

CP = 0(7) × 10−4 [91] is
currently considered to be the most precise test of CP symmetry in the hyperon sector.

The prospect of significantly improving the CPV tests in hyperons is due to a novel method
where hyperon–antihyperon pairs are produced in electron–positron collisions at the center-
of-mass (c.m.) energy corresponding to the �/k resonance. The �/k decays into a hyperon–
antihyperon pair have relatively large branching fractions of O(10−3) [92]. The produced
hyperon–antihyperon pair has a well-defined spin-entangled state based on the two possible
partial waves (parity symmetry in this strong decay allows for an s- and a d-wave) [46, 93].
The charge-conjugated decay modes of the hyperon and antihyperon can be measured simul-
taneously, and their properties compared directly. The uncertainties obtained in the proof-
of-concept experiment [94, 95] based on 1.3 × 109 �/k for the �[Λ?]

CP , �[Ξ−]
CP , and �[Ξ−]

CP
observables are given in the first row of Table 2.1. With the already available data set of
1010 �/k collected at BESIII [64], a significantly improved statistical precision is expected,
as shown in the second row of the table. However, the uncertainty is still predicted to be two
orders of magnitude larger compared to the SM CPV signal.

Crucial improvements are expected at the next-generation electron–positron colliders,
the Super Charm-Tau or Super Tau-Charm Factories (SCTF) being under consideration in
China [96] and in Russia [97]. Their design luminosity is two orders of magnitude larger than
the BEPCII collider [44, 98] allowing for data samples of more than 1012 �/k events. The
projections for the improved statistical uncertainties of the CPV tests, due to the increased
data samples, are shown in Table 2.1. This will still not be sufficient to observe an effect if
it has a magnitude consistent with the SM predictions. Therefore, besides the increased lu-
minosity, two additional improvements are being discussed to further increase the precision:
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1) a c.m. energy spread Δ� compensation and 2) an electron beam polarization. For the first
option, a collision scheme is proposed where electrons (positrons) with higher momenta are
matched with positrons (electrons) with lower momenta. This promises a Δ� reduction to
better match the natural width of �/k meson of Γ = 0.09 MeV, thus up to an order of mag-
nitude increase of the number of �/k events for a given integrated luminosity [99–101]. For
the second option, an electron beam polarization of 80–90% at �/k energies can be obtained
with the same beam current [102].

Since the benefits of the first improvement are obvious, we focus on the impact of the use of
a polarized electron beam and show that the precision of the CP tests in 4+4− → �/k → ΛΛ

and 4+4− → �/k → ΞΞ can be significantly improved. The initial findings for 4+4− →
�/k → ΛΛ have already been reported at the SCTF workshop [103] and independently in
Ref. [104]. Here we give a detailed explanation of this result and extend it to sequential hy-
peron weak decays. In Sec. 2.2 we review the phenomenology and the current experimental
status of CP tests in two-body weak decays of hyperons. In Sec. 2.3 we use the formalism
based on Jacob–Wick’s [49] helicity amplitudes [52] to derive the hyperon–antihyperon pro-
duction spin-correlation matrix for electron–positron collisions with longitudinal polarization
of the electron beam. The asymptotic maximum log-likelihood method from Ref. [105] used
for the analysis of uncertainties for the CPV observables is introduced in Sec. 2.3.3. The
single-step decays are discussed in Sec. 2.4 and the two-step decays in Sec. 2.5. Further ex-
perimental considerations are presented in Sec. 2.6 and Sec. 2.7 contains an outlook.

2.2 CP tests in hyperon decays

2.2.1 General considerations

There are three independent observables that provide a complete description of a weak decay
� (� → 1+c) with the amplitude given in Eq. (2.2). The first is the partial decay width given
by

Γ =
|q|

4c"�

(�1 + "1) |A|2 , (2.5)

where |A|2 = |( |2 + |% |2 and �1 =

√
|q|2 + "2

1
. The "� and "1 are the masses of the

mother and daughter baryon, respectively. The first of the two parameters defined in Eq. (2.3),
−1 < U� < 1, can be determined from the angular distribution of the daughter baryon when
the mother baryon is polarized. For example, the proton angular distribution from theΛ(Λ →
?c−) decay in the Λ rest frame is given as

1
Γ

dΓ
dΩ

=
1

4c
(1 + UΛPΛ · n̂) , (2.6)

wherePΛ is theΛ polarization vector. The second independent decay parameter can be chosen
as the angle q� , −c < q� < c, which gives the rotation of the spin vector between the � and
1 baryons. To measure q� , the polarization of both mother and daughter baryons must be
determined. For the decay Ξ(Ξ−→ Λc−), where the cascade is polarized, the q� parameter
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can be determined from the subsequent Λ → ?c− decay, which acts as a polarimeter. The
relation between the initial Ξ− polarization PΞ and the daughter Λ polarization PΛ is given
by the Lee–Yang formula [87]:

PΛ =
(UΞ + PΞ · n̂)n̂ + VΞPΞ × n̂ + WΞn̂ × (PΞ × n̂)

1 + UΞPΞ · n̂
, (2.7)

where the V- and W-type decay parameters are expressed as

V� =

√
1 − U2

�
sin q� , W� :=

|( |2 − |% |2
|( |2 + |% |2

=

√
1 − U2

�
cos q� , (2.8)

implying that U2
�
+ V2

�
+ W2

�
= 1. In Table 2.2 the branching fractions (B) and the values

of the U� and q� parameters for decays of the ground-state octet baryons are listed. When
available we report the hyperon–antihyperon average values, defined as

〈U�〉 =
U� − U�

2
, 〈q�〉 =

q� − q�
2

. (2.9)

In most cases, the parameters of the antihyperon decays have not been determined yet. The U�
parameter is much easier to measure than q� , since only the polarization of the initial or final
baryon has to be determined. Before 2018 the consensus was that the U� parameters were
known accurately. The BESIII measurement [94, 95] has shown that values for Λ → ?c−

and Ξ− → Λc− were wrong by 17%.

The use of U� and V� parameters provides a symmetric description of the real and imag-
inary parts of the ( and % amplitudes. On the other hand, the preferred choice of the U� and
q� parameters by the Particle Data Group (PDG) is motivated experimentally, as the q� and
U� uncertainties are approximately uncorrelated. However, the q� parameter is not directly
related to the relative phase between the ( and % amplitudes, since it can be written as

q� = arg{(( + %) ((∗ − %∗)} . (2.10)

In general, we do not need to know the exact values of the decay parameters to predict
the uncertainties of the CPV observables given in Eq. (2.4). Many of our results can be
described using approximate analytic formulas where the dependence on parameters is given
explicitly. Furthermore, in the proposed measurements the values of the decay parameters are
determined directly together with the CPV observables, and are uncorrelated with each other.
For specific purposes, such as the estimate of the size of the decay amplitudes in Appendix I,
we need the most precise values of the decay parameters and branching ratios or life times.
We have made a critical evaluation of the available data, and the preferred values which we
have selected are given in bold in Table 2.2. Here, we provide a detailed explanation how
some values were determined:

• The 〈U[Λ?]〉 value is the average of the two BESIII measurements [94] and [95]. We
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Table 2.2: Properties of two-body hadronic decays of the ground-state octet
hyperons. Branching fractions B are rounded to ±0.5% accuracy. In bold
are the values assumed in this report. The motivation for the selection of the

specific values is given in the main text.

� B 〈U�〉 〈q�〉 [rad] �CP Comment
Λ → ?c− [Λ?] 64% 0.755(03)¹ −0.113(61)² −0.005(10)¹

0.754(3) (2) – −0.006(12) (7) BESIII [94]
0.721(6) (5)∗ – – CLAS [106]
0.760(6) (3) – −0.004(12) (9) BESIII [95]

Λ → =c0 [Λ=] 36% 0.692(17)³ – – BESIII [94]
Σ+ → ?c0 [Σ?] 52% −0.994(04)⁴ 0.63(59)⁷ −0.004(37)⁴
Σ+ → =c+ [Σ=] 48% 0.068(13)∗ 2.91(35)∗ – PDG [92]
Σ− → =c− [Σ−] 100% −0.068(08)∗ 0.17(26)∗ – PDG [92]
Ξ0 → Λc0 [Ξ0] 100% −0.345(08)⁵ 0.36(21)∗ – AVG [107, 108]
Ξ− → Λc− [Ξ−] 100% −0.379(04)⁶ −0.042(16)∗ – AVG [92, 109]

−0.373(5) (2) 0.016(14) (7) 0.006(13)(6) BESIII [95]

∗ Solely based on the result for hyperons (not antihyperons)
aWeighted average of the results from [94, 95]
bWeighted average of q[Λ?] from [110–112] the same as in PDG [92]
cThe −U[Λ=] value from [94]
dValue from [113]
eFrom U[Ξ0]U[Λ?] = −0.261(6) [92] divided by U[Λ?] ¹
fCombination of 〈U[Ξ−]〉 [95] and U[Ξ−]U[Λ?] = −0.294(5) [92] divided by U[Λ?] ¹
gWeighted average of q[Σ?] from [114, 115]

do not include the result from CLAS experiment [106] since it does not report the mea-
surement of 〈U[Λ?]〉 and would indicate significant violation of the CP symmetry due
to the statistically inconsistent value with the BESIII measurement of the antihyperon
U[Λ?] . The BESIII results for U� and U� are correlated and have large uncertainty
separately.

• Since the 〈q[Ξ−]〉measured at BESIII [95] differs by 2.6 standard deviations from q[Ξ−]

measured by HyperCP [109], we do not provide the average value for 〈q[Ξ−]〉.

Finally, we use other results which do not fit to the format of the table, such as �[Ξ−]
CP , �[Ξ−]

CP +
�
[Λ?]
CP or life times of the cascades. They are introduced and referred to when we need to use

them. For example, for the determination of the contribution of the Δ� = 3/2 amplitudes we
use more precise values of the branching fractions from Ref. [92]: B(Λ → ?c−) = 0.639(5)
and B(Λ → =c0) = 0.358(5).

2.2.2 CP violation phenomenology

Isospin is not conserved in weak transitions, meaning that both the isospin vector length and
the third component �3 change in the decay process. In our hyperon decays of interest, there
is effectively a transition from a strange to a down quark: thus, �3 changes by −1/2. For the
total isospin, the situation is more involved. It is convenient to classify the weak transition by
the isospin Δ� of the transition operator. Starting with the initial isospin �ini of the decaying
hyperon, the isospin � of the final state can take values between |�ini − Δ� | and �ini + Δ�. As
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Table 2.3: Values of the #–c scattering phase shifts X!2� relevant for Λ and
Σ decays from [117].

|q| X(1 X(3 X%1 X%3
[MeV/c] [◦] [◦] [◦] [◦]

Λ → #c 103 6.52(9) −4.60(7) −0.79(8) −0.75(4)
Σ → #c 190 9.98(23) −10.70(13) −0.04(33) −3.27(15)

a result of these considerations, it is practical to characterize the weak process by the isospin
of the final state � and by the change of isospin Δ�. To explain this distinction, let us consider
the process Ξ− → Λc− where the initial and final isospins are 1/2 and 1, respectively. This
final state can be reached by a transition with Δ� = 1/2, where the isospins are aligned, and
a transition with Δ� = 3/2, where the isospins are anti-aligned. Therefore, the transition am-
plitudes of the decomposition should be labelled by both � and Δ�, and we adopt the notation
(2Δ�,2� and %2Δ�,2� .

The transition amplitudes ! = (, % can be decomposed as [86]:

! =
∑
9

! 9 exp
{
8(b!9 + X!9 )

}
, (2.11)

where 9 represents a possible {2Δ�, 2�} combination, while b!
9
and X!

9
denote the weak CP-

odd phase and the phase of the combined strong and electromagnetic (e.m.) final state in-
teraction, respectively, and the explicit expressions in the Λ and Ξ cases are written down in
Eqs. (2.87) and (2.88). Appendices II and III provide a justification for the decomposition
in Eq. (2.11) where the ( 9 and % 9 amplitudes are real numbers. The final-state interaction
phase is dominated by the phase shifts of the strong elastic rescattering. The isospin-breaking
effects in the rescattering due to hadron mass differences for different charge states are a few
percent. Further contributions can be due to <3 −<D terms in the amplitudes and e.m. inter-
actions of the hadrons, such as radiative corrections or Coulomb interactions. The X!

9
phase

can be written as X!
9
= X!2�+ΔX

!
9
, where the correction termΔX!

9
includes the isospin-breaking

effects due to e.m. interactions in the final state. Here, we will neglect this term, but for fu-
ture precision studies it should be considered similar to how it was for the kaon to two-pion
decays [116].

For the #–c final states, the phases-shifts X!2� are well known. We summarize in Table 2.3
the values from Ref. [117] which are relevant for the Λ and Σ decays. The Λ-c scattering
phase-shifts, on the other hand, are less precisely determined from experiment. In particular,
for Ξ → Λc they can be found via the relation tan

(
X%2 − X(2

)
= sin q

Ξ

√
1 − U2

Ξ
/U

Ξ
, neglect-

ing the weak-phase difference, where UΞ and qΞ are obtainable directly from the sequential
decays. In doing so, we note that the current qΞ data are not all consistent with each other
yet, as pointed out in the preceding subsection. On the theoretical side, various analyses have
produced different results [118–124], the latest one being X%2 − X(2 = 8.8(2)◦ [124], which is
compatible with one of the earlier predictions [122] and will be used in updating the �[Ξ−]

CP
prediction.
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Now we discuss signatures of CP violations in the hyperon decays. They are based on the
comparison of the hyperon decay amplitudes, Eq. (2.11), with the ones corresponding to the
antihyperon c.c. decay,

( = −
∑
9

( 9 exp
{
8(−b(9 + X(2� )

}
and % =

∑
9

% 9 exp
{
8(−b%9 + X%2� )

}
, (2.12)

where the real-number parameters ! 9 , b!9 and X!2� , (! = (, %), have the same values for the
hyperon and antihyperon decays. The isospin-decomposition relations obtained in Appendix I
can be applied to the c.c. decays of antihyperons. A priori, up to three independent observables
can be used to compare properties of a decay to the c.c. one. The first observable is the
difference between the partial decay widths

ΔCP :=
Γ − Γ

Γ + Γ
. (2.13)

In the Δ� = 1/2 limit the ΔCP observable is exactly zero and cannot be used to test CP sym-
metry. In addition, for Ξ → Λc the isospin of the final Λ–c state is � = 1 and there is only
one strong phase for each of the ( and % amplitudes. This implies that the corresponding ΔCP

is zero even if the weak transition includes |Δ� | = 3/2 operators. However, the ΔCP test is
possible for Λ → #c, as the final state can have � = 1/2 or 3/2. For the two Λ-decay modes,
to the lowest order in the Δ� = 3/2 amplitudes, starting from Eq. (2.87) we have the relation
2Δ[Λ?]

CP = −Δ[Λ=]
CP = 2

√
2ΔCP with

ΔCP =
%1,1%3,3 sin(b%1,1 − b

%
3,3) sin(X%1 − X%3 ) + (1,1(3,3 sin(b(1,1 − b

(
3,3) sin(X(1 − X(3 )

%2
1,1 + (

2
1,1

.

(2.14)

This requires two weak and two strong phases either in the ( amplitude, as in the kaon de-
cays, or in the % amplitude. The precision of the test is suppressed by the small |Δ� | = 3/2
amplitudes and by the term containing sinus of the small strong phases. Therefore, such a test
is not competitive and we will not discuss it further.

The remaining two CP tests involve the ��CP and ��CP observables defined in Eq. (2.4). If
one works to leading order in the weak phases, ��CP can also be expressed as

��CP = Φ�CP

√
1 − 〈U�〉2

〈U�〉
cos〈q�〉 − ��CP

〈U�〉√
1 − 〈U�〉2

sin〈q�〉 , (2.15)

where 〈U�〉 and 〈q�〉 were defined in Eq. (2.9) and

Φ�CP :=
q� + q�

2
(2.16)

is based on the spin-rotation decay parameter q� . In a large acceptance experiment, the
decay parameters U and q are uncorrelated, as well as the CPV tests based on the ��CP and
Φ�CP variables.
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Contrary to the CP violation in  !,( → cc, where Δ� = 1/2 and Δ� = 3/2 amplitudes are
both consequential, the dominant effect in hyperons can be studied using only the Δ� = 1/2
amplitudes. The corrections to the CPV effect studied in this approximation will be a few
percent, as given by the size of the %3 and (3 amplitudes. This is sufficient for the precision
expected at SCTF. If a better precision is required, one can construct isospin averages of the
observables from different isospin modes to recover the results in the Δ� = 1/2 limit. Such
averages are constructed from the isospin decomposition of a given decay process (channel)
– for more details, we refer to Appendix I. For Ξ, up to the linear terms in the Δ� = 3/2
amplitudes, they amount to

�Ξ
CP :=

2�[Ξ−]
CP + �[Ξ0]

CP
3

= tan(b%1,2 − b
(
1,2) , (2.17)

�Ξ
CP :=

2�[Ξ−]
CP + �[Ξ0]

CP
3

= − tan(b%1,2 − b
(
1,2) tan(X%2 − X(2 ) , (2.18)

and for Λ

�Λ
CP :=

2�[Λ?]
CP + �[Λ=]

CP
3

= tan(b%1,1 − b
(
1,1) , (2.19)

�Λ
CP :=

2�[Λ?]
CP + �[Λ=]

CP
3

= − tan(b%1,1 − b
(
1,1) tan(X%1 − X(1 ) . (2.20)

The leading-order correction for the two isospin states of the cascades is:

�
[Ξ−]
CP − �[Ξ0]

CP = −3
2

[
%3,2

%1,2
sin(b%1,2 − b

%
3,2) −

(3,2

(1,2
sin(b(1,2 − b

(
3,2)

]
, (2.21)

�
[Ξ−]
CP − �[Ξ0]

CP = −
(
�
[Ξ−]
CP − �[Ξ0]

CP

)
tan(X%2 − X(2 ) ,

which implies that even if the LO Δ� = 3/2 corrections are included, the � and � tests are
still connected — giving the same combination of the weak phases. For the Λ decays such
a relation is not valid and the �- and �-type variables provide independent information on
the weak-phase combinations. We will not discuss this case, since the �-type observables
cannot be measured with the standard techniques available at the electron–positron-collider
experiments. A combination of the CP tests for the isospin related channels allows for an
increased statistical significance of the tests. Such an approach is feasible at SCTF for the Ξ
and Λ decays, since all the decay parameters for (anti)cascade and the U parameters for Λ can
be measured.

A simpler approach is to treat each decay mode separately when comparing decay pa-
rameters for the hyperon and, from the c.c. decay, for the antihyperon. In the Δ� = 1/2
approximation we can write

( = |A| sinZ exp(8b( + 8X() , ( = −|A| sinZ exp(−8b( + 8X() , (2.22)

% = |A| cosZ exp(8b% + 8X%) , % = |A| cosZ exp(−8b% + 8X%) ,

where 0 ≤ Z ≤ c, b( (b%) is the weak CP-odd phase for the Δ� = 1/2 transition, and X( (X%) is
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the strong s(p)-wave baryon–pion phase-shift at the c.m. energy corresponding to the hyperon
mass. The structure of Eq. (2.22) can be justified, if one assumes that the complete decay
process can be split up into the decay itself where one does not resolve the intrinsic structure
and a final-state interaction that conserves P and C separately. If one does not resolve the
space-time structure of the initial decay, then one can use an effective hermitian Lagrangian to
describe the decay and one just reads off the relations (ini = −(∗ini and %ini = %

∗
ini. More details

are given inAppendix II. The final-state interaction can be described by a 4×4Omnès-function
matrix that is applied to the four initial amplitudes; see also Appendix III. If P (and baryon
number) is conserved, then this matrix is diagonal. If C is conserved, then the entries are
pairwise the same for particle and antiparticle. Without inelasticities, Watson’s theorem [125]
identifies the phases with the scattering phase shifts. The decay parameters (U, V, W) and(
U, V, W

)
¹ are then given as

U = sin(2Z) cos(b% − b( + X% − X() , U = − sin(2Z) cos(−b( + b% + X( − X%) , (2.23)

V = sin(2Z) sin(b% − b( + X% − X() , V = − sin(2Z) sin(−b% + b( + X% − X() , (2.24)

W = − cos(2Z) , W = − cos(2Z) . (2.25)

Without final-state interactions, U+U is always zero and �CP does not constitute an observable
that can indicate CP violation, while �CP = tan(b% − b() does. One needs CP violation
and final-state interactions to make �CP different from zero. In the presence of final-state
interactions, V ≠ 0 does not necessarily indicate CP violation, but �CP still does. The CPV
tests based on the �CP, �CP (and ΦCP) observables can be expressed using Eq. (2.22) as

�CP = −
√

1 − U2

U
sin q tan(b% − b() (2.26)

= − tan(X% − X() tan(b% − b() , (2.27)

�CP = tan(b% − b() , (2.28)

ΦCP =
U

√
1 − U2

cos q tan(b% − b() . (2.29)

Therefore the tests are not independent as they are related to the same b% − b( combination
of the CP-odd weak phases. For single-step decays of the singly-strange baryons, measure-
ment of the �CP(ΦCP) would require a dedicated detector to determine the daughter-nucleon
polarization. Therefore, for the Λ and Σ hyperon decays, we consider only the �CP observ-
able measurements. In this case, the weak phases are determined by Eq. (2.27) using the well
known values of the strong #–c phases. Since the strong phases X% and X( , representing the
final state interaction between the baryon and pion, are small, the �CP observable provides
much better determination of the weak-phase difference than �CP. This statement assumes
that the uncertainties of the �CP and �CP (orΦCP) measurements are comparable. In Sec. 2.6
we will discuss strategies for the simultaneous measurement of the two observables in the
cascade decays.

¹In the remaining part of this section we simplify the notation by omitting subscript� for the decay parameters.
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Table 2.4: Weak-phase differences in hyperon decays. (left) Standard-model pre-
dictions and (right) parameters�� and�′

�
used in Eq. (2.30) to relate the weak-phase

differences in hyperon decays to the beyond SM (BSM) constraints from kaon CPV
observables. The SM and BSM entries are updates of the corresponding numbers

obtained in Refs. [90] and [126], respectively, as explained in the main text.

b% − b( �� �′
�

([_5�2) [10−4 rad]
SM BSM

Λ → ?c− −0.1 ± 1.5 −0.2 ± 2.2 0.9 ± 1.8 0.4 ± 0.9
Ξ− → Λc− −1.5 ± 1.2 −2.1 ± 1.7 −0.5 ± 1.0 0.4 ± 0.7

2.2.3 Status of the CPV predictions

In this subsection, we review the estimates of CPV signals for the decay channels Λ → ?c−

and Ξ− → Λc−, commonly considered to be the most sensitive modes. In the experimental
study of the latter, the former is used as the subsequent process. The SM contributions to
b%−b( for the two decay modes are shown in the third column of Table 2.4. These predictions
are both O(10−4), taking into account the substantial uncertainties which are related to our
present lack of ability to explain simultaneously the B- and ?-waves of hyperon nonleptonic
decays [90]. The second column of this table contains b% − b( divided by [_5�2, which is a
product of the Wolfenstein parameters for the Cabibbo–Kobayashi–Maskawa matrix and has
a value of 1.36(7) × 10−4 according to the most recent PDG report [92]. The SM entries
in this table are updates of the corresponding numbers found in Ref. [90] and are somewhat
modified with respect to the latter, mainly because of our use of the (boldfaced) new U results
for Λ → ?c− and Ξ−→ Λc− quoted in Table 2.2.

To compare the theoretical �CP with its most precise measurements to date given in Ta-
ble 2.2 requires multiplication of the calculated b% − b( by the strong-interaction parame-
ters, as indicated in Eqs. (2.26)-(2.27), an extra step which increases the experimental un-
certainty and/or decreases the precision of the predictions. Nevertheless, from Eq. (2.28),
we expect that future measurements of �CP can directly determine b% − b( with good pre-
cision. For Λ → ?c− the strong phases pertaining to Eq. (2.27) are X(1 = 0.11(2) rad and
X%1 = −0.014(1) rad from Table 2.3. For Ξ− → Λc− the strong-phase difference can be
extracted experimentally using the methods discussed in this report. However, since V[Ξ−]
is not yet well measured, the U[Ξ−] data cannot be used to obtain X%2 − X(2 with good preci-
sion via V[Ξ−] = U[Ξ−] tan

(
X%2 − X(2

)
. To update the prediction for �[Ξ−]

CP , we adopt instead
the theoretical value X%2 − X(2 = 8.8(2) deg computed in Ref. [124]. Putting together the
weak and strong phases, we then arrive at the SM ranges −3 × 10−5 ≤ �

[Λ?]
CP ≤ 3 × 10−5

and 0.5 × 10−5 ≤ �
[Ξ−]
CP ≤ 6 × 10−5, which are below their respective experimental bounds

inferred from Table 2.2 by more than two orders of magnitude.

Measurements on hyperon CPV and its kaon counterpart are complementary to each other
because they do not probe the underlying physics in the same way. As mentioned above, in
the context of the SM, the direct-CPV parameter n ′ in the kaon decay  → cc arises from
both |Δ� | = 1/2 and |Δ� | = 3/2 transitions, where the CP-odd phases come from the QCD,
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Fig. 2.1(a), and electroweak, Fig. 2.1(b), penguin contributions, respectively, all of which
are induced by effective four-quark operators. There is a delicate balance and cancellation
between the two contributions. In the hyperon case, the CPV signal of interest here, such as
measured by �CP or �CP, mainly comes from |Δ� | = 1/2 transitions and is dominated by the
QCD penguins.

In the presence of physics beyond the SM (BSM), there might be new ingredients caus-
ing other types of quark operators to appear and generate effects that are enhanced rela-
tive to the SM contributions. This possibility can be realized, for instance, by the so-called
chromomagnetic-penguin operators, which contain a 3B quark bilinear coupled to gluon fields
and could be influenced by sizeable new physics in various models [126–131]. The parity-
odd and parity-even portions of the operators contribute to n ′ and the CPV parameter n in
neutral-kaon mixing, respectively, and both parts simultaneously affect b% − b( . Model inde-
pendently, one can derive a general relation between the contributions of these operators to
the hyperon weak-phase difference and kaon observables [126]:

(b% − b()BSM =
�′
�

��

(
n ′

n

)
BSM

+ ��
^
nBSM , (2.30)

which further illustrates the complementarity of hyperon and kaon decays. The values of
�� and �′

�
, updated from their counterparts evaluated in Ref. [126], are given in Table 2.4,

�� parameterizes the hadronic uncertainty, and ^ quantifies the contribution of meson poles.
The allowed ranges of (n ′/n)BSM and nBSM can be estimated by comparing the experimental
values of Re(n ′/n) and |n | with the recent SM predictions [132–134]. Following Ref. [134]
we impose ����n ′n ����

BSM
≤ 1 × 10−3 , |n |BSM ≤ 2 × 10−4 . (2.31)

Accordingly, using 0.5 < �� < 2 and 0.2 < |^ | < 1 [130], we find that the kaon data
imply the limits |b% − b( | [Λ?]BSM ≤ 5.3 × 10−3 and |b% − b( | [Ξ−]BSM ≤ 3.7 × 10−3. Additionally,
we arrive at |�[Λ?]

CP + �[Ξ−]
CP |BSM ≤ 11 × 10−4, and therefore the upper end of this range

is already in tension with the aforementioned HyperCP limit [91]. Clearly, hyperon CPV
measurements with much improved precision will provide an independent constraint on the
BSM contributions in the strange quark sector. However, a lot also remains to be done on the
theory side, as the predictions presently suffer from considerable uncertainties. It is hoped
that lattice QCD analyses [135] in the future could help solve this problem.

2.2.4 Experimental status of CPV tests

The dedicated CPV experiment HyperCP (E871) at Fermilab [136], operating between 1996
and 1999, has set the world’s best upper limits on hyperon CP violation using theΞ− → Λc →
?c−c− decay sequence. A secondary cascade beam was produced by having 800 GeV/c
primary protons interacting with a copper target. The sum of the asymmetries �[Ξ−]

CP +�[Λ?]
CP =

0(5) (4) × 10−4 [91] was determined with a data sample of 117 × 106 Ξ− and 41 × 106 Ξ
+
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using unpolarized cascades. A preliminary result �[Ξ−]
CP + �[Λ?]

CP = −6(2) (2) × 10−4 based
on the full data sample of 862 × 106 Ξ and 230 × 106 Ξ was presented at the BEACH2008
conference [137]. Since the final result was never published, one can suspect that an inherent
problem to understand the systematic effects at the level of 4×10−4 was found. The HyperCP
has also measured the most precise value of q[Ξ−] , see Table 2.2, using 144 × 106 Ξ− events
with average polarization of ∼ 5% [109]. The drawback of the HyperCP experimental method
is the charge-conjugation-asymmetric production mechanism and the need to use separate
runs with different settings for the baryon and antibaryon measurements. Furthermore, the
accuracy of the q[Ξ−] parameter determination was limited by the low value of the Ξ−-beam
polarization.

The most recent results, marked by bold fonts in Table 2.2, come from the proof-of-
concept measurements [94, 95, 113] at BESIII using a novel method [45, 52, 105]. These
results have been obtained using collisions of unpolarized electron and positron beams at the
c.m. energy corresponding to the �/k resonance. The relevant properties of the �/k → ��

processes are given in Table 2.5. Given the relatively large branching fractions and low
hadronic background, these 4+4− experiments are well suited for CPV tests. Two different
analysis methods can be used: exclusive measurement (double tag, DT) where the decay
chains of the baryon and antibaryon are fully reconstructed; inclusive measurement (single
tag, ST) where only the decay chain of the baryon or antibaryon is reconstructed. For the ST
analysis, the two-body production process is uniquely identifiable, and its kinematics fully
determined using missing energy/mass technique. Of importance for all single-step weak de-
cays, e.g. Λ → ?c−, is that the Λ and Λ are produced with a transverse polarization. The
polarization and the spin correlations allow for a simultaneous determination of U and U,
with the method proposed in Ref. [45]. The currently available results for �/k → ΛΛ [94],
�/k → Σ+Σ− [113] and �/k → Ξ−Ξ+ [95] use 1.3×109 �/k data with 4.2×105 (background
400 events), 8.8 × 104 (background 4.4 × 103 events) and 7.3 × 104 (background 200 events)
selected DT candidates, respectively. The final state charged particles are measured in the
main drift chamber (and the calorimeter for the photons from the Σ+ → ?c0(→ WW) decay),
where a superconducting solenoid provides the magnetic field for momentum determination
of the pions and (anti)protons with an accuracy of 0.5% at 1.0 GeV/2 [44]. The pions and
protons have distinctly different momentum ranges, making particle identification straightfor-
ward in the DT-type measurements. The analyses of the already collected 1010 �/k data by
BESIII, have not been finished yet, but one can expect a threefold reduction of the statistical
uncertainties as shown in Table 2.1.

2.3 Formalism

2.3.1 Production process

We start from a description of baryon–antibaryon production in electron–positron annihila-
tions with a polarized electron beam. The production process 4+4− → ��, viewed in the c.m.
frame, defines the I axis which is chosen along the positron momentum shown in Fig. 2.2.
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Table 2.5: Properties of the 4+4− → �/k → �� decays to the pairs of
ground-state octet hyperons.

Final state B(×10−4) Uk ΔΦ(rad) Comment
ΛΛ 19.43(3) 0.461(9) 0.740(13) [94, 138]
Σ+Σ− 15.0(24) −0.508(7) −0.270(15) [113, 139]
Σ−Σ+ — no data —
Σ0Σ

0 11.64(4) −0.449(20) – [138]
Ξ0Ξ0 11.65(43) 0.66(6) – [140]
Ξ−Ξ+ 9.7(8) 0.586(16) 1.213(48) [92, 95]

We consider production of spin-1/2 baryon–antibaryon pair in electron–positron annihilation
with longitudinally polarized electron beam. Neglecting the electron mass and assuming the
one-photon approximation, the helicity of the electron (_) and positron (_) has to be oppo-
site since the photon only couples right-handed particles to left-handed antiparticles and vice
versa. The number of right-handed (=') and left-handed (=!) electrons in the beam with
longitudinal polarization %4 is:

=' = =− · 1 + %4
2

and =! = =− · 1 − %4
2

, (2.32)

where =− = ='+=! is the total number of electrons. The two helicity configurations where the
annihilation is possible are _ = +1/2, _ = −1/2 (_I = −1) and _ = −1/2, _ = +1/2 (_I = 1).
For the collisions with unpolarized positrons, the relative weights of the two configurations
are (1+%4)/2 and (1−%4)/2, respectively. Therefore, the spin density of the initial electron–
positron system can be written as:

d
8, 9

1 (\) :=
1 + %4

2
31∗
−1,8 (\) 3

1
−1, 9 (\) +

1 − %4
2

31∗
1,8 (\) 3

1
1, 9 (\) (2.33)

where the quantization axis along the � momentum. The density matrix for the production
process is the sum of the contributions from the two helicities, see Eq. (14) in Ref. [52]:

d
_1,_2;_′1,_

′
2

��
∝ �_1,_2 �

∗
_′1,_

′
2
d
_1−_2,_

′
1−_

′
2

1 (\) (2.34)

with the reduced density matrix d1 given by

1
2

©«
1+cos2 \

2 −%4 cos\ (%4−cos \ ) sin \√
2

sin2 \
2

(%4−cos \ ) sin \√
2

sin2\ (%4+cos \ ) sin \√
2

sin2 \
2

(%4+cos \ ) sin \√
2

1+cos2 \
2 +%4 cos\

ª®®®®¬
. (2.35)

The four a priori possible helicity amplitudes reduce to only two, ℎ1 := �−1/2,−1/2 = �1/2,1/2

and ℎ2 := �1/2,−1/2 = �−1/2,1/2. If one focuses on the not normalized angular distribution of
the production process, the relevant information contained in the two complex form factors
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Figure 2.2: Orientation of the three coordinate systems used in the anal-
ysis. The axes in the baryon � and antibaryon � rest (helicity) frames are
(x̂1, ŷ1, ẑ1) and (x̂2, ŷ2, ẑ2), respectively. They are related as (x̂2, ŷ2, ẑ2) =

(x̂1,−ŷ1,−ẑ1). In the overall c.m. frame, the ẑ axis is along the positron mo-
mentum.

ℎ1, ℎ2 can be expressed using only two real parameters. Hence, disregarding the overall
normalization, the magnitudes of the two form factors can be represented as |ℎ1 | = cosj and
|ℎ2 | =

√
2 sinj, where 0 ≤ j ≤ c/2. In addition, the relative phase between the form factors

can be defined as ΔΦ := arg(ℎ1/ℎ2). The general expression for the joint density matrix of
the �� pair is:

d
��

=

3∑
`,a=0

�`a f
�
` ⊗ f�a , (2.36)

where a set of four Pauli matrices f�` (f�a ) in the �(�) rest frame is used and �`a is a 4 × 4
real matrix representing polarizations and spin correlations of the baryons. The orientation of
the coordinate systems in the baryon rest frames is defined in Fig. 2.2. The axes are denoted
x̂1, ŷ1, ẑ1 and x̂2, ŷ2, ẑ2. The elements of the �`a matrix are functions of the production angle
\ of the � baryon:

3
3 + Uk

·
©«

1+Uk cos2\ Wk%4 sin \ Vksin \ cos \ (1 + Uk)%4 cos \
Wk%4 sin \ sin2\ 0 Wksin \ cos \

−Vksin \ cos \ 0 Uk sin2\ −Vk%4 sin \
−(1 + Uk)%4 cos \ −Wksin \ cos \ −Vk%4 sin \ −Uk−cos2\

ª®®®®®¬
, (2.37)

where the real parameters Uk, Vk and Wk are expressed in terms of the previously defined j
and ΔΦ as:

Uk := − cos(2j) , Vk := sin(2j) sin(ΔΦ) , Wk := sin(2j) cos(ΔΦ) (2.38)

and U2
k
+ V2

k
+ W2

k
= 1. The �-baryon angular distribution is

1
f

df
dΩ�

=
3

4c
1 + Uk cos2\

3 + Uk
. (2.39)
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This relation determines the normalization factor in Eq. (2.37). The �-baryon polarization
vector P� defined in the rest frame of baryon �, coordinates (x̂1, ŷ1, ẑ1), is:

P� :=
�10x̂1 + �20ŷ1 + �30ẑ1

�00
=
Wk%4 sin \x̂1 − Vksin \ cos \ŷ1 − (1 + Uk)%4 cos \ẑ1

1 + Uk cos2 \
.

(2.40)
In the chosen helicity frames one has �01 = �10, �02 = −�20, �03 = −�30 and P

�
=

(�01x̂2 + �02ŷ2 + �03ẑ2)/�00. Therefore, the polarization vectors of the baryon and the an-
tibaryon are equal and have the same direction, P

�
= P�. In the limit of large c.m. energies

(HE), where Uk = 1 and Vk = Wk = 0 [141], the baryon can only have the longitudinal
polarization component P�ẑ1 = 2%4 cos \/(1 + cos2 \). In the low energy (LE) limit (close
to threshold) Uk = 0 and ΔΦ = 0, implying Vk = 0, Wk = 1 and P� = %4 (sin \x̂1 + cos \ẑ1).
Therefore, the value of the baryon polarization is equal to the initial electron beam polariza-
tion in this case. Fig. 2.3 shows the production-angle dependence of the baryon-polarization
magnitude in the 4+4− → �/k → ΛΛ, 4+4− → �/k → Ξ−Ξ+ and 4+4− → �/k → Σ+Σ−

processes for three different values of the electron-beam polarization. The values of the Uk
and ΔΦ parameters from Table 2.5 are used.

For the determination of the uncertainties of the CPV tests, the following tensor 〈�2〉`a
representing properties of the production process will be needed:

〈�2〉`a :=
1

4c

∫
�2
`a

�00
dΩ� =

1
2

∫ 1

−1

�2
`a

�00
dcos \ . (2.41)

The production tensor is symmetric and positively defined. In addition 〈�2〉00 = 1. For
example, it can be used to express themean-squared polarization 〈P2

�
〉 of the �-baryon defined

as:

〈P2
�〉 =

∫
P2
�

(
1
f

df
dΩ�

)
dΩ� =

3∑
8=1

〈�2
80〉 . (2.42)

This integral can be calculated exactly, and the result expressed as a linear function of the
electron polarization squared %2

4

〈P2
�〉 = p0 + p2%

2
4 , (2.43)

where the expression for coefficients p0 and p2 are given in Appendix IV. As we will show
later, 〈P2

�
〉 determines the uncertainty of the �CP and ΦCP measurement. The results for√

〈P2
�
〉 are shown in Fig. 2.4. We will use the following notation for the polarization and

spin-correlation contributions of the production-process tensor:

〈P2
�〉 :=

3∑
8=1

(
〈�2〉80 + 〈�2〉08

)
= 2 〈P2

�〉

〈S2
��

〉 =
3∑

8, 9=1
〈�2〉8 9 . (2.44)
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Figure 2.3: Magnitudes of the hyperon polarization as a function of the pro-
duction angle for: (a)Λ, (b)Ξ− and (c) Σ+ for the electron beam polarizations
%4 = 0, 0.8, 1 (solid, dashed and dotted lines, respectively). The Uk and ΔΦ

values are taken from Table 2.5.
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Figure 2.5: Polarization 〈P2
�
〉 (solid lines) and spin-correlation terms 〈S2
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〉

(dashed lines) of the 4+4− → �� processes: (a) �/k → ΛΛ, (b) �/k → ΞΞ,
(c) �/k → ΣΣ, (d) low-energy limit and (e) high-energy limit.

The values of the 〈P2
�
〉 and 〈S2

��
〉 terms as function of %4 are shown in Fig. 2.5 for some

processes which are discussed later. The dependence on the %4 is much stronger for the
polarization terms than for the spin-correlation terms. As we will show in Secs. 2.4 and 2.5
the sizes of the contributions determine the precision of the CPV observables.

2.3.2 Joint angular distributions

The complete joint angular distributions for a production process 4+4− → �� followed by
weak two-body decays of the hyperon � and the antihyperon � can be obtained using the
modular framework fromRef. [52]. For a single-step decay� (�→1c) and the corresponding
c.c. decay mode � (�→ 1c), like 4+4− → �/k → ΛΛ with Λ → ?c− and Λ → ?c+, the
joint angular distribution,

P�� (/;8) :=
1
Γ

dΓ
d/

, (2.45)

is

P�� (/;8) = 1
(4c)3

3∑
`,a=0

�`a (Ω�;Uk,ΔΦ, %4)0�`0(Ω1;U�)0
�
a0(Ω1;U�) . (2.46)

There are five global parameters to describe the complete angular distribution, and they are
represented by the vector 8 := (Uk,ΔΦ, %4, U� , U�). The vector / := (Ω�,Ω1,Ω1) repre-
sents a complete set of the kinematic variables describing a single-event configuration in the
six-dimensional phase space.
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Weuse helicity angles to parameterize themultidimensional phase space. These are spher-
ical coordinates in the helicity reference frames of the baryons, defined as follows: in the �
baryon rest frame with the I axis defined by the unit vector ẑ�, the direction of the 1 baryon
momentum is denoted as p̂1. The 1-baryon helicity system is the 1 rest frame, where the
orientation of the Cartesian coordinate system is given by the unit vectors:

x̂1 =
ẑ� × p̂1
|ẑ� × p̂1 |

× p̂1, ŷ1 =
ẑ� × p̂1
|ẑ� × p̂1 |

and ẑ1 = p̂1 . (2.47)

The production is described by the spin-correlationmatrix�`a (Ω�;Uk,ΔΦ, %4) in Eq. (2.37)
and the 4×4 decaymatrices 0�

`0 := 0�
`0(Ω1;U�) and 0

�
a0 := 0�

a0(Ω1;U�). The decaymatrices
0�`a represent the transformations of the spin operators (Pauli matrices) f�` and f1a defined
in the � and 1 baryon helicity frames, respectively [52]:

f�` →
3∑
a=0

0�`af
1
a . (2.48)

The explicit form of the 0�`a (Ω;U� , V� , W�) ↔ 0�`a ({\, i} ;U� , V� , W�) matrix, represent-
ing the polarization vector transformation from Eq. (2.7) in our framework, is:

©«
1 0 0 U�

U� sin \ cos i W� cos \ cos i − V� sin i −V� cos \ cos i − W� sin i sin \ cos i
U� sin \ sin i V� cos i + W� cos \ sin i W� cos i − V� cos \ sin i sin \ sin i
U� cos \ −W� sin \ V� sin \ cos \

ª®®®®®¬
. (2.49)

For the single-step processes only the first column 0`0(Ω;U�) is used and it depends only on
the decay parameter U� .

For the processes with two-step decays like 4+4− → ΞΞ with Ξ → Λc, Λ → ?c− + c.c.
the joint angular distribution reads:

PΞΞ(/
ΞΞ

;8Ξ) =
1

(4c)5

3∑
`,a=0

�`a
©«

3∑̀
′=0
0Ξ``′0

Λ
`′0

ª®¬
( 3∑
a′=0

0Ξaa′0
Λ
a′0

)
, (2.50)

where /
ΞΞ

:= (ΩΞ,ΩΛ,ΩΛ
,Ω?,Ω?) and 8Ξ := (Uk,ΔΦ, %4, UΞ, UΞ, qΞ, qΞ, UΛ, UΛ) — the

phase space has 10 dimensions and there are 9 global parameters.

The single tag (ST) distributions are obtained by integrating out the unmeasured variables.
For example, the ST angular distribution of the � baryon measurement for single sequence
decays Eq. (2.46) is:

P� (/1;8) = 1
(4c)2

3∑̀
=0
�`0 · 0�`0 =

1
(4c)2�00 · (1 + U�P� · p̂1) , (2.51)

where /� := (Ω�,Ω1) and P� is given by Eq. (2.40). As the reference for comparing the
ST uncertainties to the DT measurements with # reconstructed events, we will use a set of
two independent ST experiments where the baryon and antibaryon decays are analyzed with
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# reconstructed events each.

2.3.3 Asymptotic maximum likelihood method

The importance of the individual parameters l: in the joint angular probability density func-
tions (p.d.f.s) of Eqs. (2.46) and (2.50) and their correlations are studied using an ideal asymp-
totic maximum likelihood method (MLL), discussed in Ref. [105]. The method allows one to
reliably estimate the statistical accuracy of the determined global parameters in experiments
with large acceptance detectors.

The asymptotic expression of the inverse covariance matrix element :; between parame-
ters l: and l; of the parameter vector 8 is given by the Fisher information matrix [142]:

I(l: , l;) := #
∫

1
P
mP
ml:

mP
ml;

d/ , (2.52)

where # is the number of events in the final selection². The calculated values are used to con-
struct thematrix, which is inverted to obtain the covariancematrix+ = I−1 for the parameters.
Since asymptotically, in the case of negligible background, the statistical uncertainties given
by the standard deviations (s.d.), f(l:), are inversely proportional to the square root of the
number of the reconstructed signal events # we will use the product

f� (l:) := f(l:) ×
√
# , (2.53)

and call it s.d. coefficient or normalized statistical uncertainty. It allows for a comparison of
the precision of different estimators for a given number of reconstructed events. In most cases,
the integral Eq. (2.52) has to be calculated numerically. However, in this approach the explicit
dependence on the production and decay parameters is hidden, and the calculations have to
be repeated for each parameter set. Therefore, we have constructed analytic approximations,
which are presented and discussed in the two following sections.

2.4 Single-step decays

We derive an approximate analytic solution for standard deviation of the �CP measured in a
single-step processes described by the p.d.f. in Eq. (2.46). The straightforward method is to
determine all elements of the 5× 5 inverse covariance matrix corresponding to the parameter
vector 8 = (Uk,ΔΦ, %4, U� , U�), invert the matrix and use error propagation to determine
the variance Var(�CP). If the parameter vector can be changed to include the �CP observable
and to have the remaining parameters uncorrelated, then the variance Var(�CP) will be simply
given as the inverse of the corresponding information matrix element

1
Var(�CP)

= I(�CP) := #
∫

1
P��

(
mP��
m�CP

)2

d/ . (2.54)

²In Appendix Vwe show how our results should be modified when there is a significant fraction of background
events.
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Such parameterization can be constructed using the 〈U�〉 and �CP parameters and expressing
U� = 〈U�〉 (1 + �CP) and U� = − 〈U�〉 (1 − �CP). The new parameter set leads to the
following expression for the partial derivative of P�� with respect to �CP (taken at �CP = 0)

mP��
m�CP

=
〈U�〉
V

3∑
`,a=0

�`a

(
m0�

`0

mU�
0�a0 + 0

�
`0
m0�

a0
mU�

)
(2.55)

=
U�

V �00
(
P� · p̂1 − P

�
· p̂
1

)
, (2.56)

where V :=
∫

d/ =
∫

dΩ�dΩ1dΩ1 = (4c)3 and 〈U�〉 = U� in the �CP = 0 limit. In order
to calculate the information I(�CP), we will use the following representation for the P p.d.f.

P(/;8) := �00
1 + G(/;8)

V , (2.57)

where
∫
Gd/ = 0 andG ≥ −1. In addition, all terms included in the functionG are multiplied

by ±U� and for small values of |U� | are suppressed. Therefore, it is not unreasonable to use
the expansion of 1/(1 + G) to approximate 1/P:

1
P =

V
�00

1
1 + G =

V
�00

∞∑
8=0

(−G)8 (2.58)

and

I(l: , l;) := I0(l: , l;) +
∞∑
8=1

(−1)8ΔI8 (l: , l;) (2.59)

with

I0(l: , l;) := #
∫ V

�00

mP
ml:

mP
ml;

d/, (2.60)

ΔI8 (l: , l;) := #
∫ V

�00
G8 mP
ml:

mP
ml;

d/ . (2.61)

We can always compare this analytic result using one or more terms of the expansion
with the full numerical calculations. The hope is that the analytic approximation reproduces
main features of the exact solution. If it does, it will facilitate understanding how the uncer-
tainties depend on the global parameters. We start by considering the 0-th term of the above
expansion, V/�00, that leads to the following information:

I0(�CP) = #
∫ V

�00

(
mP��
m�CP

)2

dΩ�dΩ1dΩ1 (2.62)

= #
U2
�

V

∫
�00

(
P� · p̂1 − P

�
· p̂
1

)2 dΩ�dΩ1dΩ1 . (2.63)
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Figure 2.6: Standard deviation coefficients for �CP, f� (�CP), multiplied by
the decay parameter valueU� for DTmeasurements. (a) 4+4− → �/k → ΛΛ

with decay Λ(Λ → ?c−), (b) 4+4− → �/k → Σ+Σ− with decay Σ?(Σ+ →
?c0). Dashed lines are the approximations using Eq. (2.65) and solid lines

are the exact numerical results.

Integration over Ω1 and Ω
1
simplifies due to orthonormality∫ (

P� · p̂1 − P
�
· p̂
1

)2 dΩ1
4c

dΩ
1

4c
=

∫
(P� · p̂1)2 dΩ1

4c
+

∫
(P
�
· p̂
1
)2 dΩ1

4c

=
P2
�

3
+

P2
�

3
=

2
3

P2
� .

Inserting the result into Eq. (2.56) and Eq. (2.62) we have:

I0(�CP) =
#

4c
U2
�

2
3

∫
P2
��00 dΩ�

=
2#
3
U2
�

∫
P2
�

(
1
f

df
dΩ�

)
dΩ� =

2#
3
U2
� 〈P2

�〉 . (2.64)

Therefore in this approximation the information is proportional to the �-baryon average squared
polarization, as defined in Eq. (2.42). Since �CP is not correlated with other variables, the
0-th approximation for the uncertainty is

f(�CP)
√
# = f� (�CP) ≈

√
3
2

1

U�

√
〈P2
�
〉
. (2.65)

Fig. 2.6(a) shows the s.d. coefficients, f� (�[Λ?]
CP ), multiplied by the UΛ parameter value

for the 4+4− → �/k → ΛΛ processes. The 0-th order result (hereafter we will call it also
the analytic approximation) is close to the numerical full result in Eq. (2.52), even if UΛ is
relatively large (0.75). This shows that the influence of the higher order terms is low for the
�
[Λ?]
CP determination.

We also compare the approximate analytic formula to the full numerical calculations for
the 4+4− → �/k → Σ+Σ− process, where both Uk and ΔΦ have been measured by BESIII
[113]. The two Σ+ decay modes Σ=(Σ+ → =c+) and Σ?(Σ+ → ?c0) are interesting as
the limiting cases for the expansion since UΣ= = 0.068 ≈ 0 and UΣ? = −0.994 ≈ −1,
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respectively. It is worth noting that in the Δ� = 1/2 limit |UΣ? | < cos(X%1 − X(1 ) ≈ 0.980
(see Eq. (2.23) and the values of the strong phase shifts in Table 2.3). We note that the recent
BESIII value 〈UΣ?〉 = −0.994(4) (Table 2.2) violates this bound. A proper interpretation
of this result requires that all isospin contributions to the Σ+ decays are considered, but such
discussion is beyond the scope of this report. The 0-th approximation for f� (�Σ?

CP ) · |UΣ? |
is given by the dashed line in Fig. 2.6(b). The full numerical result (given by the solid line)
differs significantly. The difference comes from the spin-correlation contributions, but the
analytic approximation is able to describe the overall trend. From Eq. (2.65) it is clear that
the approximation for f� (�Σ=

CP)UΣ= is also given by the same dashed line. As expected, the
full numerical result coincides with the 0-th approximation in this case. Comparing the trends
for Λ and Σ+, the faster decrease of the uncertainty for Σ+ is mainly due to the low value of
the ΔΦ phase for this reaction. In principle, this would make Σ? an attractive decay mode for
testing CP symmetry with a polarized electron beam. However, we will not discuss further the
Σ-baryon decays in this report. The reason is that the predicted CPV effects are significantly
smaller, �Σ?

CP · UΣ? ≈ 3.5 × 10−6 and �Σ=
CP · UΣ= ≈ 2.7 × 10−5 [90], and the isospin structure

of the amplitudes is more complicated (since also Δ� = 5/2 transitions contribute).

The result for f� (��CP) in the DT and ST cases is the same when the ST analysis is
done under assumption that the 〈U�〉 value is known and fixed. In a single-step decay, an
ST measurement only allows for a determination of the products U�

√
〈%2
�
〉 and U�

√
〈%2
�
〉.

Therefore, a ��CP determination using a combination of baryon–antibaryon ST measurements
requires knowledge of the polarization through some other means or use a production process
where 〈%2

�
〉 = 〈%2

�
〉 is assured. For an 4+4− → �� experiment with an electron beam

polarization %4 where the ST data are collected simultaneously and with c.c. symmetric
detector acceptance, this condition is fulfilled automatically.

Related to this discussion is a proposal given in Ref. [143] where it is suggested that one
could use a triple vector product to determine �CP even if ΔΦ = 0 and %4 = 0, i.e. the baryons
are unpolarized. For a general baryon–antibaryon state with polarization terms set to zero,
the angular distribution after single-step decays reads:

P�� ∝ �00 + U�U�
3∑

8, 9=1
�8 9

[
0�
80
U�

] 
0�
90

U�

 =: �00 + U�U�F (Ω�,Ω1,Ω1) , (2.66)

where F (. . .) is a function of the kinematic variables only. Therefore, the p.d.f. is described
by a single global parameter U

��
:= U�U� = − 〈U�〉2 (1− �2

CP). The parameter is related to
�CP and can in principle be used to test CP symmetry, but the method has several drawbacks.
The information for U

��
measurement is I0(U��) = #/9 〈S2〉 and the uncertainty of �CP

from the error propagation is:

f(�CP) =
1
�CP

√
f2(〈U�〉) +

f2(U
��

)
4 〈U�〉2 ,

which requires an independent determination of 〈U�〉. A meaningful CP test is possible only
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if f(�CP) < 1. This requires that the f(〈U�〉) precision is better than O(10−5), since �CP ∼
O(10−5) in the SM. If f(〈U�〉) is not small enough, the �CP ≠ 0 value can be interpreted as
a �CP null result but with the decay parameters U� and U� reduced by the factor

√
1 − �2

CP.

2.5 Two-step decays

In order to study uncertainties of the CP asymmetries in 4+4− → Ξ−Ξ
+, we rewrite Eq. (2.50)

as

PΞΞ(/
ΞΞ

;8Ξ) =
1
V

3∑
`,a=0

�`aD`

Ξ
Da

Ξ (2.67)

using the following notation:

D`

Ξ
:= D` (ΩΛ,Ω?;UΞ, qΞ, UΛ) :=

3∑̀
′=0
0Ξ``′0

Λ
`′0,

D`

Ξ := D` (Ω
Λ
,Ω?;UΞ, qΞ, UΛ) :=

3∑̀
′=0
0Ξ``′0

Λ
`′0,

V :=
∫

d/
ΞΞ

= (4c)5 .

We use a modified parameter set where U� and U� are expressed by ��CP and 〈U�〉. For
�
[Ξ−]
CP and �[Λ?]

CP , we use a simplified notation �Ξ and �Λ, respectively. Similarly, we use
Φ

[Ξ−]
CP (denoted as ΦCP) to represent qΞ = ΦCP + 〈qΞ〉 and qΞ = ΦCP − 〈qΞ〉. The vector

of the parameters related to the Ξ and Λ decays is 8 := (〈UΞ〉 , 〈qΞ〉 , 〈UΛ〉 , �Ξ,ΦCP, �Λ).
Therefore, the partial derivative e.g. with respect to ΦCP is

mPΞΞ

mΦCP
=

1
V

3∑
`,a=0

�`a

(
mD`

Ξ

mqΞ
Da

Ξ + D`

Ξ

mDa

Ξ

mqΞ

)
.

Due to the orthonormality of the decay and production functions the information matrix ele-
ments related to the decay parameters l8 and l 9 can be written as

I0(l8 , l 9) = #
3∑

`,a=0
〈�2〉`a 〈Δl8

Δl 9
〉`a . (2.68)

We have checked these orthonormality relations in the explicit calculations. The production
tensor is defined in Eq. (2.41). The decay tensor is

〈Δl8
Δl 9

〉`a :=
1

(4c)4

∫
m (D`

Ξ
Da

Ξ)
ml8

m (D`

Ξ
Da

Ξ)
ml 9

dΩΛdΩ?dΩΛ
dΩ? . (2.69)
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For example I0(ΦCP) can be expressed as

I0(ΦCP) = #
∫ V

�00

(
mPΞΞ

mΦCP

)2

d/

= #

3∑
`,a=0

[
1

4c

∫
�2
`a

�00
dΩΞ

] 
1

(4c)4

∫ (
m (D`

Ξ
Da

Ξ)
mΦCP

)2

dΩΛdΩ?dΩΛ
dΩ?


=: #

3∑
`,a=0

〈�2〉`a 〈Δ2
ΦCP

〉`a .

The information matrix elements for the decay parameters can be obtained as

I0(l8 , l 9) = #
[
a8 9 + b8 9 〈P2

Ξ〉 + c8 9 〈S2
ΞΞ
〉
]
, (2.70)

where 〈P2
Ξ
〉 (= 2 〈P2

Ξ
〉) and 〈S2

ΞΞ
〉 are the sums of the 〈�2〉`a-matrix polarization and spin-

correlation elements, respectively, defined in Eq. (2.44) (and shown for few production pro-
cesses in Fig. 2.5(b) as the function of electron-beam polarization). Such representation is
possible since the decay tensor elements have only three different values a8 9 , b8 9 and c8 9 .
It turns out that the only nonzero elements of the information matrix involving the CP-odd
variables for the two-step process are

I0(ΦCP) =
2#
27

(
1 − U2

Ξ

)
U2
Λ

[(
3 + U2

ΞU
2
Λ

)
〈P2

Ξ〉 +
2
3

(
U2
Ξ

(
3 − 2U2

Λ

)
+ 3U2

Λ

)
〈S2

ΞΞ
〉
]
,

(2.71)

I0(�Ξ) =
2#
3
U2
ΛU

2
Ξ

[
1 +

3
(
U4
Λ
+ 3

)
− U2

Ξ

(
3 − U2

Λ

)2

18
(
1 − U2

Ξ

)
U2
Λ

〈P2
Ξ〉 +

U2
Ξ

(
2U2

Λ
− 3

)
+ 9

27
(
1 − U2

Ξ

) 〈S2
ΞΞ
〉
]
,

(2.72)

I0(�Λ) =
2#
3
U2
ΛU

2
Ξ

[
1 +

U4
Ξ
− 2U2

Ξ
+ 3

6U2
Ξ

〈P2
Ξ〉 +

1
9
(3 − 2U2

Ξ) 〈S2
ΞΞ
〉
]
, (2.73)

I0(�Λ, �Ξ) =
2#
3
U2
ΛU

2
Ξ

[
1 − 1

3

(
〈P2

Ξ〉 + 〈S2
ΞΞ
〉
)]
. (2.74)

These information matrix elements allows one to determine s.d. and correlations between the
CPV observables. The uncertainty for ΦCP is f(ΦCP) = 1/

√
I(ΦCP), since the variable is

uncorrelated with any other variable. The �Ξ and �Λ variables are only correlated with each
other and the covariance matrix is obtained by inverting two-dimensional information matrix(

f2(�Ξ) Cov(�Λ, �Ξ)
Cov(�Λ, �Ξ) f2(�Λ)

)
=

(
I(�Ξ) I(�Λ, �Ξ)

I(�Λ, �Ξ) I(�Λ)

)−1

. (2.75)

The expressions in Eqs. (2.71)–(2.74) have some interesting properties which are valid
for any two-step process that can be studied by allowing the UΛ and UΞ parameters to vary.
We discuss these properties using a generic notation, where the first decay process is � → 1c
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and the baryon 1 decays in the sequential weak two-body nonleptonic process.

• TheΦCP uncertainty is not correlated with any other variable, and none of the informa-
tion matrix elements depend on the 〈q�〉 value. This is because q� represents the shift
in the i1 azimuthal angle of the 1-baryon, which is integrated out. A dependence on
〈q�〉 might appear in experiments where the acceptance in the i1 variable is limited.

• For U1 = 0 only I0(��) = 1
3U

2
�
〈P2
�
〉 is nonzero and the CPV test is the same as in a

single-step decay.

• ForU� → 0 two terms are nonzeroI0(ΦCP) = 2
27U

2
1

[
3 〈P2

�
〉 + 2U2

1
〈S2
��

〉
]
andI0(�1) =

1
3U

2
1
〈P2
�
〉. Therefore, both ΦCP and �1 can be measured. In particular, due to the

nonzero c-type term for I0(ΦCP) the polarization of the � baryon is not needed. This
is an attractive scenario for CPV tests for any baryon decaying into Λ.

• The term I0(��) is divergent for |U� | → 1 indicating that f(��) vanish in this limit.
This is a consequence of the

√
1 − U2

�
terms in the angular distribution. The validity

of such expressions requires that the boundary |U� | ≤ 1 must be strictly fulfilled and
in the |U� | → 1 limit there is no linear term in the expansion of the U� parameter (i.e.
the linear error is 0). To get a meaningful result, one should use a parameterization
which respects this boundary, such as Eq. (2.23) from Sec. 2.2.2. In principle, one can
directly investigate the uncertainty of the weak phase difference b% − b( . However, as
seen from Eq. (2.26) this will introduce correlation with theΦCP observable (due to the
term sin q). Instead, one can present results for ΔZ� := U�/

√
1 − U2

�
��, which do not

introduce such correlation. The information matrix elements are modified due to the
Jacobian of the variable transformation to

I0(ΔZ�) =
(1 − U2

�
)

U2
�

I0(��),

I0(�1,ΔZ�) =

√
1 − U2

�

U�
I0(�1, ��) .

We first discuss uncertainties for the production tensors corresponding to the simplest
cases. Unpolarized and uncorrelated sources of � and � correspond to 〈�2〉`a = diag(1, 0, 0, 0).
The only nonzero elements of the information matrix are

I0(��) = I0(�1) = I0(�1, ��) = #
2
3
U2
1U

2
� ,

where we have assumed samples of # events each for the cascade and anticascade decays.
Since the information matrix corresponding to the �Ξ and �Λ is singular, the asymmetries
are fully correlated and cannot be determined separately, but the sum �Ξ + �Λ can and the
uncertainty is f� (�Ξ + �Λ) =

√
3/2/(UΛUΞ).

As the next example, we consider two independent ST experiments with # events each
using polarized cascades and anticascades having the same average polarization 〈P2

�
〉. In the
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0-th approximation, the expressions for the uncertainties depend on the productionmechanism
only via the average 〈P2

�
〉. For example, in the HyperCP-type experiments, where the initial

hyperon polarization is considered to be a fixed vector that does not depend on the kinematic
variables of the production process, the average reduces to the square of the vector

√
〈P2
�
〉 →

|P� |. The Fisher information matrix is the sum of the matrices for the two ST experiments

I0(l8 , l 9) = 2#
[
a8 9 + b8 9 〈P2

�〉
]

(2.76)

and the elements of the information matrix for the CP-test observables read

I0(ΦCP) = #
4
27

(
1 − U2

�

)
U2
1

(
3 + U2

�U
2
1

)
〈P2
�〉 ,

I0(��) = #
4
3
U2
1U

2
�

[
1 +

3
(
U4
1
+ 3

)
− U2

�

(
3 − U2

1

)2

18
(
1 − U2

�

)
U2
1

〈P2
�〉

]
, (2.77)

I0(�1) = #
4
3
U2
1U

2
�

[
1 +

U4
�
− 2U2

�
+ 3

6U2
�

〈P2
�〉

]
,

I0(�1, ��) = #
4
3
U2
1U

2
�

[
1 − 1

3
〈P2
�〉

]
.

For two HyperCP-type experiments with |P� | = |P
�
| and # events each the formulas are

the same. The resulting uncertainties f� = f
√
# for the �Λ, �Ξ and �Λ + �Ξ observables

measured using the Ξ−/Ξ+ decay chains are shown in Fig. 2.7(a), while for ΦCP they are
shown in Fig. 2.7(b). The uncertainty of the sum �Λ+�Ξ is nearly independent of the average
polarization. Due to the large correlation term I(�Λ, �Ξ) in Eq. (2.77) the relation between
the information and uncertainties is not straightforward. However, the 2×2 informationmatrix
for �Λ and �Ξ can be diagonalized. The new uncorrelated variables �± are

�± :=
1
√

2

[
4

√
I(�Λ)
I(�Ξ)

�Ξ ± 4

√
I(�Ξ)
I(�Λ)

�Λ

]
, (2.78)

where we have chosen an orthonormal transformation. If the polarization |PΞ | is zero, �+ =

(�Λ + �Ξ)/
√

2 is the only CP-violating variable that can be measured. Since the definition of
the variables �± depends on the polarization (and on detection efficiencies in an experiment)
we will not use or discuss them further. Since only two weak phases ΔbΞ := (b% − b() [Ξ−]

and ΔbΛ := (b% − b() [Λ?] describe CP-violation in the [Ξ−] and [Λ?] decays we provide
the corresponding 2 × 2 Fisher information matrix, that is based on Eq. (2.52) and does not
require the analytic approximation:

I(ΔbΞ) = I(ΦCP)
1 − 〈UΞ〉2

〈UΞ〉2 cos2〈qΞ〉 + I(�Ξ)
〈UΞ〉2

1 − 〈UΞ〉2 sin2 〈qΞ〉 ,

I(ΔbΛ) = I(�Λ)
〈UΛ〉2

1 − 〈UΛ〉2 sin2 〈qΛ〉 , (2.79)

I(ΔbΛ,ΔbΞ) = 〈UΞ〉√
1 − 〈UΞ〉2

sin 〈qΞ〉
〈UΛ〉√

1 − 〈UΛ〉2
sin 〈qΛ〉 I(�Λ, �Ξ)
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Figure 2.7: Uncertainties f� for CP tests in HyperCP-type experiment using
analytic approximation: (a) �Λ (solid line), �Ξ (dotted line) and �Λ + �Ξ

(dashed line), (b) ΦCP.

However, since 〈qΞ〉 ≈ 0, theΦCP measurement gives the dominating contribution to the ΔbΞ

uncertainty.

Our next case is the decay of a (pseudo)scalar meson like [2 or j20 into a �� pair with
the production tensor 〈�2〉`a = diag(1, 1, 1, 1). There are no polarization terms, 〈P2

�
〉 = 0,

and 〈S2
��

〉 = 3. The information matrix element I0(�1, ��) is zero, which means that all
three CPV observables are uncorrelated. The diagonal terms of the information matrix are
functions of U1 and U� only:

I0(ΦCP) = #
4
27

(
1 − U2

�

)
U2
1

[
U2
�

(
3 − 2U2

1

)
+ 3U2

1

]
,

I0(��) = #
2
3
U2
1U

2
�

[
1 +

U2
�

(
2U2

1
− 3

)
+ 9

9
(
1 − U2

�

) ]
,

I0(�1) = #
2
3
U2
1U

2
�

[
1 + 1

3
(3 − 2U2

�)
]
.

Fig. 2.8 shows the uncertainties f� for this case as a function of U� and U1 decay parameters.
This case is interesting since all production parameters are fixed and CP-test uncertainties
depend only on U1 and U�.

To understand the relative importance of the polarization and spin-correlation terms for
the CP tests, one can compare the two above extreme cases. For example, the polarization
in two ST experiments with # events that would lead to the same uncertainty of the ΦCP

measurement as in the DT approach with # events is:

|P� |2 =
U2
�

(
3 − 2U2

1

)
+ 3U2

1

3 + U2
�
U2
1

.

For Ξ → Λc this gives |P� | = 0.80.

Now we will discuss the results specific for the 4+4− → �/k → ΞΞ process. The rela-
tions for the ST experiment, realized as two independent measurements with # events each
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(a) (b)

(c) (d)

Figure 2.8: (Color online) Statistical uncertainties f� of (a) ��, (b) �1, (c)
ΔZ� and (d) ΦCP measurement in a (pseudo)scalar meson decay to �� as a
function of U� and U1 treated as free parameters. The white regions in the

bottom of the plots correspond to the uncertainties f� (. . .) > 15.

³, are still valid. The only difference is that now the results can be represented as a function
of the electron-beam polarization %4, and the average cascade polarization |PΞ | is calculated
using Eq. (2.43). The results in the analytic approximation for the �-type observables cor-
responding to the ones in Fig. 2.7(a) are shown in Fig. 2.9(a). Since even for the %4 = 0
the average polarization of the cascades is not zero, all the three CP tests are possible. For
the average values of the decay parameters we do not provide approximate analytic results
since the corresponding information matrix elements are correlated and in general multidi-
mensional matrices have to be inverted to obtain uncertainties. Therefore, likely such analytic
solution will not provide better understanding of the interrelations between the parameters.
The numeric results for uncertainties of 〈UΞ〉, 〈qΞ〉 and 〈UΛ〉 are shown in Fig. 2.10(a)–(c)
both for ST- and DT-type experiments. For the ST experiments, the uncertainty improves
much more than for DT experiments. It is understood by the fact that the spin-correlation
terms contribute only to the DT experiments and the dependence on the %4 is weaker. The

³Of course this is not the way one does the experiment since both the baryon and antibaryon decays can be
measured simultaneously.
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Figure 2.9: Uncertainties, f� , for the 4+4− → �/k → ΞΞ (a) two ST and
(b) DT experiments with # events each: �Λ (solid line), �Ξ (dotted line) and

�Λ + �Ξ (dashed line).

Table 2.6: Correlation matrix for the asymmetries and averages in the
4+4− → �/k → ΞΞ process with %4 = 0.8 for DT. Input parameters are
〈UΞ〉 = −0.373, 〈qΞ〉 = 0.016 and 〈UΛ〉 = 0.760. The error is the last signifi-
cant digit unless specified explicitly, and only the results statistically different

from zero are shown.

ΔΦ 〈UΞ〉 〈qΞ〉 〈UΛ〉 �Ξ �Λ ΦCP %4

Uk −0.128 – 0.011 -0.008 – -0.017(2) – -0.031
ΔΦ 0.009 0.009 -0.071(2) – – – 0.191(3)
〈UΞ〉 -0.021(4) 0.078(3) – – – 0.037
〈qΞ〉 -0.032 – – – −0.005
〈UΛ〉 – – – −0.455

numerical results for the �Ξ, ΦCP and �Λ are given in Fig. 2.10(d)–(f) and compared to the
analytic approximations, which represent well the results specially for the Ξ decay CPV tests.
As a cross-check of the calculations, we provide in Table 2.6 the full correlation matrix of
all parameters using the full numerical calculations for %4 = 0.8. Significant values of some
correlation terms, like ΔΦ–Uk or 〈UΛ〉–%4, indicate that it might be difficult to provide an
intuitive picture of the relations between all the parameters. However, the numerical results
confirm that the CP-violation variables are almost uncorrelated with the other variables and
support our assumption that they can be analyzed separately.

Finally, it is interesting to consider a general two-step process � → 1c in the low- and
high-energy limits (LE- and HE limits, respectively, introduced in Sec. 2.3) for a single pho-
ton 4+4− → �� annihilation process. These cases might be of interest for close to threshold
charm baryon studies or baryon–antibaryon production experiments at high energies. In the
LE limit (Uk = 0, Vk = 0, Wk = 1) the terms 〈P2

�
〉 and 〈S2

��
〉 are 2%2

4 and 1, respectively.
In the HE limit (Uk = 1, Vk = 0, Wk = 0) they are equal to 6 (1 − c/4) %2

4 and 3(c/2 − 1),
respectively. In both cases the spin-correlation terms do not depend on the electron polariza-
tion and the 〈P2

�
〉 terms are proportional to %2

4. A comparison of the uncertainties for %4 = 0
and %4 = 1 in the DT-experiment setting is presented in Fig. 2.11. The conclusion is that the
polarization helps to reach better precision in both cases, and the improvement is qualitatively
similar.
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Figure 2.10: Numerical estimate of the uncertainty f
√
# of (a)–(c) average

decay parameters and (d)–(f) CPV observables in 4+4− → �/k → Ξ−Ξ+.
The dotted lines and the solid lines are the results for ST and DT experi-
ments, respectively. For the asymmetries �Ξ, ΦCP and �Λ also the analytic
approximation is given: dashed-dotted lines and dashed are ST and DT re-

sults, respectively.

2.6 Experimental considerations

The benefits of a large electron-beam polarization for CP-violation studies should be clear by
now. Here we discuss three additional aspects related to the detection technique which should
be considered when planning such an experiment,

(a) Combination of the ST and DT data sets including detection efficiency and background
aspects.

(b) Polar angle dependence of uncertainty and the detection efficiency.

(c) Implications of the discussed collision scheme with large-crossing angle.

Combination of ST and DT measurements In general, the best precision can be achieved
by combining three non-overlapping event sets. The first set includes the DT events, where
both the � and � decay chains are reconstructed. The remaining events can be divided into
two ST sets where �(�) decay is fully reconstructed but not the corresponding �(�). The
efficiencies of the �, � and �� sets are denoted as n�, n� and n

��
, respectively. The effi-

ciencies can depend on the vector / of the kinematic variables, but not on the global reaction
parameters given by the8 vector. Since we discuss improvements with respect to the DT-type
experiment, n� is given by the ratio between the detection efficiencies of the DT and ST cases.
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Figure 2.11: (Color online) Statistical uncertainties f� of: (a)–(d) ΦCP,
(e)–(h) �� and (i)–(l) �1 measurements in the 4+4− → W∗ → �� process
with two-step �-baryon decays in the low-energy (LE) limit (Uk = 0 and
ΔΦ = 0) and high-energy (HE) limit (Uk = 1) as the function of U� and U1
treated as free parameters. The columns from left are: (LE limit, %4 = 0),
(LE limit, %4 = 1), (HE limit, %4 = 0) and (HE limit, %4 = 1). The same
color scale as in Fig. 2.8 is used. The white regions in the plots correspond

to uncertainties f� (. . .) > 15.



58 Chapter 2. Study of CPV in Y decays at SCTFs with a polarized electron beam

We also neglect any efficiency dependence on the kinematic variables. We recollect that the
information in the DT experiment, based on # reconstructed events, is given by Eq. (2.70):

IDT
0 (l8 , l 9) = #

[
a8 9 + b8 9 〈P2

�〉 + c8 9 〈S2
��

〉
]
.

For the two-step process a8 9 , b8 9 and c8 9 can be read from Eq. (2.71)–(2.74). For the single-
step process only �� can be measured a��

= c��
= 0 and b��

= 1/3:

I0(��) = #
1
3
〈P2
�〉 .

The information provided by the two additional ST sets is

IST
0 (l8 , l 9) = #

1 − n�B
n�B

[
2a8 9 + b8 9 〈P2

�〉
]
, (2.80)

where the branching fraction product of the decay sequence is B and equal detection effi-
ciencies n� = n

�
are assumed. The interpretation of the above equation is that an additional

2#/(n�B) events are added from the two ST sets. Therefore, the information of the combined
ST and DT experiment (ST&DT) is the sum of the two independent measurements

IST&DT
0 (l8 , l 9) = #

[
2 − n�B
n�B

a8 9 +
1
n�B

b8 9 〈P2
�〉 + c8 9 〈S2

��
〉
]
. (2.81)

In the single-step decays the f� (�CP) dependence on the electron-beam polarization for both
ST and DT experiments is approximately given by Eq. (2.65). The �Λ uncertainties for ST,
DT and the combined 4+4− → �/k → ΛΛ measurement are plotted in Fig. 2.12 as the
function of %4. Two cases of the detection efficiencies n� = 1 and n� = 0.5 are considered
and B(Λ → ?c−) = 0.64 is used. For the case with the reconstruction efficiency of 0.5 a
two-times improvement of f� is achieved for the combination, compared to the DT measure-
ment only. Of course, a detailed feasibility study which includes the detector response will
be needed to determine the efficiency which can be obtained for the combined DT and ST
measurement.

An important background contribution which should be considered for the ST analysis of
the �/k → ΛΛ events is �/k → ? −Λ + c.c with B = (8.6± 1.1) × 10−4 [92] as it will have
a similar final state topology as the signal channel. Similar experimental considerations will
also hold for the �/k → ΣΣ two-body decay channels.

The results for �Ξ and ΦCP in the 4+4− → �/k → ΞΞ are shown in Fig. 2.13. For
the two-step decays, the increasing beam polarization improves the ST uncertainties much
faster compared to the corresponding DT uncertainties. For the polarization of %4 = 0.8 the
uncertainty of the ST experiment is better if we assume realistic efficiency of 50% deduced
from a comparison of the BESIII ST [144] and DT [95] analyses.

Furthermore, the non-reducible backgrounds for the ST event samples are also expected
to be low. The background channels to be considered are �/k → W[2 (→ Ξ−Ξ

+), �/k →
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Figure 2.12: Statistical uncertainties f� (�Λ) for the 4+4− → �/k → ΛΛ

process as a function of the electron-beam polarization %4. The solid-blue
lines represent DT measurement. The dotted-red lines represent contribution
from ST events which do not contribute to the DT event class (statistically
independent ST events). The orange-dashed lines represent the result from
the combination of the two event classes. The decay branching fraction is
B = 0.64 [92]. The detection efficiency of the Λ decay was assumed to be
(a) nΛ = nΛ = 1 and (b) nΛ = nΛ = 0.5. The results are normalized to the

number of the DT events.
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Figure 2.13: Statistical uncertainties f� for the CP-violation observables in the
Ξ− → c−Λ(→ ?c−) + c.c. decay sequences from the 4+4− → �/k → ΞΞ process:
(a) f� (�Ξ), (b) f� (ΦCP) and (c) f� (�Λ) as a function of electron beam polar-
ization %4. The solid-blue lines represent DT measurement. The dotted-red lines
represent contribution from ST events which do not contribute to the DT event class
(statistically independent ST events). The orange-dashed lines represent the result
from the combination of the two event classes. The detection efficiency of the Ξ-
decay sequence was assumed nΞ = nΞ = 0.5 and branching fraction of the complete
decay chain B = 0.64. The results are normalized to the number of the DT events.
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Figure 2.14: Uncertainties f� (�Λ) in the DT measurement in (a) 4+4− →
�/k → ΛΛ and (b) 4+4− → �/k → ΞΞ processes as a function of the
production angle cos \ where dashed line shows %4 = 0, solid line is for

%4 = 0.8 and dotted line representes %4 = 1.

Ξ(1530)−Ξ+ → Ξ−c0Ξ
+ and �/k → Λc−Λc+. While the first two channels can be sup-

pressed using event kinematics variables, the third can be reduced by requiring a non-zero
decay length for the Ξ → Λc decay candidates. For the DT method the background contri-
bution is 0.25% and for ST the background is at the percent level, while roughly three times
more ST events can be reconstructed compared to DT.

Polar-angle efficiency dependence Detectors at electron-positron colliders experiments
have approximate cylindrical symmetry with axis along the beam directions (considerations
for large-crossing angle are discussed in a separate paragraph) and uniform detection effi-
ciency in the azimuthal angle. However, the polar-angle coverage is limited. For example,
in the BESIII experiment | cos \ | < 0.93 for tracks of charged particles. The hyperons de-
cay some centimeters away from the interaction point and the final state particles with large
| cos \ | values have low transverse momenta, which are more difficult to reconstruct. These
effects reduce the reconstruction efficiency at large values of | cos \ |.

The event yield is a product of the efficiency and the differential cross-section of the
4+4− → �� process dΓ/dΩ ∝ (1+Uk cos2 \) as shown in Eq. (2.39). Since both �/k → ΛΛ

and �/k → Ξ−Ξ
+ have Uk > 0 (Table 2.5) the (anti)hyperons and the decay (anti)nucleons

are more likely emitted in the forward and backward directions. The uncertainty as a func-
tion of the production angle cos \ can be obtained by replacing the production tensor 〈�2〉`a
by the normalized spin correlation matrix �2

`a/�2
00. The numerical expressions for the func-

tions P2
�
(cos \) and S2

��
(cos \) are given in Appendix IV. The results are shown in Fig. 2.14

for f� (�Λ) in DT experiments in 4+4− → �/k → ΛΛ and 4+4− → �/k → ΞΞ for dif-
ferent values of the electron beam polarization. Corresponding plots for f� (ΦCP) in the
4+4− → �/k → ΞΞ DT and combined DT&ST measurements are shown in Fig. 2.15.

Large-angle collision scheme The SCTF will use crab-waist collision scheme, meaning
larger crossing angle than at BEPCII (22 mrad). The presently considered crossing angle
is 60 mrad [96, 97]. However, in Ref. [101] much larger crossing angles, up to 500 mrad,
are considered in conjunction with a novel c.m. energy monochromatization scheme. The
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Figure 2.15: Uncertainties f� (ΦCP) as a function of the production an-
gle cos \ for (a) DT and (b) DT&ST with 50% efficiency experiment where
dashed line (orange) shows %4 = 0, solid line (blue) is for %4 = 0.8 and dot-

ted line (red) represents %4 = 1.

monochromatization could increase the number of the �/k events and therefore it is worth-
while to discuss some consequences of such collision arrangement for the acceptance in the
hyperon CP-violation tests.

In such a collision scheme, the detector reference frame is significantly different from the
electron–positron c.m. system. This has impact on both angular acceptance and the detection
efficiency as a function of the measured-particles momenta and it has to be considered in the
detector design. For example, the polar-angle, \LAB, distribution of Ξ− in the detector rest
frame is given in Fig. 2.16(a) for the 0.0, 0.3 and 0.5 rad crossing angles. If the decay parti-
cles are measured only in the | cos \LAB | < 0.93 range as in the BESIII detector, the observed
Ξ production-angle distribution in the electron–positron c.m. system is as in Fig. 2.16(b).
A large beam-crossing angle will also significantly affect the azimuthal-angle distribution in
the detector reference system, as shown in Fig. 2.17(a). Therefore, the detection acceptance
will be not symmetrical in the azimuthal angle what should be corrected for in the analysis.
However, the acceptance effects should be easy to disentangled from the process angular dis-
tributions since in the electron–positron collision rest frame the azimuthal distribution has to
be flat. In addition, an improved particle identification algorithm will be needed since the
momentum distributions of the final-state protons and pions will overlap with each other, as
shown in Fig. 2.17(b), while for the electron–positron rest frame collision scheme a momen-
tum range separation was sufficient.

2.7 Outlook

We have advocated the importance of CPV studies in hyperon decays as a complementary
tool to the studies in kaon decays. Using recent experimental results, we have revised and
updated the amplitudes of the Λ and Ξ hadronic two-body decays.

The main part of this report discusses the implications of the polarized-electron beams
for CPV tests in the nonleptonic hyperon decays at SCTF, using entangled baryon–antibaryon
pairs from �/k decays with data sets of 1012 �/k events. The use of the polarization, to-
gether with additional improvements of the analysis techniques, shows the potential to reach
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Figure 2.16: (color online) Production angle distribution for beam-crossing
angles 0 rad (blue solid), 0.3 rad (orange dashed) and 0.5 rad (red dotted). (a)
The Ξ production angle in the detector frame. (b) The Ξ production angle in
the electron–positron c.m. frame for the events where all six charged tracks

are accepted in the detector | cos \LAB | < 0.93.
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Figure 2.17: (color online) (a) Azimuthal distribution of ΞLAB and (b) mo-
mentum distributions for all final state particles for beam scattering angles 0

rad (blue solid), 0.3 rad (orange dashed) and 0.5 rad (red dotted).
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a precision compatible with the size of the predicted SM signal.

Using an analytical approximation for the Fisher information matrices of the CPV observ-
ables, we can understand how the precision of suchmeasurements depends on the polarization
and spin-correlation terms in the production processes. Some of the obtained analytical re-
sults can be directly extended to charm baryon CPV studies. At SCTF, they can be studied in
close-to-threshold 4+4− → �� processes. For such processes, the analytic results of Sec. 2.4
and Sec. 2.5 can be taken as a starting point. The main difference in the strategy for charmed
baryons is due to the fact that the branching fractions for two-body nonleptonic decays are
small, and the DT analysis likely will not be feasible.

In addition to the 4+4− → �� processes, the HyperCP-type experiments can be an in-
teresting option for CP tests and decay parameter determination, provided that sources of
(anti)baryons with large initial polarization are available. Possible candidate processes are
semileptonic decays of charmed baryons Ξ0

2 → Ξ−ℓ+aℓ or two-body hadronic decays like
Ξ0
2 → Ξ−c+ with large value of the decay parameter U = 0.63(3) [145] and relatively large

branching fraction 1.2 % [92]. For such studies, unpolarized charmed baryons that are abun-
dantly produced at the LHC in ?? collisions can be used. Again, our analytic formulas can
be used to provide a first estimate of the statistical uncertainties for such experiments.

We have left out a potentially interesting discussion of the uncertainties of the decay pa-
rameters U� and q� . The U� parameter is correlated with production parameters and ex-
traction of uncertainties and correlation coefficients requires inverting information matrices
with larger dimensions and the analytical results might be difficult to interpret. The same is
valid for the production parameters Uk and ΔΦ that are relevant for the experiments where
the goal is to study the properties of the production process. Usually such experiments have
a limited number of the collected events and analysis is done assuming the decay parameters
are known.

I Isospin decomposition

Here, we evaluate the Δ� = 1/2 and Δ� = 3/2 components of the Λ → #c and Ξ → Λc

amplitudes. As in the main text, we assume isospin symmetry for the elementary weak decay
process but take into account the impact of isospin-violating mass splittings in the kinematics.
The basic parameters in the Feynman matrix element D1 (6( −W56%)D� of the weak decay of
a spin-1/2 baryon � into another spin-1/2 baryon 1 and a pion are related to the partial-wave
amplitudes ( and % via

6( = ( , 6% = %
� + "
|q| , (2.82)

where |q|, � , and " stand for the momentum, energy, and mass, respectively, of 1 in the rest
frame of �. Further considerations on 6(,% are provided in Appendix II (see also mini-review
79.2., “Hyperon nonleptonic decays”, in Ref. [92]). The isospin breaking mentioned above
arises from the ?-wave kinematical factor |q|/(� + ") as well as the phase space volume.
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Suppose we have two decaymodes, labelled I and II, connected by isospin symmetry (e.g.,
Λ → ?c− and Λ → =c0). Our isospin-symmetry assumption for the basic parameters is then
expressible as

(6()I = (6()II , (6%)I = (6%)II . (2.83)

In view of Eqs. (2.82) and (2.83), the ( and % amplitudes (I,II and %I,II, respectively, for the
two processes, including corrections ΔI and ΔII due to different masses in the kinematical
factors, can be written as

(I = (II , %I(1 + ΔI) =: %I
�I + "I
|qI |

|q|
� + "

= %II(1 + ΔII) , (2.84)

where |q|/(� + ") contains only isospin-averaged masses,⁴ which ensures that |ΔI,II | � 1.
For Λ → ?c− ( [Λ?]), Λ → =c0 ( [Λ=]), Ξ− → Λc− ( [Ξ−]), and Ξ0 → Λc0 ( [Ξ0]), the Δs
are calculated to be at most a couple of percents in size, specifically

Δ[Λ?] = 0.007769(3) , Δ[Λ=] = −0.023631(6) , (2.85)

Δ[Ξ−] = −0.0201(9) , Δ[Ξ0] = 0.011(1) . (2.86)

The isospin decomposition, in notation similar to Ref. [146], of the ! = (, % amplitudes
for Λ → #c into their Δ� = 1/2, 3/2 components reads

! [Λ?] = −
√

2
3
!1,1 exp(8b!1,1 + 8X

!
1 ) +

√
1
3
!3,3 exp(8b!3,3 + 8X

!
3 ) ,

! [Λ=] =

√
1
3
!1,1 exp(8b!1,1 + 8X

!
1 ) +

√
2
3
!3,3 exp(8b!3,3 + 8X

!
3 ) , (2.87)

where in the ! = % case %[Λ?] and %[Λ=] on the left-hand sides are to be replaced by
(1 + Δ[Λ?])%[Λ?] and (1 + Δ[Λ=])%[Λ=] , respectively, as per the discussion in the previous
paragraph. Analogously, for the Ξ → Λc channels one has

! [Ξ−] = !1,2 exp(8b!1,2 + 8X
!
2 ) +

1
2
!3,2 exp(8b!3,2 + 8X

!
2 ) ,

! [Ξ0] =
1
√

2
!1,2 exp(8b!1,2 + 8X

!
2 ) −

1
√

2
!3,2 exp(8b!3,2 + 8X

!
2 ) , (2.88)

with %[Ξ−] → (1 + Δ[Ξ−])%[Ξ−] and %[Ξ0] → (1 + Δ[Ξ0])%[Ξ0] . Incorporating Eqs. (2.87)
and (2.88) into Eqs. (2.3) and (2.5), employing the experimental values of the pertinent U
parameters, partial rates, phase shifts, and masses, and dropping the tiny weak phases b!

9
, we

can then extract !2Δ�,2� for the Λ and Ξ modes.

In the Ξ case, due to the fact that only one phase-shift difference, X%2 − X(2 , is involved,
it turns out to be possible to derive !1,2 and !3,2 analytically in terms of empirically known
quantities, but we will not include the lengthy expressions in this paper. To evaluate them

⁴Explicitly, these are "# = ("? + "=)/2, "Ξ = ("Ξ− + "Ξ0 )/2, and " c = (2"c+ + "c0 )/3 for the
isospin nonsinglets.
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Table 2.7: Amplitudes, in dimensionless units of �F<
2
c+ , for the Δ� = 1/2

and Δ� = 3/2 transitions, and the corresponding (Δ� = 3/2)/(Δ� = 1/2)
amplitude ratios, in the Λ- and Ξ-hyperon nonleptonic decays.

Decay Δ� = 1/2 Δ� = 3/2 (Δ� = 3/2)/(Δ� = 1/2)
mode ( % ( % ( ratio % ratio

Ξ → Λc −2.05(1) 0.386(5) 0.11(2) −0.002(8) −0.05(1) −0.005(21)
Λ → #c −1.718(8) −0.759(2) −0.050(9) 0.036(9) 0.029(6) −0.05(1)

numerically, we adopt the boldfaced U[Ξ−] and U[Ξ0] numbers quoted in Table 2.2 as well
as the appropriate masses and partial rates from Ref. [92]. As for the strong phases, after
combining the relation tan

(
X%2 −X(2

)
= sin q

√
1 − U2/U with the measured U and q parameters

for the Ξ decays listed in Table 2.2, we find the average experimental value X%2 − X(2 = 1(4)◦,
which is consistent with zero and perhaps suggestive of it being considerably smaller than the
pion–nucleon phase shifts relevant to the Λ and Σ decays (given in Table 2.3).⁵ Putting things
together, we collect the resulting !1,2, !3,2, and !3,2/!1,2 in Table 2.7, all the !s written in
units of the Fermi constant �F times the charged pion’s squared mass. Evidently, the size of
(3,2 relative to (1,2 is 5%, while %3,2 is consistent with zero (less than 3% of %1,2 within one
standard deviation).

Compared to their Ξ counterparts, the Λ decay amplitudes are more complicated, having
four different strong phases, and consequently it does not seem feasible to arrive at analytical
formulas for !1,1 and !3,3. Nevertheless, one can still determine them by means of numerical
computation. Thus, with the boldfaced U[Λ?] and U[Λ=] entries in Table 2.2, the Λ → #c

phases in Table 2.3, and masses and partial rates from Ref. [92], we obtain the numbers dis-
played in the bottom row of Table 2.7. It shows that the Δ� = 3/2 components of ( and % are
3% and 5% of the corresponding Δ� = 1/2 ones in size.

If one is interested merely in the relative size of the different amplitudes, it is possible
to infer their ratios approximately from the Us and squared amplitudes upon expanding them
to linear order in the Δ� = 3/2 components or the Δ� parameters, which have effects of
comparable size on the Δ� = 1/2 contributions. This complementary procedure also helps
cross-check Table 2.7.

In this approximation, for the Ξ modes we have the U combinations

U[Ξ] :=
2U[Ξ−] + U[Ξ0]

3
= 2(̂1 %̂1 cos

(
X%2 − X(2

) [
1 + 1

3
(
1 − 2(̂2

1
) (

2Δ[Ξ−] + Δ[Ξ0]
) ]

(2.89)

exp
= −0.368(4) ,

U[Ξ−] − U[Ξ0]
U[Ξ]

=
(
1 − 2(̂2

1
) (3

2
(̂3
(̂1

− 3
2
%̂3
%̂1

+ Δ[Ξ−] − Δ[Ξ0]

)
(2.90)

exp
= 0.092(25) ,

⁵By contrast, as remarked in Sec. 2.2.2, recent theoretical studies have predicted that X%2 − X(2 might be sig-
nificantly bigger [122, 124], as much as 9◦.
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where !̂: = !:,2/
(
(2

1,2 + %
2
1,2

)1/2 for ! = (, % and : = 1, 3, implying that (̂2
1 + %̂

2
1 = 1. We

also have the squared amplitudes

|A[Ξ−] |2 = (2
1,2 +

(
1 − 2Δ[Ξ−]

)
%2

1,2 + (1,2(3,2 + %1,2%3,2 ,

|A[Ξ0] |2 = 1
2(

2
1,2 + 1

2
(
1 − 2Δ[Ξ0]

)
%2

1,2 − (1,2(3,2 − %1,2%3,2 , (2.91)

where the left-hand sides are connected via Eq. (2.5) to the observed rates Γ(Ξ− → Λc−)
and Γ(Ξ0 → Λc0), respectively, leading to

1
2
Γ(Ξ− → Λc−) − 2Γ(Ξ0 → Λc0) AΞ
Γ(Ξ− → Λc−) + Γ(Ξ0 → Λc0) AΞ

= (̂1(̂3 + %̂1 %̂3 −
2
3
(
Δ[Ξ−] − Δ[Ξ0]

)
%̂

2
1 (2.92)

exp
= −0.050(11) ,

where AΞ = 1.0270(18) is the ratio of phase space volumes of the two modes. From Eq. (2.89)
we extract (̂1 = −0.9827(4) and hence %̂1 =

(
1 − (̂

2
1
)1/2 = 0.185(2), with which we solve

Eqs. (2.90) and (2.92) for (̂3 = 0.05(1) and %̂3 = −0.001(4), and so we get (̂3/(̂1 = −0.05(1)
and %̂3/%̂1 = −0.007(20). These results can be seen to be compatible with the Ξ → Λc

entries in Table 2.7.

Similarly, in the Λ case, we have

U[Λ] :=
2U[Λ?] + U[Λ=]

3
= 2(̃1 %̃1 cos

(
X%1 − X(1

) [
1 + 1

3
(
1 − 2(̃2

1
) (

2Δ[Λ?] + Δ[Λ=]
) ]

(2.93)

exp
= 0.734(6) ,

U[Λ?] − U[Λ=]
U[Λ]

=
−3
√

2

[
(̃3
(̃1

cos
(
X%1 − X(3

)
cos

(
X%1 − X(1

) + %̃3
%̃1

cos
(
X(1 − X%3

)
cos

(
X%1 − X(1

) ]
+ 3

√
2
[
(̃1(̃3 cos

(
X(1 − X(3

)
+ %̃1 %̃3 cos

(
X%1 − X%3

) ]
+

(
1 − 2(̃2

1
) (
Δ[Λ?] − Δ[Λ=]

)
(2.94)

exp
= 0.086(24) ,

Γ(Λ → ?c−) − 2Γ(Λ → =c0) AΛ
Γ(Λ → ?c−) + Γ(Λ → =c0) AΛ

= −
√

8
[
(̃1(̃3 cos

(
X(1 − X(3

)
+ %̃1 %̃3 cos

(
X%1 − X%3

) ]
− 4

3
(
Δ[Λ?] − Δ[Λ=]

)
%̃

2
1

(2.95)
exp
= −0.053(13) ,

where !̃
:
= !:,:/

(
(2

1,1 + %
2
1,1

)1/2 for ! = (, % and : = 1, 3 and AΛ = 0.965815(8) is the ratio
of Λ → #c phase-space volumes. From Eq. (2.93) we obtain (̃1 = −0.915(2) and hence
%̃1 = −

(
1 − (̃

2
1
)1/2 = −0.404(4), with which we find (̃3 = −0.027(5) and %̃3 = 0.019(6)

from Eqs. (2.94) and (2.95) and consequently (̃3/(̃1 = 0.029(6) and %̃3/%̃1 = −0.05(1). As
expected, these are in line with the Λ → #c numbers in Table 2.7.
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Finally, we illustrate how the knowledge about the Δ� = 1/2, 3/2 components could im-
prove the accuracy of estimating the V and q parameters, which are linked to U by Eq. (2.8)
and not all of which have been measured. Focusing on theΛ channels, for the Vs we can write,
to first order in the Δ� = 3/2 amplitudes,

V[Λ?]
U[Λ?]

= tan
(
X%1 − X(1

)
+

%̃3 sin
(
X%1 − X%3

)
√

2 %̃1 cos2 (X%1 − X(1
) − (̃3 sin

(
X(1 − X(3

)
√

2 (̃1 cos2 (X%1 − X(1
) ,

V[Λ=]
U[Λ=]

= tan
(
X%1 − X(1

)
−
√

2 %̃3 sin
(
X%1 − X%3

)
%̃1 cos2 (X%1 − X(1

) +
√

2 (̃3 sin
(
X(1 − X(3

)
(̃1 cos2 (X%1 − X(1

) , (2.96)

as the contributions linear in the Δ�’s cancel in the ratios. Upon applying these formulas and
Eq. (2.8), with the boldfaced U[Λ?] and U[Λ=] values in Table 2.2, the Λ → #c strong phases
in Table 2.3, and the above calculation of (̃1,3 and %̃1,3, we arrive at

V[Λ?] = −0.100(2) , q[Λ?] = −0.153(3) , (2.97)

V[Λ=] = −0.083(3) , q[Λ=] = −0.115(7) . (2.98)

If the Δ� = 3/2 terms in Eq. (2.96) were neglected, we would instead get V[Λ?] = −0.097(2),
q[Λ?] = −0.148(3), V[Λ=] = −0.089(3), and q[Λ=] = −0.123(6), which differ from their
counterparts in Eqs. (2.97) and (2.98) by 3% and 7%, respectively. It is interesting to notice
that the q[Λ?] prediction in Eq. (2.97) is 20 times more precise than the direct measurement
of −0.113(61) quoted in Table 2.2.

II Effective Lagrangian and parameterization of amplitudes

A hermitian effective Lagrangian for the initial decay � → 1c where all baryons have
spin-1/2 is given by

L = 6( 81�c − 6∗( 8�1 c − 6% 18W5�c − 6∗% �8W51 c . (2.99)

The 6( terms lead to B-waves for the decay products, the 6% terms lead to ?-waves and the
6( terms break parity (P) symmetry while the 6% terms do not. If 6( is real, then the 6(
terms break P and C, but conserve CP symmetry. If 6% is real, then the 6% terms conserve C
symmetry and therefore also CP. One can make 6% real and positive by moving its phase into
a redefinition of the �-baryon field (and a redefinition of the discrete transformations by an
additional phase). The CP symmetry is then conserved, if the parameter 6( is real.

Except for an irrelevant overall phase, one might write the decay matrix elements as

M�→1c ∼ D1 (6( − 6%W5) D� , M
�→1c ∼ E�

(
−6∗( − 6

∗
%W5

)
E1 . (2.100)

This fits to the conventions of the Particle Data Group. Then one reads off: (ini ∼ 6( , (ini ∼
−6∗

(
, %ini ∼ 6%, %ini ∼ 6∗% where the ?-waves pick up an additional phase space factor that we

have not displayed explicitly. The relations between partial-wave amplitudes and parameters
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from the Lagrangian suggest writing for the initial amplitudes

(ini = |( | 48 b( , %ini = |% | 48 b% ,

(ini = −|( | 4−8 b( , %ini = |% | 4−8 b% . (2.101)

Strictly speaking, b% is not needed. What matters is the relative phase between ( and %, which
can be expressed via b(−b% but equally well via b( if one puts b% = 0. In principle, phases can
vary between 0 and 2c or −c and c. However, an overall minus sign for all amplitudes would
not lead to an observable consequence. Therefore, it is sufficient to consider b( − b% ∈ [0, c)
or ∈ [−c/2, +c/2). If (2.101) were the complete amplitudes, then one would always find
U = −U and V = V, irrespective of CP violation or conservation. For the case of CP symmetry,
one would find V = 0.

This whole analysis leaves out final-state interactions. Rescattering is a non-local phe-
nomenon that cannot be treated by a tree-level calculation using a local, hermitian Lagrangian.
Instead, one can use explicit loop calculations if one has a microscopic picture of the reaction,
or one can use an Omnès-function matrix that parameterizes the final-state interactions. This
is discussed in more detail in Appendix III.

III Treatment of final-state interactions

In the following, we discuss in some detail the treatment of final-state interactions for the main
decays of theΛ andΛ baryons. The case ofΞ0,− decays is just simpler. Concerning the general
treatment of final-state interactions, see also [147–151]. The hyperon decays that we study
in the present work do not allow for many intermediate inelastic channels, since the decaying
strange quark is not very heavy. Decays of charm or bottom baryons would provide much
more phase space and correspondingly contain many more open channels. Kinematically
closed channels might become important if they are strong (e.g. resonance enhanced) and if
their threshold is close to the studied invariant mass (e.g. this happens for the 50(980) and
the kaon–antikaon threshold [152]). There are no non-strange resonances close to the Λmass
and no single-strange resonances close to the Ξ mass.

The relevant decay channels of Λ are (?c−)( , (?c−)%, (=c0)( , (=c0)% where the sub-
script denotes the partial wave. It is more convenient to build linear combinations with respect
to the isospin of the final states. Then the four decay channels are (#c)(,�=1/2, (#c)(,�=3/2,
(#c)%,�=1/2, (#c)%,�=3/2. Following the conventions of the main text, we denote the corre-
sponding decay amplitudes by !1,1 for � = 1/2 and by !3,3 for � = 3/2; here ! = (, %. The
initial decay amplitudes that emerge from the weak process are denoted by !ini

... . For the cor-
responding antiparticle decays, we use !.... We assume baryon number conservation. Then
there are no oscillations betweenΛ and its antiparticleΛ. But the final-state interactions (FSI)
might allow for transitions between the 4 final states (#c)(,�=1/2, (#c)(,�=3/2, (#c)%,�=1/2,
and (#c)%,�=3/2. This defines a coupled-channel problem. We assume that the weak process
is of short-distance nature such that no structure is resolved. Therefore, the discontinuity of
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a decay amplitude is solely given by the FSI. This defines an Omnès problem [153]; for an
analogous situation, see e.g. [152].

In general, one has a 4 × 4 Omnès-function matrix Ω that parameterizes the FSI. This
matrix maps the “bare” amplitudes of the initial decay onto the “full” amplitudes that contain
the FSI:

©«
(1,1

(3,3

%1,1

%3,3

ª®®®®®¬
= Ω

©«
(ini

1,1
(ini

3,3
%ini

1,1
%ini

3,3

ª®®®®®¬
. (2.102)

The corresponding equation for the antiparticle sector reads

©«
(1,1

(3,3

%1,1

%3,3

ª®®®®®¬
= Ω

©«
(

ini
1,1

(
ini
3,3

%
ini
1,1

%
ini
3,3

ª®®®®®®¬
. (2.103)

Next, we assume that parity and charge conjugation are both conserved by the FSI. This
is true for strong and electromagnetic FSI. In this case, the FSI are the same in the particle
and antiparticle sector, i.e. Ω = Ω, and there is no cross talk between the parity-even ?-waves
and the parity-odd B-waves:

Ω = Ω =

(
Ω( 0
0 Ω%

)
(2.104)

with 2 × 2 matrices Ω( and Ω%.

Finally, we assume isospin symmetry. Then the 2 × 2 matrices become diagonal. Wat-
son’s theorem [125] ensures that the phase of the pertinent Omnès function agrees with the
scattering phase shift X!,2� of the corresponding #-c scattering:

Ω! = diag
(
|Ω!,2�=1 | 48 X!,1 , |Ω!,2�=3 | 48 X!,3

)
(2.105)

with ! = (, %. Here it is of advantage that we changed from the particle basis (?c− and =c0)
to the isospin basis (� = 1/2 and � = 3/2). In the particle basis, the 2 × 2 Omnès matrices
would not be diagonal.

Of course, if required by precision, the assumptions that lead from more general 4 × 4
matrices in (2.102) and (2.103) to (2.104) and (2.105) can be relaxed one by one.
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IV Average polarization and spin-correlation terms

Expression for average polarization squared

〈P2
�〉 =

∫
P2
�

(
1
f

df
dΩ�

)
dΩ� =

3
2

∫
P2
�

1 + Uk cos2\

3 + Uk
dcos \ , (2.106)

where P� is given by Eq. (2.40). The integral can be calculated exactly, and the result is
expressed as

〈P2
�〉 = p0 + p2%

2
4 , (2.107)

where

p0 =

(
1 − U2

k

)
sin2(ΔΦ)

U2
k
(3 + Uk)

{
3 + 2Uk − 3(1 + Uk)F(Uk)

}
, (2.108)

p2 =
3(1 + Uk)2

Uk (3 + Uk)

{
1 −

1 − Uk
1 + Uk

cos2(ΔΦ) −
(
1 − (1−Uk) cos2(ΔΦ)

)
F(Uk)

}
. (2.109)

The function � (U) is

� (U) :=
∫ 1

0

dG
1 + UG2 =


arctan

√
U√

U
0 < U ≤ 1

1 U = 0
arctanh

√
|U |√

|U |
−1 < U < 0

. (2.110)

Properties of the function � (1) = c
4 and limU→−1 � (U) = ∞. The function is drawn in

Fig. 2.18. For Uk = 1 the coefficients are

p0 = 0 and p2 =
3(4 − c)

4
≈ 0.6438 (2.111)

and for Uk = 0

p0 =
2
15

sin2(ΔΦ) and p2 =
2 + cos(2ΔΦ)

3
. (2.112)

One derives similar expressions for the sum of the squares of the spin-correlation terms. The
result can be expressed as

〈S2
��

〉 = s0 + s2%
2
4 , (2.113)

where

s0 =
1

U2
k
(3 + Uk)

{(
1 − U2

k

)
(2Uk + 3) cos(2ΔΦ) − 7U3

k − 2Uk − 3

−3(Uk + 1)2� (Uk)
[
(1 − Uk) cos(2ΔΦ) + Uk − 2U2

k − 1
]}
, (2.114)

s2 =
6(1 − U2

k
) sin2(ΔΦ)

Uk (3 + Uk)
{
(1 + Uk)� (Uk) − 1

}
. (2.115)
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Figure 2.18: Function � (U) defined in Eq. (2.110). The function is divergent
for U → −1.

For the 4+4− → �� process specified by the parameters Uk, Vk and Wk the polarization
and spin-correlation terms as a function of the �-baryon production angle \ are

P2
� (cos \) = 2

(Uk + 1)2%2
4 cos2 \ + sin2 \

(
V2
k

cos2 \ + %2
4W

2
k

)
(
1 + Uk cos2 \

)2 , (2.116)

S2
��

(cos \) =

(
U2
k
+ 1

)
sin4 \ +

(
Uk + cos2 \

)2 + 2 sin2 \
(
W2
k

cos2 \ + %2
4V

2
k

)
(
1 + Uk cos2 \

)2 . (2.117)

V Modification of the Fisher information matrices to include back-
ground

Neglecting resolution effect for the / variables the overall probability density function includ-
ing background term, P� (/), and relative detection efficiency n (/) is

P) (/;8) = ?P(/;8)n (/) + (1 − ?)P� (/) . (2.118)

We impose the normalization
∫
P� (/)d/ = 1 for the background and

∫
P(/;8)n (/)d/ = 1

for the signal. The last condition implies that the relative efficiency n (/) must be equal to
one if it is constant. The coefficient ? = (/# represents the ratio of the number of the signal
events, (, to the total number of the signal and background events # . It is assumed that the
ratio is fixed and has a known value. The Fisher information matrix Eq. (2.52) now reads:

I(l: , l;) := #
∫

1
P)

mP)
ml:

mP)
ml;

d/

= #?2
∫

1
P)

mP
ml:

mP
ml;

n2(/)d/ . (2.119)
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We rewrite the background distribution as

P� (/) =:
1 + G� (/)

V (2.120)

and use Eq. (2.57) representation for the signal with�00 = 1. The term 1/P) can be therefore
written as

1
P) =

V
1 + ?(n − 1) + ?Gn + (1 − ?)G� (2.121)

≈ V
1 + ?G , (2.122)

where the approximate form is obtained by setting n (/) = 2>=BC. ≡ 1 and G� = 0. Therefore,
the analytical 0-th order approximations for experiments with background can be obtained by
replacing # → (2/# in our expressions.
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Summary of the second chapter

• Hyperon-antihyperon pairs are produced in 4+4− annihilation via charmonia decays.
The effect of the beam polarization in the production process is explored in the context
of upcoming facilities such as STCFs.

• The spin-correlation matrix for the production of spin-1/2 baryon–antibaryon pairs is
derived: the polarization vectors of the pair gain additional components directly pro-
portional to the beam polarization, which also affects the spin-correlation within the
pair.

• The joint angular distribution (JAD) including the nonleptonic decays of the ��̄ pair is
obtained and used in an approximate maximum likelihood method to derive the Fisher
information matrix for the CP observables. The PDF is approximated analytically to
derive compact expressions for the uncertainties for the CP observables. The impact
of higher-order terms in the approximating series is explored by comparison with the
exact numerical results, and found to be small: the zeroth order term provides a good
description of the uncertainties for the examined hyperon decays.

• The statistical uncertainties are also investigated for varying values of beam polarization
%4, on ST and DT analyses. The CP tests show improved precision with increasing %4,
with a factor of four reduction of the uncertainties size around the attainable value
%4 ∼ 0.8 − 0.9.

• The current status of CPV phenomenology is reviewed, expressing hyperon nonleptonic
decays in terms of partial wave-amplitudes S, P using isospin decomposition. An up-
dated estimate of the relative size between LO and first-order correction was provided
in light of recent decay asymmetry measurements.





75

3
Semileptonic decays of spin-entangled
baryon–antibaryon pairs

This chapter originally appeared as “Semileptonic decays of spin-entangled baryon–antibaryon
pairs” by V. Batozskaya, A. Kupsc, N. Salone and J. Wiechnik, Physical Review D 108, 1,
016011, 2023. Copyright (2023) by the American Physical Society.

Abstract

A modular representation for the semileptonic decays of baryons originating from spin polar-
ized and correlated baryon–antibaryon pairs is derived. The complete spin information of the
decaying baryon is propagated to the daughter baryon via a real-valued matrix. It allows to
obtain joint differential distributions in sequential processes involving the semileptonic decay
in a straightforward way. The formalism is suitable for extraction of the semileptonic form fac-
tors in experiments where strange-baryon–antibaryon pairs are produced in electron–positron
annihilation or in charmonia decays. We give examples such as the complete angular distribu-
tions in the 4+4− → ΛΛ̄ process, where Λ → ?4− ā4 and Λ̄ → ?̄c+. The formalism can also
be used to describe the distributions in semileptonic decays of charm and bottom baryons.
Using the same principles, the modules to describe electromagnetic and neutral current weak
baryon decay processes involving a charged lepton–antilepton pair can be obtained. As an
example, we provide the decay matrix for the Dalitz transition between two spin-1/2 baryons.

3.1 Introduction

Baryon semileptonic (SL) decays are an important tool to study transitions between ground
state baryons. Comparing to the nonleptonic baryon decays where at least three hadronic
currents are involved, the SL transition involves only a two-point hadronic vertex and the ex-
ternal,-boson field coupled to the leptonic current. The properties of the hadronic vertices

https://doi.org/10.1103/PhysRevD.108.016011
https://doi.org/10.1103/PhysRevD.108.016011
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are described by a set of scalar functions, form factors, that depend on the invariant mass
squared of the emitted virtual ,-boson. In particular, the semileptonic processes allow to
probe the kinematic regions of the form factors that are dominated by the static properties
of the baryons. The recent progress in the lattice quantum chromodynamics gives a hope to
determine the properties of the form factors from the first principles with the accuracy suf-
ficient for a comparison with precise experimental data [154]. Once the hadronic effects are
well understood, the SL decays will provide a complementary method to determine Cabbibo–
Kobayashi–Maskawa matrix elements [66] and to search for beyond the Standard Model ef-
fects such as violation of lepton flavor and charge-conjugation–parity symmetries [155]. In
this article, we provide amodular description of the semileptonic decays that can be used to ex-
tract properties of the form factors in the experiments using spin entangled baryon–antibaryon
pairs.

The helicity amplitudemethod [156–158] that is commonly used in the analyses of semilep-
tonic decays allows to express the angular distributions in an efficient and compact way. The
complete process is described as a sequence of two-body decays, where each of them is
analyzed in the rest frame of the subsequent decaying particle. For a semileptonic decay
�1 → �2 + ℓ− āℓ , the first decay step �1 → �2,

−
off-shell is analyzed in the �1 rest frame,

whereas ,−
off-shell → ℓ− āℓ is analyzed in the ,−

off-shell rest frame. The resulting expressions
for the differential distributions are compact and can be written in a quasi-factorized form.
The formalism also describes joint angular distributions in the semileptonic decays of a spin
polarized baryons.

A novel approach to study strange baryon decays is to use hyperon–antihyperon pairs from
�/k resonances produced in electron–positron annihilations [45]. The complete angular dis-
tribution in such processes can be conveniently represented using a product of real-valued
matrices that describe the initial spin-entangled baryon–antibaryon state and chains of two-
body weak decays. These matrices can be rearranged to describe many decay scenarios in the
4+4− → ΛΛ̄, 4+4− → ΞΞ̄ and similar processes [45, 47, 52, 105]. Several high-profile analy-
ses using multidimensional maximum likelihood fits to angular distributions were performed
by the electron–positron collider experiment BESIII [65, 159] using this modular formalism.
These multidimensional analyses have demonstrated increased precision of the decay param-
eters measurements and enabled to observe effects that were averaged out in previous studies,
such as a polarization of the hyperon–antihyperon pair from charmonia decays.

The same spin-entangled hyperon–antihyperon system can be used to study semileptonic
decays such as Λ → ?4− ā4 or Ξ− → Λ4− ā4. The processes are relatively rare with the
branching fractions (BFs) 8.32(14) × 10−4 and 5.63(31) × 10−4, respectively [160]. In the
reactions 4+4− → �/k → ΛΛ̄ and 4+4− → �/k → Ξ−Ξ̄+ the hyperon semileptonic decay is
tagged via a common decay of the antihyperon: Λ̄ → ?̄c+ and Ξ̄+ → Λ̄c+, respectively. The
tagging processes involve only charged particles in the final state, therefore their momenta can
be precisely determined. This allows one to reconstruct the momentum of the antineutrino
in the semileptonic process and to determine the four-momentum squared of the lepton pair
that is needed to study the dynamics of the process. The polarization of the hyperons is given
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by the angular distributions in their decays, but usually the polarization of the leptons is not
measured. Such double-tag (DT) technique is often used to determine absolute branching
fractions in electron–positron collider experiments [161]. With large number of collected
events in experiments such as BESIII [162] studies of decay distributions in the semileptonic
hyperon decays are possible. A formalism that uses spin correlations and polarization of
the produced baryon–antibaryon system is needed to determine the decay parameters with
the best precision. The purpose of this report is to extend the approach from Refs. [47, 52]
to include decay matrices representing the three-body semileptonic processes. Our starting
point is the helicity formalism for semileptonic decays from Ref. [158]. We construct a real-
valued decay matrix relating the initial and final baryons’ spin states, represented by the Pauli
matrices. The obtained decay matrix is used to construct the full joint decay distributions of
the spin-entangled baryon–antibaryon pair in a modular way.

The paper is organized as follows: in Sec. 3.2 and Sec. 3.4 we review the formalism
to describe baryon–antibaryon production process and semileptonic decays, respectively. In
Sec. 3.5 the main result is derived — the spin-density matrix of the daughter baryon in the
semileptonic decay. Sec. 3.6 presents modular formulas to describe the angular distributions
of the semileptonic hyperon decays. Finally, in Sec. 3.7 we collect some numerical results.

3.2 Production process

In general a state of two spin-1/2 particles e.g. a baryon–antibaryon pair �1�̄1 can be written
as [52]

d�1 �̄1 =

3∑
`,ā=0

�`āf
�1
` ⊗ f�̄1

ā
, (3.1)

where a set of four Pauli matrices f�1
` (f�̄1

ā
) acting in the rest frame of a baryon �1(�̄1)

is used and �`ā is a 4×4 real matrix representing polarizations and spin correlations of the
baryons. Here we consider mainly baryon–antibaryon systems created in the 4+4− → �1�̄1

process. However, the formalism can be applied for the pairs from decays of (pseudo)scalar
or tensor particles such as k(2(), [2, j20, j22 → �1�̄1 or in a fact to any pair of spin-1/2
particles (for example baryon–baryon, muon–antimuon and others). The spin matrices f�1

`

and f�̄1
ā

are given in the coordinate systems with the axes denoted x̂1, ŷ1, ẑ1 and x̂3, ŷ3, ẑ3

as shown in Fig. 3.1. The directions of the two right-handed coordinate systems are related
as (x̂3, ŷ3, ẑ3) = (x̂1,−ŷ1,−ẑ1). The spin correlation matrix �`ā for the reaction 4+4− →
�1�̄1 depends in the lowest order on two parameters, Uk ∈ [−1, 1] and ΔΦ ∈ [−c, c). The
elements of the�`ā matrix are functions of the baryon �1 production angle \1 in the electron–
positron center-of-momentum (c.m.) system. The matrix for the single photon annihilation
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Figure 3.1: Definition of the three coordinate systems used to describe
the spin-entangled �1�̄1 state. The overall c.m. frame with ẑ axis (e.g.
for 4+4− → �1�̄1 it is defined along the positron momentum). The axes
in baryon �1 and antibaryon �̄1 rest frames (helicity frames) are denoted

(x̂1, ŷ1, ẑ1) and (x̂3, ŷ3, ẑ3), respectively.

of unpolarized electrons and positrons is [52]:

�`ā ∝
©«

1 + Uk cos2 \1 0 Vk sin \1 cos \1 0
0 sin2 \1 0 Wk sin \1 cos \1

−Vk sin \1 cos \1 0 Uk sin2 \1 0
0 −Wk sin \1 cos \1 0 −Uk − cos2 \1

ª®®®®®¬
, (3.2)

where the parameters Vk and Wk are expressed via Uk and ΔΦ as Vk =

√
1 − U2

k
sin(ΔΦ)

and Wk =

√
1 − U2

k
cos(ΔΦ). We will also use a more general formula from Ref. [47] that

describes the annihilation processes with polarized electron beams.

3.3 Invariant form factors

Let us consider a semileptonic decay of a 1/2+ hyperon �1 into a 1/2+ baryon �2 and an off-
shell ,−-boson decaying to the lepton pair ;− ā; with the momenta and masses denoted as
�1(?1, "1) → �2(?2, "2) + ;− (?;, <;) + ā; (?a , 0). The matrix elements due to the vector
�+` and axial-vector ��` currents in notation from Ref. [158] are:

〈�2 |�+` + ��` |�1〉 = D̄(?2)
[
W`

(
�+1 (@2) + ��1 (@2)W5

)
+
8f`a@

a

"1

(
�+2 (@2) + ��2 (@2)W5

)
+
@`

"1

(
�+3 (@2) + ��3 (@2)W5

)]
D(?1) ,

(3.3)
where @` := (?1 − ?2)` = (?; + ?a)` is the fourmomentum transfer. The fourmomentum
squared @2 ranges from <2

;
to ("1−"2)2. The form factors �+,�1,2,3(@

2) are complex functions
of @2 that describe hadronic effects in the transition. Neglecting possible CP-oddweak phases,
the corresponding form factors are the same for the (;−, ā;) and (;+, a;) transitions. To fully
determine the hadronic part of a semileptonic decay, the six involved form factors should be
extracted as a function of @2. The form factors are usually parameterized by the axial-vector
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to vector 60E coupling, the weak-magnetism 6F coupling and the pseudoscalar 60E3 coupling.
They are obtained by normalizing to �+1 (0):

60E =
��1 (0)
�+1 (0)

, 6F =
�+2 (0)
�+1 (0)

, 60E3 =
��3 (0)
�+1 (0)

. (3.4)

For experiments with a limited number of events, the @2-dependence of the form factors is
assumed using a model. The standard approach is to include one or more poles of the mesons
that have the correct quantum numbers to mix with the , boson and have the masses close
to the @2 range in the decay. Traditionally one pole is explicitly included together with an
effective contribution from other poles [163] such as in the Becirevic–Kaidalov (BK) [164]
parameterization:

�8 (@2) = �8 (0)
1 − @2

"2

1

1 − UBK
@2

"2

, (3.5)

where the dominant pole mass " is outside the kinematic region and the parameter UBK

represent an effective contribution from the meson poles with higher messes. Here the case
UBK = 0 represents the dominant pole contribution. This parameterization gives real-valued
form factors. If more data is available, one or more extra parameters can be added to describe
the @2 distribution. In the hyperon decays the range of @2 ≤ ("1 − "2)2 is limited and in
the first order can completely neglect the @2 dependence using the values of the couplings at
the @2 = 0 point. A better approximation is to include an effective-range parameter A8 that
represent linear dependence on @2:

�8 (@2) = �8 (0)
[
1 + A8@2 + ...

]
. (3.6)

For example, using (3.5) the effective-range parameter is A8 = (1 + UBK)/"2. The main
take-away message from the above discussion is that, for practical purposes, the @2 depen-
dence of an SL form factor can be represented by one or two parameters. In experiments,
these parameters can be determined from the observed distributions. The optimal method for
such parametric estimation is the maximum likelihood method using multidimensional un-
binned data. We will first construct modular formulas for the angular distributions and then
in Sec. 3.7 discuss the attainable statistical uncertainties for the SL form factors parameters
as the function of the number of observed events.

3.4 Helicity amplitudes

We will describe the �1 → �2 +,−
off-shell process using three coordinate systems attached to

the three involved particles. In the baryon �1 rest frame R1, with the (x̂1, ŷ1, ẑ1) Cartesian
coordinate system shown in Fig. 3.1, the �1-spin projection on the quantization axis ẑ1 is ^ =
±1/2. The daughter baryon �2 is emitted in the direction given by the spherical coordinates
\2, q2 in R1 and the �2-helicity is _2 = ±1/2. The off-shell ,− boson is emitted in the
direction \, = c− \2, q, = c +q2 in the R1 frame. It has helicity _

,
= {C,−1, 0, +1} where

the time component, _
,

= C, corresponds to �, = 0 and the remaining three components
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to �, = 1. Therefore, _
,

uniquely defines both spin �, and helicity _, as �, (_
,
) =

{0, 1, 1, 1} and _, (_
,
) = {0,−1, 0, 1}, respectively. The fourmomentum vector of the off-

shell ,− is @` = (@0, ? sin \, cos q, , ? sin \, sin q, , ? cos \, ) in the R1 system. The
energy @0 of the off-shell ,− boson and the magnitude of the three-momentum ? are the
following functions of the @2 invariant

@0(@2) = 1
2"1

("2
1 − "2

2 + @2) (3.7)

and
?(@2) = |p2 | =

1
2"1

√
&+&−, (3.8)

where
&± = ("1 ± "2)2 − @2. (3.9)

The spin direction and subsequent decays of the baryon �2 and boson,−
off-shell are described

in two helicity systems denoted R2 and R, , respectively. The helicity frame R2 is obtained
by performing three active rotations: (a) around the ẑ1–axis by −q2; (b) a rotation around the
new ŷ–axis by −\2; (c) a rotation around the ẑ2-axis by +j2, see Fig. 3.2 [49]. The first two
rotations are sufficient to align p2 with the I-axis and such two-rotations prescription is used
e.g. in Ref. [52]. Here we allow for an additional rotation that can be e.g. used to bring the
momenta p2, p; and pa to one plane. Initially, we consider the angle j2 of this rotation as an
arbitrary parameter. The combined (a)–(c) three-dimensional rotation is given by the product
of three axial rotations R(j2,−\2,−q2) = 'I (j2)'H (−\2)'I (−q2). Subsequently, one then
boosts to the �2 rest frame. The R, frame is defined using the same procedure with the
rotation matrix R(j, ,−\, ,−q, ) and the subsequent boost to the,−

off-shell rest frame. Since
the,−

off-shell direction is opposite to �2 in R1, one has q, = c+q2 and \, = c−\2. In order to
assure that the coordinate systems in R2 and R, are related as (x̂2, ŷ2, ẑ2) = (x̂, ,−ŷ, ,−ẑ, )
we set j, = −j2.

The matching transition amplitude between �1 and the two daughter particles expressed
using the defined above helicity frames is [49, 52]:

〈Ω2, _2, _, |( |�=1/2, ^〉 =
√

2� + 1
8c2 〈_2, _, |( |�=1/2, ^〉 D1/2∗

^,_2−_, (Ω2)

=
1

2c
�_2,_,

(@2)D1/2∗
^,_2−_, (Ω2) , (3.10)

where D�
<1,<2 (Ω2) := D�

<1,<2 (q2, \2,−j2) is the Wigner rotation matrix, where the conven-
tion D�

<1,<2 (q, \, j) = 4−8<1q−8<2jD�
<1,<2 (0, \, 0) = 4−8<1q−8<2j3�<1,<2 (\) is used (see

Appendix I). The order and the signs of the anglesΩ2 = {q2, \2,−j2} in theWigner functions
are opposite to the used in the rotations to define the helicity reference frames. In addition,
the normalization factor is different since we allow for three independent rotation angles. The
helicity amplitudes �_2,_,

(@2) are functions of @2 and depend on the helicities of the daugh-
ter particles. The vector and axial-vector helicity amplitudes �_2,_,

= �+
_2,_,

+ ��
_2,_,

are
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Ĝ1

Ĥ1
Î1

Ĝ2

Ĥ2
Î2

Î,

Ĝ,

Ĥ,

\;

Figure 3.2: Definition of the three coordinate systems used to describe
the semileptonic decay �1 → �2 + ,−

off-shell. The axes in the �1, �2 and
,−

off-shell rest frames (helicity frames: R1, R2 andR, ) are denoted (x̂1, ŷ1, ẑ1),
(x̂2, ŷ2, ẑ2) and (x̂, , ŷ, , ẑ, ), respectively.

related to the invariant form factors in the following way:

�+1
2 C

=

√
&+√
@2

[
("1 − "2)�+1 + @2

"1
�+3

]
,

�+1
2 1

=
√

2&−

[
−�+1 − "1 + "2

"1
�+2

]
,

�+1
2 0

=

√
&−√
@2

[
("1 + "2)�+1 + @2

"1
�+2

]
,

��1
2 C

=

√
&−√
@2

[
−("1 + "2)��1 + @2

"1
��3

]
,

��1
2 1 =

√
2&+

[
��1 − "1 − "2

"1
��2

]
,

��1
2 0 =

√
&+√
@2

[
−("1 − "2)��1 + @2

"1
��2

]
,

(3.11)

where the remaining helicity amplitudes are obtained by applying the parity operator:

�+−_2,−_,
= �+_2,_,

, ��−_2,−_,
= −��_2,_,

. (3.12)

The decay,− → ;− ā; is described in R, where the emission angles of the ;− lepton are
\; and q;. The value of the lepton momentum in this frame is

|p; | =
@2 − <2

;

2@
. (3.13)
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The decay amplitude reads

〈Ω;, _;, _a |(; |�, , @2, _,〉 =
√

2�, + 1
4c

(−1)�, ℎ;_;_a (@
2)D�,∗

_, ,_;−_a (Ω;) , (3.14)

where Ω; = {q;, \;, 0}. The helicity amplitudes ℎ;
_;_a

for the elementary transition to the
final lepton pair can be calculated directly by evaluating the Feynman diagrams. The neutrino
helicities are _a = 1/2 and _a = −1/2 for (;−, ā;) and (;+, a;), respectively. The moduli
squared of ℎ;

_;_a
are [158]:

nonflip(_
,

= ∓1) : |ℎ;
_;=∓ 1

2 ,_a=±
1
2
|2 = 8X(_; + _a) (@2 − <2

; ), (3.15)

flip(_
,

= 0, C) : |ℎ;
_;=± 1

2 ,_a=±
1
2
|2 = 8X(_; − _a)

<2
;

2@2 (@
2 − <2

; ), (3.16)

where here and in the following the upper and lower signs refer to the configurations (;−, ā;)
and (;+, a;), respectively.

The representations in Eqs. (3.10) and (3.14) imply that the complete amplitude for the
�1(^) → �2(_2) transition reads:∑

_,

〈Ω;, _;, _a |(; |@2, _
,
〉 〈Ω2, _2, _, |( |1/2, ^〉 , (3.17)

where the _
,

sum runs over the four,-boson helicity components {C,−1, 0, +1}. An explicit
representation of the amplitude with the angular part separated is∑
_,

(−1)�, ℎ;_;_aD
�,∗
_, ,_;−_a (Ω;)�_2,_,

D1/2∗
^,_2−_, (Ω2) =∑

_,

(−1)�, ℎ;_;_a3
�,
_, ,_;−_a (\;)�_2,_,

3
1/2
^,_2−_, (\2) exp [8^q2 + 8_2j2 − 8_, (j2 − q;)] ,

(3.18)

where the final expression combines all azimuthal-angle rotations in one term. One can con-
sider two options for selecting j2 to define the transversal orientation of theR2 andR, helicity
frames. The first option is to set j2 = 0 as in Ref. [52] where the corresponding azimuthal
angle of the charged lepton in the R, system is q0

;
. An alternative is to select j3-b

2 so that x̂2

is in the decay plane of the semileptonic decay. In this case the momenta of the leptons are in
this plane which corresponds to q3-b

;
= 0 and the j3-b

2 = q0
;
relation holds.
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The amplitude can be rearranged by inserting a complete spin basis for the baryon �2 to
represent transition between �1(^) and �2(_2):

1/2∑
_′=−1/2

∑
_,

〈Ω;, _;, _a |(; |@2, _
,
〉 〈_2, _, |_′〉 〈Ω2, _

′ |( |1/2, ^〉 (3.19)

=
1

2c

1/2∑
_′=−1/2

D1/2∗
^,_′ (Ω2)


∑
_,

〈Ω;, _;, _a |(; |@2, _
,
〉 〈_2, _, |_′〉 �_2,_,

(@2)
 (3.20)

=
1

2c

1/2∑
_′=−1/2

D1/2∗
^,_′ (Ω2)H_′ ,_2 (Ω;, @2, _;, _a) . (3.21)

Therefore the angular dependence on Ω2 can be separated in the amplitude of the complete
process. Since usually experiments do not measure polarization of the leptons, it is useful to
consider a tensor that describes the,±-boson decay with the lepton helicities summed over:

!_, ,_
′
,
(@2,Ω;) :=

1/2∑
_;=−1/2

〈Ω;, _;, _a |(; |, @2, _′
,
〉∗ 〈Ω;, _;, _a |(; |@2, _

,
〉 (3.22)

=
3

4c

1/2∑
_;=−1/2

|ℎ;_;_a (@
2) |2(−1)�,+� ′

,D�,∗
_, ,_;−_a (Ω;)D

� ′
,

_′
,
,_;−_a (Ω;)

(3.23)

=
3

4c
48 (_,−_′

,
)q;

1/2∑
_;=−1/2

|ℎ;_;_a (@
2) |2(−1)�,+� ′

, 3
�,
_, ,_;−_a (\;)3

� ′
,

_′
,
,_;−_a (\;) .

(3.24)

The interference contribution from _
,

= C and _
,

= 0 gives an extra minus sign. We write
the tensor as:

!_, ,_
′
,
(@2,Ω;) =

6
c
(@2 − <2

; )
[
ℓnf
_, ,_

′
,
(Ω;) + Yℓf_, ,_′, (Ω;)

]
, (3.25)

where Y = <2
;
/(2@2). The hermitian matrix for the nonflip transition reads

ℓnf
_, ,_

′
,
(Ω;) =

©«

0 0 0 0
0 (1±cos \; )2

4 ∓ 4
−8q; sin \; (1±cos \; )

2
√

2
1
44

−28q; sin2 \;

0 ∓ 4
8q; sin \; (1±cos \; )

2
√

2
1
2 sin2 \; ∓ 4

−8q; sin \; (1∓cos \; )
2
√

2
0 1

44
28q; sin2\; ∓ 4

8q; sin \; (1∓cos \; )
2
√

2
(1∓cos \; )2

4

ª®®®®®®¬
,

(3.26)
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while for the flip transition

ℓf
_, ,_

′
,
(Ω;) =

©«

1 − 4
8q; sin \;√

2
− cos \; 4−8q; sin \;√

2
− 4

−8q; sin \;√
2

sin2 \;
2

4−8q; sin \; cos \;√
2

− 1
24

−28q; sin2\;

− cos \; 48q; sin \; cos \;√
2

cos2 \; − 4
−8q; sin \; cos \;√

2
48q; sin \;√

2
− 1

24
28q; sin2\; − 4

8q; sin \; cos \;√
2

1
2 sin2 \;

ª®®®®®®¬
.

(3.27)

3.5 Decay matrix

Here, we derive a matrix that relates the spin of the baryon �2 to the spin of the baryon �1

in �1 → �2ℓaℓ where the state of the lepton pair with the summed spin projections is given
by the !_, ,_′, (@2,Ω;) tensor in Eq. (3.23). The transition can be represented by a tensor
) ^^

′ ,_2_
′
2 that describes how the initial spin-density matrix d^^ ′1 of the baryon �1 transforms

to the density matrix d_2_
′
2

2 of the baryon �2:

d
_2_

′
2

2 = ) ^^
′ ,_2_

′
2d^^

′

1 . (3.28)

Using Eq. (3.10) the transition tensor is given as

) ^^
′ ,_2_

′
2 =

1
4c2

∑
_, ,_

′
,

�_2_,
�∗
_′2_

′
,
D1/2∗
^,_2−_, (Ω2)D1/2

^ ′ ,_′2−_
′
,

(Ω2)!_, ,_′, (@2,Ω;) (3.29)

≡ 1
4c2

∑
_, ,_

′
,

)
^^ ′ ,_2_

′
2

_, ,_
′
,

(@2,Ω2)!_, ,_′, (@2,Ω;) . (3.30)

The explicit expression for the phases of the hadronic tensor due to the azimuthal rotations is

)
^^ ′ ,_2_

′
2

_, ,_
′
,

(@2,Ω2) = �_2_,
�∗
_′2_

′
,
3

1/2
^,_2−_, (\2)31/2

^ ′ ,_′2−_
′
,

(\2)

× exp [8^q2 + 8_2j2 − 8_, j2]

× exp
[
−8^′q2 − 8_′2j2 + 8_′, j2

]
,

(3.31)

where we use the generic case withΩ2 = {q2, \2, j2} andΩ; = {q;, \;, 0}. The overall phases
of the contraction of the above hadronic tensor and the leptonic tensor in Eq. (3.24) for the
two choices of the orientations of the coordinate systems R2 and R, are:

(j2 = 0) → exp
[
8(^ − ^′)q2 + 8(_, − _′, )q0

;

]
, (3.32)

(q3-b; = 0) → exp
[
8(^ − ^′)q2 + 8(_2 − _′2)j

3-b
2

]
(3.33)

= exp
[
8(^ − ^′)q2 + 8(_2 − _′2)q

0
;

]
. (3.34)

The two representations are not equivalent but can be written in terms of the tensors evaluated
for Ω0

2 := {q2, \2, 0} and Ω0
;
= {0, \;, 0} as
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) ^^
′ ,_2_

′
2 (j2 = 0) = 1

4c2

∑
_, ,_

′
,

exp
[
8(_, − _′, )q0

;

]
)
^^ ′ ,_2_

′
2

_, ,_
′
,

(Ω0
2)!_, ,_′, (Ω0

; ), (3.35)

) ^^
′ ,_2_

′
2 (q3-b; = 0) = 1

4c2 exp
[
8(_2 − _′2)q

0
;

] ∑
_, ,_

′
,

)
^^ ′ ,_2_

′
2

_, ,_
′
,

(Ω0
2)!_, ,_′, (Ω0

; ) . (3.36)

Instead of the helicities, the transition can be written as in Ref. [52] using spin base vectors
f
�1
` and f�2

a in the mother and daughter reference systems R1 and R2, respectively. The 4×4
matrix B`a describes how the decay process transforms the base Pauli matrices:

f�1
` →

3(@2 − <2
;
)

4c3

3∑
a=0

B`af�2
a . (3.37)

The real coefficients B`a can be obtained by inserting Pauli f` matrices for the mother and
the daughter baryons in the expression for the tensor ) ^^ ′ ,_2_

′
2 :

B`a :=
2c3

3(@2 − <2
;
)

1/2∑
_2,_

′
2=−1/2

1/2∑
^,^ ′=−1/2

) ^^
′ ,_2_

′
2f^,^

′
` f

_′2,_2
a . (3.38)

However, as we show in Appendix II the coefficients can be represented as

B`a =
3∑̂
=0

R (4)
`^ (Ω2)1^a (@2,Ω;) , (3.39)

where R (4)
`^ (Ω2) is the 4 × 4 space-like rotation matrix obtained as the direct sum of identity

and 3D rotation R(Ω2): R (4) (Ω2) = diag (1,R(Ω2)). The argument Ω2 = {q2, \2,−j2}
assures that the rotation is the inverse of the rotation R({j2,−\2,−q2}) that was used to
define the helicity frame R2. The coefficients 1`a correspond to the �1 → �2 transition
where the orientations of the axes of the reference systems are aligned Ω2 = {0, 0, 0}. They
can be obtained by inserting Pauli f` matrices for the mother and the daughter baryons
in the expression for the tensor ) ^^ ′ ,_2_

′
2 with Ω2 set to {0, 0, 0} what implies replacement

D1/2
<1,<2 ({0, 0, 0}) = X(<1 − <2):

1`a :=
c

6(@2 − <2
;
)

∑
_, ,_

′
,

1/2∑
_2,_

′
2=−1/2

�_2_,
�∗
_′2_

′
,
f
_2−_, ,_′2−_

′
,

` f
_′2,_2
a !_, ,_

′
,
(@2,Ω;)︸                                           ︷︷                                           ︸

T
_, ,_′

,
,_2 ,_

′
2

`a

,

(3.40)
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1`a =
∑

_, ,_
′
,

1/2∑
_2,_

′
2=−1/2

�_2_,
�∗
_′2_

′
,
T _, ,_

′
,
,_2,_

′
2

`a

=
∑
_,

1/2∑
_2=−1/2


���_2_,

��2 T _, ,_, ,_2,_2
`a

+ 2
∑

_′
,
<_,

∑
_′2<_2

[
<(�_2_,

�∗
_′2_

′
,
)<T _, ,_

′
,
,_2,_

′
2

`a + =(�_2_,
�∗
_′2_

′
,
)=T _, ,_

′
,
,_2,_

′
2

`a

] .
(3.41)

The last form involves only real valued tensorsT _, ,_, ,_2,_2
`a ,<T _, ,_

′
,
,_2,_

′
2

`a and=T _, ,_
′
,
,_2,_

′
2

`a .
The hadronic part is encoded in the real-valued functions of @2:

���_2_,

��2, <(�_2_,
�∗
_′2_

′
,

)
and =(�_2_,

�∗
_′2_

′
,

), where _′
,
< _

,
and _′2 < _2. Moreover, the form factors �− 1

2 1 =

� 1
2 −1 = 0 reducing number of the functions.

We will represent the 1`a matrix as the sum of the non-flip and flip contributions 1`a =

1nf
`a + Y1f

`a . The cross-section term is written as 100 = 1nf00 + Y1
f
00 where

1nf00 =
1
4
(1 ∓ cos \;)2 |� 1

2 1 |
2 + 1

4
(1 ± cos \;)2 |�− 1

2 −1 |
2 + 1

2
sin2 \; ( |�− 1

2 0 |
2 + |� 1

2 0 |
2),

(3.42)

1f00 = |� 1
2 C
|2 + |�− 1

2 C
|2 + 1

2
sin2 \; ( |� 1

2 1 |
2 + |�− 1

2 −1 |
2) + cos2 \; ( |� 1

2 0 |
2 + |�− 1

2 0 |
2) (3.43)

− 2 cos \;<(�∗
1
2 0� 1

2 C
+ �∗

− 1
2 0�− 1

2 C
) ,

define the angular distributions for the decay of unpolarized baryon �1 when the spins of all
final particles are summed over. The differential decay rate is obtained by multiplying by the
kinematic and spinor normalization factors that depend on @2

dΓ =
�2
�

(2c)5 |+DB |
2 |p; | |p2 |

16"2
1
(@2 − <2

; )100d@dΩ2dΩ; (3.44)

= �2
� |+DB |2+%ℎ (@2) (@2 − <2

; )100d@dΩ2dΩ; , (3.45)

where +%ℎ (@2) = (2c)−5(4"1)−2 |p; | |p2 | is the three-body phase space density factor [160].
The momenta |p2 | and |p; | of the baryon �2 and the lepton are given in Eqs. (3.8) and (3.13),
respectively.

The first row of the 108 matrix, where 8 = 1, 2, 3 (G, H, I), gives the polarization vector
P = (%G , %H , %I) of the baryon �2 in the reference frame R2 corresponding to the decay of
unpolarized baryon �1. These elements are:

101 = −<(I01) cos q; + =(I01) sin q; = %G100,

102 = <(I01) sin q; + =(I01) cos q; = %H100,

103 = 1nf03 + Y1
f
03 = %I100,

(3.46)
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where Ì a are complex. We use notation Ì a = Inf
`a + YIf

`a and

Inf
01 = ± 1

√
2

sin \;
[
(1 ± cos \;)�∗

− 1
2 −1� 1

2 0 + (1 ∓ cos \;)�∗
− 1

2 0� 1
2 1

]
,

If
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√
2 sin \;

[
(�∗

− 1
2 −1� 1

2 C
− �∗

− 1
2 C
� 1

2 1) + cos \; (�∗
− 1

2 0� 1
2 1 − �

∗
− 1

2 −1� 1
2 0)

]
,

1nf03 =
1
4
(1 ∓ cos \;)2 |� 1

2 1 |
2 − 1

4
(1 ± cos \;)2 |�− 1

2 −1 |
2 − 1

2
sin2 \; ( |�− 1

2 0 |
2 − |� 1

2 0 |
2),

1f03 = |� 1
2 C
|2 − |�− 1

2 C
|2 + 1

2
sin2 \; ( |� 1

2 1 |
2 − |�− 1

2 −1 |
2) − cos2 \; ( |�− 1

2 0 |
2 − |� 1

2 0 |
2)

− 2 cos \;<(�∗
1
2 0� 1

2 C
− �∗

− 1
2 0�− 1

2 C
) .

(3.47)
The first column 180 of the matrix corresponds to the decay of the spin polarized baryon �1.
The element 130 = 1nf

30 + Y1
f
30 is:

1nf30 =
1
4
(1 ± cos \;)2 |�− 1

2 −1 |
2 − 1

4
(1 ∓ cos \;)2 |� 1

2 1 |
2 − 1

2
sin2 \; ( |�− 1

2 0 |
2 − |� 1

2 0 |
2) ,

1f30 = |� 1
2 C
|2 − |�− 1

2 C
|2 − 1

2
sin2 \; ( |� 1

2 1 |
2 − |�− 1

2 −1 |
2) − cos2 \; ( |�− 1

2 0 |
2 − |� 1

2 0 |
2)

− 2 cos \;<(�∗
1
2 0� 1

2 C
− �∗

− 1
2 0�− 1

2 C
) .

(3.48)
The elements 110 and 120 are

110 = − cos q;<(I10) + sin q;=(I10) ,

120 = sin q;<(I10) + cos q;=(I10) ,
(3.49)

where

Inf
10 = ± 1

√
2

sin \;
[
(1 ± cos \;)�∗

− 1
2 −1�− 1

2 0 + (1 ∓ cos \;)�∗
1
2 0� 1

2 1

]
,

If
10 =

√
2 sin \;

[
(�∗

− 1
2 −1�− 1

2 C
− �∗

1
2 C
� 1

2 1) + cos \; (�∗
1
2 0� 1

2 1 − �
∗
− 1

2 −1�− 1
2 0)

]
.

(3.50)

The decay plane representationwhich requires three rotation angles for baryon �2 gives simple
formulas for the remaining terms of the decay matrix. The terms of the non-flip contributions
for the aligned (with q; = 0) decay matrix 1nf`a are:

1nf`a =

©«
1nf00 −<(Inf

01 ) =(Inf
10 ) 1nf03

−<(Inf
10 ) <(Enf

00 + Enf
11) −=(Enf

00 + Enf
11) <(Inf

13 )
=(Inf

10 ) =(Enf
00 − Enf

11) <(Enf
00 − Enf

11) −=(Inf
13 )

1nf30 −<(Inf
31 ) =(Inf

31 ) 1nf33

ª®®®®®¬
, (3.51)

where

1nf33 =
1
2

sin2 \; ( |�− 1
2 0 |

2 + |� 1
2 0 |

2) − 1
4
(1 ∓ cos \;)2 |� 1

2 1 |
2 − 1

4
(1 ± cos \;)2 |�− 1

2 −1 |
2

(3.52)
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and
Inf

13 = ± 1
√

2
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2 0� 1
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}
,
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(3.53)

The terms of the flip contributions for the aligned decay matrix 1f`a are:

1f`a =

©«
1f00 −<(If

01) =(If
10) 1f03
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00 − Ef
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, (3.54)

where
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(3.55)

and
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(3.56)

If the form factors have no complex phases, meaning the Ì a terms are real functions, the
decay matrix reads as

1`a =

©«
100 −I01 0 I03

−I10 111 0 I13

0 0 122 0
−I30 I31 0 133

ª®®®®®¬
. (3.57)

The terms of the 1`a matrix in general form for an arbitrary q; value are given in Appendix III.
They should be used if two rotation angle representation as in Ref. [52] was applied.

3.6 Joint angular distributions

Here, we provide examples how to construct modular expressions for the angular distributions
of semileptonic decays of baryons. First, using our formalism, we rewrite the results from
Ref. [158] for the single baryon �2 decay. The simplest case is the decay of a spin polarized
baryon �1 → �2;

− ā;. If the polarization of the final particles is not measured, the fully
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differential angular distribution 3Γ ∝ W = +%ℎ (@2) (@2 − <2
;
)Trd�2 , where

Trd�2 ∝
3∑̀
=0
�`0B�1�2

`0 =

3∑̀
=0
�`0

3∑̂
=0

R (4)
`^ (Ω2)1�1�2

^0 (@2,Ω;) , (3.58)

with the baryon �1 spin state in its rest frame described by the polarization vector �`0 =

(1, %G , %H , %I). The elements of the decay matrix 1�1�2
`0 (@2,Ω;) := 1`0(@2,Ω;;8�1�2) are

given in Eq. (3.49). For example, if the initial polarization has only %I component the joint
angular distribution for the decay process �1 → �2;

− ā; is:

W(/;8) =+%ℎ (@2) (@2 − <2
; )

[
100(@2,Ω;;8�1�2) + %I130(@2,Ω;;8�1�2) cos \2

]
,

(3.59)
where the vector / := (\2, q2, @

2,Ω;) represents a complete set of the kinematic variables
describing an event configuration and the parameter vector 8�1�2 represents the polarization
%I , the semileptonic couplings in Eq. (3.4) and the range parameters in Eq. (3.6). If the baryon
�2 decays weakly as �2 → �4c the complete angular distribution is W = +%ℎ (@2) (@2 −
<2
;
)Trd�4 with

Trd�4 ∝
3∑

`,a=0
�`0B�1�2

`a 0
�2�4
a0 =

3∑̀
=0
�`0

3∑
^,a=0

R (4)
`^ (Ω2)1�1�2

^a (@2,Ω;)0a0(\4, q4;U�2) .

(3.60)
The decay matrix 0a0(\4, q4;U�2) [52] describes the nonleptonic decay �2 → �4c and using
the representation from Appendix IV is given as:

000

010

020

030


= R (4) ({0, \4, q4})


1
0
0
U�2


=


1
U�2 sin \4 cos q4

U�2 sin \4 sin q4

U�2 cos \4


, (3.61)

where \4 and q4 are the helicity angles of �4 in the R2 frame and U�2 is the decay asym-
metry parameter. The corresponding angular distribution for charge-conjugated decay mode
is obtained by the replacements ��1

_2_,
→ �

�̄1
_2_,

, 6�1
0E/F → 6

�̄1
0E/F and swapping between

(;−, ā;) and (;+, a;). Neglecting hadronic CP-violating effects, one has �+ (�̄1 )
_2,_,

= �
+ (�1 )
_2,_,

and

�
�(�̄1 )
_2,_,

= −��(�1 )
_2,_,

Eq. (3.12) meaning that 6�̄1
F = 6

�1
F and 6�̄1

0E = −6�1
0E [165, 166].

Now we consider a decay of a spin-entangled baryon–antibaryon system �1�̄1, where the
initial state is given by the spin correlation matrix ��1 �̄1

`ā
defined in Eq. (3.1) with �1 →

�2;
− ā;. The semileptonic decay is tagged by a common decay of the antibaryon �̄1. For

hyperon decay studies, a nonleptonic decay �̄1 → �̄3c̄ is used. One obvious advantage of the
studies using baryon–antibaryon pairs is that the charge-conjugated decays, corresponding
to the �̄1 → �̄2;

+a; and �1 → �3c scenario, can be studied simultaneously. A common
practice is to implicitly combine events corresponding to the charge-conjugated channels in
the analyses to determine the decay properties in the CP-symmetry limit. In such analyses,
the quantities that are even (odd) with respect to the parity operation have the same (opposite
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Table 3.1: Properties of selected semileptonic decays of the ground-state-
octet hyperons. The column labelled "1 − "2 gives the upper range of the√

@2 variable.

Decay Transition B(×10−4) 60E 6F
"1 − "2 Comment[MeV]

Λ → ?4− ā4 +DB 8.32(14) 0.718(15) 1.066 177 [66, 160]
Σ+ → Λ4+a4¹ +D3 0.20(05) 0.01(10) 2.4(17) 74 [160]
Ξ− → Λ4− ā4 +DB 5.63(31) 0.25(5) 0.085 206 [66, 167]
Ξ− → Σ04− ā4 +DB 0.87(17) 1.25(15) 2.609 129 [66, 167]
Ξ0 → Σ+4− ā4 +DB 2.52(8) 1.22(5) 2.0(9) 125 [160]

aSince for Σ+ �1 = 0, the coupling constants 60E and 6F are defined as �+1 /��1 and �+2 /��1 , respectively.

sign) values when combining the two cases. At the same time, the CP-symmetry can be tested
by comparing values of the separately determined parameters for the baryon and antibaryon
decays. Using as a building block the semileptonic decay matrix one constructs the angular
distribution for the case when polarization of baryons �2 and �̄3 is not measured:

Trd�2 �̄3 ∝
3∑

`,ā=0
�
�1 �̄1
`ā

B�1�2
`0 0

�̄1 �̄3
ā0 . (3.62)

ThematrixB�1�2
`0 := B`0(\2, q2, @

2,Ω;;8�1�2) describes the semileptonic decay and 0�̄1 �̄3
ā0 :=

0 ā0(\3, q3; Ū�1) [52] describes the nonleptonic decay �̄1 → �̄3c, where \3 and q3 are the
helicity angles of �̄3 in the �̄1 rest frame and Ū�1 is the decay asymmetry parameter. The
joint angular distribution for the process is W(/;8) = +%ℎ (@2) (@2 − <2

;
)Trd�2 �̄3 , where:

Trd�2 �̄3 =�
�1 �̄1
00 (\1)100(/′) +

3∑
8, 9=1

�
�1 �̄1
8 9

(\1)B80(/′)0 90(\3, q3; Ū�1)

+
3∑
8=1

�
�1 �̄1
80 (\1)B80(/′) + 100(/′)

3∑
9=1
�
�1 �̄1
0 9 (\1)0 90(\3, q3; Ū�1)

(3.63)

with��1 �̄1
`ā

given in Eq. (3.2) for the annihilation of the unpolarized electron–positron beams.
The vectors of the kinematic variables are / = (\1, \2, q2, @

2,Ω;, \3, q3) while /′ = (\2, q2, @
2,Ω;).

The full vector of parameters is denoted as 8 := (Uk,ΔΦ, 6�1
0E , 6

�1
F , Ū�1).

3.7 Sensitivities for SL form factors parameters

Here we present estimates for the statistical uncertainties of the parameters describing form
factors of selected semileptonic hyperon decays. The derived angular distributions are used
to construct the normalized multidimensional probability density function for an event con-
figuration. They are functions of @2 and the helicity angles, and depend on the form factor
parameters such as 60E and 6F (3.4). The parameters can be determined in an experiment
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Table 3.2: Properties of the 4+4− → �/k → �1�1 decays to the pairs of
ground-state octet hyperons.

B(×10−4) Uk ΔΦ [rad] Comment
ΛΛ 19.43(33) 0.475(4) 0.752(8) [43, 65]
Σ+Σ− 15.0(24) −0.508(7) −0.270(15) [139, 171]
Ξ−Ξ+ 9.7(8) 0.586(16) 1.213(49) [159, 160]
Ξ0Ξ0 11.65(4) 0.514(16) 1.168(26) [172, 173]

using maximum likelihood (ML) method, which guarantees consistency and efficiency prop-
erties. We provide uncertainties of the parameters in the large number of events limit and
assuming the detection efficiency does not depend on the kinematic variables as described
in Refs. [47, 105]. Since the ML estimators are asymptotically normal, the product of their
standard deviations, f, and

√
# , where # is the number of the observed events, does not de-

pend on # . The uncertainties are obtained by calculating elements of the Fisher information
matrix that is inverted to obtain the covariance matrix for the parameters.

We consider the semileptonic decays of hyperons listed in Table 3.1. We neglect form
factors �+3 and ��2 which vanish in the limit of the SU(3) flavor symmetry [168]. Equa-
tion (3.11) allows one to estimate the relative contribution of different form factors to the
angular distributions. Based on the 60E and 6F values from Table 3.1 the @2 dependence of
the six helicity amplitudes for the Λ semileptonic decays is shown in Fig. 3.3(a). To allow
a better comparison, the amplitudes are multiplied by

√
@2. Close to the lower boundary,

@2 = <2
4, the longitudinal and scalar helicity amplitudes dominate, with �+ (�)

1
2 0

≈ �
+ (�)
1
2 C

.

Close to the upper boundary at the zero recoil point, @2 = ("1 − "2)2, the contributions
�+1

2 C
and ��1

2 1
= −

√
2��1

2 0
are dominant with �+1

2 C
= −��1

2 0
/60E . We do not consider the decay

Σ− → =4− ā4 since the final state includes two neutral particles, neutron and neutrino, mak-
ing it impossible to fully reconstruct the events. In addition, no measurements exist for the
production parameters in the 4+4− → Σ−Σ̄+ process.

The first case is the decay Λ → ?4− ā4 studied in the exclusive process 4+4− → �/k →
ΛΛ̄, where Λ̄ → ?̄c+ is used for tagging. The angular distribution is given by Eq. (3.62) where
the parameters of the production process 4+4− → �/k → ΛΛ̄ needed to define the spin-
correlation–polarization matrix�`a are given in Table 3.2. The properties of Λ̄ → ?̄c+ decay
and the charge conjugated process that is used to tag the SL decay are given in Table 3.3. We
assume the production parameters and the decay parameters of the nonleptonic decays used
for the tagging to be well known and fixed. Since the coupling 60E3 is multiplied by <4 in the
transition amplitude [169], we set it to zero because it cannot be determined from experiment
with a reasonable uncertainty. In addition, the parameters AE,F and A0E defined in Eq. (3.6)
are fixed to the values deduced from the ansatz for the B → D transition of Refs. [66, 170] and
listed in Table 3.4. The statistical uncertainties f(60E) and f(6F) for the coupling constants
60E and 6F , respectively, are given in the first row of Table 3.4. The main feature is that the
uncertainty for the 60E coupling is nearly one order of magnitude less than for 6F since the
latter is suppressed by the @2/"2

1 < ("1 − "2)2/"2
1 ≈ 0.025 factor (3.11). The second row
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Figure 3.3: The @2-dependence of the six helicity amplitudes for (a) Λ →
?;− ā; and (b) = → ?4− ā4 decays. For the Λ decay, the kinematic range for

the `-mode is to the right of the vertical line @2 = <2
`.



3.7. Sensitivities for SL form factors parameters 93

Table 3.3: Properties of the main decays of the ground-state octet hyperons
that can be used to tag the SL decays. The decay asymmetry Ū� for the
charge conjugated decay modes in the CP-symmetry conservation limit is

Ū� = −U� .

� B(%) U� Comment
Λ → ?c− 64 0.755(3) [159, 174]
Σ+ → ?c0 52 −0.994(4) [171]
Ξ− → Λc− 100 −0.379(4) [159, 160]
Ξ0 → Λc0 96 −0.375(3) [160, 173]

Table 3.4: Statistical uncertainties for the 60E and 6F couplings for some
semileptonic decays reconstructed using double-tag method Eq. (3.62).

Decay f(60E)
√
# f(6F)

√
# AE,F [GeV−2] A0 [GeV−2]

Λ → ?4− ā4 1.8 12

1.94 1.28
Ξ− → [Λ → ?4− ā4]c− 1.8 12
Ξ− → [Λ → ?c−]4− ā4 0.6 9
Ξ− → [Σ0 → [Λ → ?c−]W]4− ā4 5.0 29
Ξ0 → [Σ+ → ?c0]4− ā4 4.0 28
Σ+ → [Λ → ?c−]4+a4 0.5 19 2.83 1.71

corresponds to an independent method to studyΛ → ?4− ā4 using the 4+4− → �/k → Ξ−Ξ̄+

process with the Ξ− → [Λ → ?4− ā4]c− sequence and Ξ̄+ → [Λ̄ → ?̄c+]c− for the tagging.
The modular expression for the angular distribution of such process reads

Trd? ?̄ ∝
3∑

`,ā=0
�ΞΞ̄
`ā

3∑̀
′=0
0ΞΛ``′B

Λ?

`′0

3∑̄
a′=0

0Ξ̄Λ̄āā′0
Λ̄ ?̄

ā′0 . (3.64)

The polarization of theΛ originating from the nonleptonic weak decay Ξ− → Λc−, is ∼ 40%,
to be compared to the root-mean-squared value of the Λ polarization in 4+4− → �/k → ΛΛ̄

of 11% [47]. However, the uncertainties of the weak couplings are the same for both methods.
To further investigate dependence on the initial polarization of Λ we set ΔΦ = 0 to have the
zero polarization, while to obtain maximally polarized Λ we include the longitudinal polar-
ization of the electron beam and use the production matrix �`ā from Ref. [47]. The impact
of the spin correlations for the uncertainties can be studied by comparing the results using the
angular distributions (3.62) or (3.64) with full production matrices �`ā to the ones where all
elements except �`0 are set to zero. This arrangement assures that the spin correlation terms
are excluded. In all these tests the uncertainties of f(60E) and f(6F) remain unchanged,
meaning that the polarization and the spin correlations of the mother hyperon in the decay
play almost no role for the measurements of properties of the semileptonic decays to baryons
whose polarization is not measured.

The entries from the third row and below in Table 3.4 correspond to the decays where the
polarization of the daughter baryon is measured and the angular distributions include the com-
plete B``′ matrices. For example, the angular distribution for Ξ− → Λ4− ā4 measurement in



94 Chapter 3. Semileptonic decays of spin-entangled baryon–antibaryon pairs

4+4− → �/k → Ξ−Ξ̄+ is

Trd? ?̄ ∝
3∑

`,ā=0
�ΞΞ̄
`ā

3∑̀
′=0

BΞΛ
``′0

Λ?

`′0

3∑̄
a′=0

0Ξ̄Λ̄āā′0
Λ̄ ?̄

ā′0 . (3.65)

Since the uncertainties depend on the values of the weak couplings it is difficult to compare
the results for different decays in Table 3.4. By repeating the studies with variation of ΔΦ and
the electron beam polarization some impact is seen for the uncertainties, specially for the 6F
parameter in Σ+ → Λ4+a4. In addition, we study the uncertainties for single spin polarized
baryon decays with the angular distributions given by Eq. (3.58). The baryon �1 polarization
vector is set to �`0 = (1, 0, %H , 0). The results for f(60E) and f(6F) are shown in Fig. 3.4.
The uncertainty for large %H decreases typically by 20% comparing to the unpolarized case.

Our formalism applies also to the = → ?4− ā4 decay and it should be equivalent to the
approach from Ref. [175] for the single neutron decay. However, we can also describe decay
correlations for a spin entangled neutron–neutron pair. As an example, we take == spin singlet
state given by the spin correlation matrix�`a = diag(1,−1, 1, 1). The coupling constants 60E
and 6F are 1.2754(13) and 1.853, respectively [160, 175]. The @2 dependence of the form
factors is neglected due to the tiny range, <4 <

√
@2 < "= − "?, of the variable. The

corresponding helicity amplitudes for the neutron beta decay are shown in Fig. 3.3(b). The
resulting uncertainty of the 60E measurement in the double beta decay of the singlet pair
is f(60E)

√
# = 4.3. It should be compared to the uncertainties in the measurements with

single neutrons that are shown in Fig. 3.4(a) as a function of the neutron polarization. For
unpolarized neutron f(60E)

√
# = 7.4 and it decreases to 4.1 when the polarization is equal

to one. The flip-contribution to the helicity amplitudes (3.54) of about 8% was neglected
in the estimates. The 6F coupling cannot be determined since its contribution to the helicity
amplitude�+1

2 0
is suppressed by a factor @2/"2

=. Moreover, the second amplitude that includes

6F , �+1
2 1
, is suppressed by

√
@2 and as seen in Fig. 3.3(b) it is consistent with zero.

3.8 Conclusions

Wehave constructed amodular description of the differential distributions for baryon semilep-
tonic decays where the baryons are originating from entangled baryon–antibaryon pairs pro-
duced in the electron–positron annihilations or in charmonia decays. The formalism allows to
extract the weak form factors using complete information available in such experiments. The
lepton mass effects as well as polarization effects of the decaying parent hyperon are included
in the formalism. The presented modular expressions are applicable to various sequential pro-
cesses like �1 → �2(→ �3+c)+ ;+a; that involve a semileptonic decay. Two conventions for
defining transversal directions of the helicity frames were considered. The daughter baryon
spin-density matrix in a semileptonic decay takes the simplest form when expressed using the
angles in the decay plane. The two representations are equivalent, provided that one uses the
matching set of rotations to define the helicity angles.
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Figure 3.4: Statistical uncertainties (a) f(60E)
√
# and (b) f(6F)

√
# for

semileptonic decays as a function of the initial baryon polarization. Note
that there is no estimate of f(6F) for = → ?4−a4 in panel (b) as explained

in the text.
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We have not included radiative corrections in our estimates but they have to be considered
in the experimental analyses. Over the years, the radiative corrections to hadronic V-decays
have been extensively studied [176] and the specific applications to the hyperon semileptonic
decays are discussed in Ref. [177]. The state-of-the-art in experimental analyses is to use
Photos program [178] that is based on leading-logarithmic (collinear) approximation. The
procedure is applied to all final particles, but the electron (positron) tracks are most affected.

The BESIII experiment has collected 1010 �/k [162] meaning that for semileptonic de-
cays data samples of less than 104 events are available. Therefore, a rough estimate of the
achievable uncertainties with this data set is given by dividing the values in Table 3.4 by 100.
The �/k decays into a hyperon–antihyperon pair can provide a clean setting with low system-
atic uncertainties for the CP-symmetry conservation tests in semileptonic decays, since the
decays of the charge conjugated modes can be done simultaneously.

A similar modular approach with decay matrices might be useful for studies of radiative
and Dalitz decays. As a cross-check and illustration in Appendix IV we provide formulas for
the Dalitz transition �1 → �2;

+;− between baryons with spin 1/2 as well as decay matrix for
a weak radiative decay with real photon �1 → �2W.

For the studies of semileptonic decays of heavy baryons induced by the quark transitions
2 → B+ ;++a; or 1 → 2+ ;− + ā; the previously available formalism [158] is likely sufficient if
only beams of polarized baryons are used. This might change in the near future with BESIII
and Belle II experiments, where entangled charmed baryon–antibaryon pairs will be available.
One difference would be a measurement of the polarization for the tagging reactions which
probably has to use three-body hadronic weak decays. However, even for the case of single
baryon decays, our approach provides an easy and flexible way to implement different decay
sequences in the event generators that propagate spin information of the decaying baryons.

I Conventions for Wigner functions and Pauli matrices

Conventions for Pauli matrices: rows <1 = 1/2,−1/2 are numbered from top to bottom and
columns <2 = 1/2,−1/2 are numbered from left to right:

f
<1,<2
0 =

(
1 0
0 1

)
, f

<1,<2
1 =

(
0 1
1 0

)
, f

<1,<2
2 =

(
0 −8
8 0

)
, f

<1,<2
3 =

(
1 0
0 −1

)
.

(3.66)
The corresponding Wigner functions D�

<1,<2 (0, \, 0) = 3
�
<1,<2 (\) are for � = 1/2

D1/2
<1,<2 (0, \, 0) =

(
cos \/2 − sin \/2
sin \/2 cos \/2

)
, (3.67)
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with the columns and rows expressed using the same convention. For � = 1 the functions are

D1
<1,<2 (0, \, 0) =

©«
1
2 (1 + cos \) 1√

2
sin \ 1

2 (1 − cos \)
− 1√

2
sin \ cos \ 1√

2
sin \

1
2 (1 − cos \) − 1√

2
sin \ 1

2 (1 + cos \)

ª®®®¬ , (3.68)

where the rows (<1) and columns (<2) are labeled in the order (−1, 0, 1) from left to right
and top to bottom, respectively. This convention matches the complete Wigner D functions
given as D�

<1,<2 (q, \, j) = exp(−8<1q)D�
<1,<2 (0, \, 0) exp(−8<2j). The Pauli matrices are

related to the 3D rotation matrices ' 9: (Ω) for Ω ≡ {q, \, j} in the following way :

' 9: (Ω) =
1
2

∑̂
,^ ′

∑
Z ,Z ′

(f9)^,^
′ (f:)Z

′ ,ZD1/2∗
^,Z

(Ω)D1/2
^ ′ ,Z ′ (Ω)

=
©«

cos \ cos j cos q − sin j sin q − cos \ sin j cos q − cos j sin q sin \ cos q
cos \ cos j sin q + sin j cos q cos j cos q − cos \ sin j sin q sin \ sin q

− sin \ cos j sin \ sin j cos \

ª®®¬ ,
(3.69)

where the columns (:) and rows ( 9) are labeled :, 9 = 1, 2, 3 (G, H, I) from left to right and
from top to bottom, respectively.

II Derivation of the decay matrix decomposition

Starting from the amplitude representation in Eq. (3.21) we derive expression Eq. (3.39).
Multiplying the amplitude in Eq. (3.21) by its conjugate to obtain spin-density matrix and by
inserting basis Pauli matrices for the mother and the daughter baryon:

B�`a =
1

8c2

∑
_,_′

∑̂
,^ ′

∑
Z ,Z ′

HZ ,_H ∗
Z ′ ,_′ (f`)^,^

′ (fa)_
′ ,_D1/2∗

^,Z
(Ω)D1/2

^ ′ ,Z ′ (Ω)

=
1

8c2

∑
Z ,Z ′

[∑
_,_′

(fa)_
′ ,_HZ ,_H ∗

Z ′ ,_′

]
︸                           ︷︷                           ︸

�
Z ,Z ′
a

[∑̂
,^ ′
(f`)^,^

′D1/2∗
^,Z

(Ω)D1/2
^ ′ ,Z ′ (Ω)

]
︸                                       ︷︷                                       ︸

'
Z ,Z ′
` (Ω)

=
1

8c2

∑
Z ,Z ′

'
Z ,Z ′
` (Ω)� Z ,Z

′
a ,

(3.70)

where the running indices in all sums ^, ^′, _′, _ and Z, Z ′ are −1/2 and +1/2. Despite B�`a
being a real-value matrix, the matrices � Z ,Z

′
a and 'Z ,Z

′
` (Ω) are not real-valued. We would like

to rewrite Eq. (3.70) as a product of a 4D rotation matrix and a 4 × 4 matrix 1da in the form
given in Eq. (3.39):

B�`a =
1

8c2

3∑
d=0

R (4)
`d (Ω)1da .
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In order to derive the form of R (4)
`d (Ω) we set the matrix 1`a to the identity 4×4 matrix. This

can be achieved by setting HZ ,_ = XZ _ since∑
Z ,Z ′

∑
_,_′

(fa)_
′ ,_XZ ,_XZ ′ ,_′ (f`)Z ,Z

′
= 2Xa` . (3.71)

Such replacement in Eq. (3.70) gives:

R (4)
`a (Ω) =

1
2

∑
_,_′

∑̂
,^ ′

∑
Z ,Z ′

XZ ,_XZ ′ ,_′ (f`)^,^
′ (fa)_

′ ,_D1/2∗
^,Z

(Ω)D1/2
^ ′ ,Z ′ (Ω)

=
1
2

∑̂
,^ ′

∑
Z ,Z ′

(f`)^,^
′ (fa)Z

′ ,ZD1/2∗
^,Z

(Ω)D1/2
^ ′ ,Z ′ (Ω) .

(3.72)

By evaluating the above expression one gets the explicit form for R (4)
`a (Ω):

©«
1 0 0 0
0 cos \ cos j cos q − sin j sin q − cos \ sin j cos q − cos j sin q sin \ cos q
0 cos \ cos j sin q + sin j cos q cos j cos q − cos \ sin j sin q sin \ sin q
0 − sin \ cos j sin \ sin j cos \

ª®®®®®¬
,

(3.73)
which is the 4D rotation where the spatial part R 9: (Ω) corresponds to the product of the
following three axial rotations:

R 9: (Ω) = 'I (q)'H (\)'I (j)

=
©«

cos q − sin q 0
sin q cos q 0

0 0 1

ª®®¬
©«

cos \ 0 sin \
0 1 0

− sin \ 0 cos \

ª®®¬
©«

cos j − sin j 0
sin j cos j 0

0 0 1

ª®®¬ .
(3.74)

The expression for 1`a can be deduced by setting R (4)
`d (Ω) to the 4×4 identity matrix i.e.

by setting Ω = {0, 0, 0}:

1`a = B�`a (Ω ≡ 0) =
∑
Z ,Z ′

[∑
_,_′

(fa)_
′ ,_HZ ,_H ∗

Z ′ ,_′

] [∑̂
,^ ′
(f`)^,^

′
X^,Z X^ ′ ,Z ′

]
=

∑
Z ,Z ′

∑
_,_′

(fa)_
′ ,_HZ ,_H ∗

Z ′ ,_′ (f`)Z ,Z
′
.

(3.75)

The elements of the real-valued matrix 1da expressed in terms of amplitudes H are:

1d0 =

©«
|H−− |2 + |H+− |2 + |H−+ |2 + |H++ |2

2<
(
H++H ∗

−+ + H−−H ∗
+−

)
2=

(
H++H ∗

−+ −H−−H ∗
+−

)
−|H−− |2 + |H++ |2 + |H+− |2 − |H−+ |2

ª®®®®®¬
, (3.76)
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1d1 =

©«
2<

(
H++H ∗

+− + H−−H ∗
−+

)
2<

(
H++H ∗

−− + H−+H ∗
+−

)
2=

(
H++H ∗

−− −H−+H ∗
+−

)
2<

(
H++H ∗

+− −H−−H ∗
−+

)
ª®®®®®¬
, (3.77)

1d2 =

©«
−2=

(
H++H ∗

+− −H−−H ∗
−+

)
−2=

(
H++H ∗

−− + H−+H ∗
+−

)
2<

(
H++H ∗

−− −H−+H ∗
+−

)
−2=

(
H++H ∗

+− + H−−H ∗
−+

)
ª®®®®®¬
, (3.78)

1d3 =

©«
−|H−− |2 − |H+− |2 + |H−+ |2 + |H++ |2

2<
(
H++H ∗

−+ −H−−H ∗
+−

)
2=

(
H++H ∗

−+ + H−−H ∗
+−

)
|H−− |2 + |H++ |2 − |H+− |2 − |H−+ |2

ª®®®®®¬
. (3.79)

The matrix elements 1`a are interrelated since they are expressed by the four complex ampli-
tudesH_,_′ . Therefore, neglecting the unobservable overall phase there are up to six indepen-
dent real-valued functions in addition to the unpolarized cross-section term 100. The 1-matrix
can be considered as a generalization of Lee-Yang baryon polarization formula [87] which has
maximum two independent parameters (see example in Appendix IV.b). The terms 180/100

are discussed in [179] in the context of hadronic decays and are called aligned polarimeter
fields UG,H,I . In Appendix IV we give the 1 matrices for few example processes.

III Complete decay matrix for SL decays

The terms of the non-flip contributions for the unaligned (with arbitrary q;) decay matrix 1nf`a
are (the term 1nf33 does not depend on the angle and it is not repeated):

1nf11 = <(Enf
00) +

{
<(Enf

11) cos 2q; − =(Enf
11) sin 2q;

}
,

1nf12 = −=(Enf
00) −

{
<(Enf

11) sin 2q; + =(Enf
11) cos 2q;

}
,

1nf13 = <(Inf
13 ) cos q; − =(Inf

13 ) sin q;,

1nf21 = =(Enf
00) −

{
<(Enf

11) sin 2q; + =(Enf
11) cos 2q;

}
,

1nf22 = <(Enf
00) −

{
<(Enf

11) cos 2q; − =(Enf
11) sin 2q;

}
,

1nf23 = −(<(Inf
13 ) sin q; + =(Inf

13 ) cos q;),

1nf31 = −(<(Inf
31 ) cos q; − =(Inf

31 ) sin q;),

1nf32 = <(Inf
31 ) sin q; + =(Inf

31 ) cos q; .

(3.80)



100 Chapter 3. Semileptonic decays of spin-entangled baryon–antibaryon pairs

The remaining terms of the flip contributions for the decay matrix 1f`a are:

1f11 = <(Ef
00) −

{
<(Ef

11) cos 2q; − =(Ef
11) sin 2q;

}
,

1f12 = −=(Ef
00) +

{
<(Ef

11) sin 2q; + =(Ef
11) cos 2q;

}
,

1f13 = <(If
13) cos q; − =(If

13) sin q;,

1f21 = =(Ef
00) +

{
<(Ef

11) sin 2q; + =(Ef
11) cos 2q;

}
,

1f22 = <(Ef
00) +

{
<(Ef

11) cos 2q; − =(Ef
11) sin 2q;

}
,

1f23 = −(<(If
13) sin q; + =(If

13) cos q;),

1f31 = −(<(If
31) cos q; − =(If

31) sin q;),

1f32 = <(If
31) sin q; + =(If

31) cos q; .

(3.81)

IV Examples of aligned decay matrices

IV.a �1 → �2W

The amplitude of Eq. (3.10) for the weak decay �1 → �2W simplifies by replacing _
,

→ _W

where _W = {−1, 1}. For the hadronic tensor, only terms � 1
2 1 and �− 1

2 −1 are non-zero. The
transition tensor for decay with real photon in helicity representation reads:

) ^^
′ ,_2_

′
2 =

1
4c

∑
_W

�_2_W�
∗
_′2_W

D1/2∗
^,_2−_W (Ω2)D1/2

^ ′ ,_′2−_W
(Ω2) . (3.82)

The decay matrix 1W`a is following:

1
W
`a :=

∑
_W

1/2∑
_2,_

′
2=−1/2

�_2_W�
∗
_′2_W

f
_2−_W ,_′2−_W
` f

_′2,_2
a

= |�−1/2,−1 |2f1/2,1/2
` f

−1/2,−1/2
a + |�1/2,+1 |2f−1/2,−1/2

` f
1/2,1/2
a

(3.83)

or

1
W
`a ∝

©«
1 0 0 UW

0 0 0 0
0 0 0 0

−UW 0 0 −1

ª®®®®®¬
(3.84)

where
UW = |�1/2,+1 |2 − |�−1/2,−1 |2; |�1/2,+1 |2 + |�−1/2,−1 |2 = 1 . (3.85)



IV. Examples of aligned decay matrices 101

IV.b �1 → �2c

For the weak nonleptonic decay � (�1 → �2c) we present the results from Ref. [52] as a
product of rotation matrix and the aligned decay matrix:

) ^^
′ ,_2_

′
2 =

1
4c
�_2,0�

∗
_′2,0

D1/2∗
^,_2

(Ω2)D1/2
^ ′ ,_′2

(Ω2) . (3.86)

The decay matrix 1�`a is rewritten as

1�`a :=
1/2∑

_2,_
′
2=−1/2

�_2,0�
∗
_′2,0

f
_2,_

′
2

` f
_′2,_2
a

=|�−1/2,0 |2f−1/2,−1/2
` f

−1/2,−1/2
a + |�1/2,0 |2f1/2,1/2

` f
1/2,1/2
a

+ �1/2,0�
∗
−1/2,0f

1/2,−1/2
` f

−1/2,1/2
a + �−1/2,0�

∗
1/2,0f

−1/2,1/2
` f

1/2,−1/2
a

(3.87)

or

1�`a ∝
©«

1 0 0 U�

0 W� −V� 0
0 V� W� 0
U� 0 0 1

ª®®®®®¬
(3.88)

where

U� = |�1/2,0 |2 − |�−1/2,0 |2; |�1/2,0 |2 + |�−1/2,0 |2 = 1, (3.89)

V� = 2=(�1/2,0�
∗
−1/2,0); W� = 2<(�1/2,0�

∗
−1/2,0) . (3.90)

IV.c �1 → �2W
∗ → �2;

+;−

The decay matrices for the �1 → �2W
∗ → �2;

+;− electromagnetic decay can be obtained by
simplifying the hadronic tensor by setting to zero all form factors except for �+1

2 1
= �+

− 1
2 −1

and �+1
2 0

= �+
− 1

2 0
that are non-zero in this parity-conserving process. The decay W∗ → ;−;+

is described in the RW frame where the emission angles of the ;− lepton are \; and q;. The
value of the lepton momentum in this frame is

|p; | =

√
@2 − 4<2

;

2
. (3.91)
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The leptonic tensor for the W∗ decay _W = {−1, 0, 1} with the lepton helicities summed
over is:

!_W ,_′W (@
2,Ω;) :=

1/2∑
_+=−1/2

1/2∑
_−=−1/2

〈Ω−, _−, _+ |(; |, @2, _′W〉
∗ 〈Ω−, _−, _+ |(; |@2, _W〉 (3.92)

=

1/2∑
_+=−1/2

1/2∑
_−=−1/2

|ℎ;_+_− (@
2) |2D1∗

_W ,_−−_+ (Ω;)D
1
_′W ,_−−_+ (Ω;) (3.93)

= 48 (_W−_
′
W )q;

1/2∑
_+=−1/2

1/2∑
_−=−1/2

|ℎ;_+_− (@
2) |231

_W ,_−−_+ (\;)3
1
_′W ,_−−_+ (\;) .

(3.94)

The moduli squared of ℎ;
_−_+

corresponding to the vertex D̄(?I , _−)W`E(−?I , _+)n` calcu-
lated using the charged-lepton spinor representation from Appendix in Ref. [180] are:

nonflip(_W = ∓1) : |ℎ;
_−=∓ 1

2 ,_+=±
1
2
|2 = 2@2, (3.95)

flip(_W = 0) : |ℎ;
_−=± 1

2 ,_+=±
1
2
|2 = 4<2

; . (3.96)

The resulting leptonic tensor reads

!_W ,_′W (@
2,Ω;) =

=

(
@2 − 4<2

;

) ©«
cos2 \; −

√
24−8q; sin \; cos \; 4−28q; sin2 \;

−
√

248q; sin \; cos \; − cos 2\;
√

24−8q; sin \; cos \;
428q; sin2 \;

√
248q; sin \; cos \; cos2 \;

ª®®¬
+

(
@2 + 4<2

;

)
diag(1, 1, 1) .

(3.97)

The differential decay rate of the unpolarized baryon �1 in the electromagnetic conversion
process where the spins of all final particles are summed is

dΓ ∝
U2
em
@2 +%ℎ (@

2)
(
1 −

4<2
;

@2

)
1em00 d@dΩ2dΩ; , (3.98)

where +%ℎ (@2) is the three-body phase space density factor given by the product of the mo-
menta |p2 | and |p; | of the baryon �2 and the lepton, given in Eqs. (3.8) and (3.91), respectively.
The unrotated decay matrix can be obtained adapting (3.40):

1em`a :=
1

2(@2 − 4<2
;
)

1∑
_W ,_

′
W=−1,0

1/2∑
_2,_

′
2=−1/2

�_2_W�
∗
_′2_

′
W
T _W ,_

′
W ,_2,_

′
2

`a . (3.99)



IV. Examples of aligned decay matrices 103

Its elements are

1em`a =

©«
1em00 1em01 1em02 0
1em01 1em11 1em12 1em13
1em02 1em12 1em22 1em23
0 −1em13 −1em23 1em33

ª®®®®®¬
, (3.100)

where

1em00 =

[
cos2 \; +

@2 + 4<2
;

@2 − 4<2
;

]
|�+1

2 1
|2 + 2

[
sin2 \; +

4<2
;

@2 − 4<2
;

]
|�+1

2 0
|2,

1em33 = −
[
cos2 \; +

@2 + 4<2
;

@2 − 4<2
;

]
|�+1

2 1
|2 + 2

[
sin2 \; +

4<2
;

@2 − 4<2
;

]
|�+1

2 0
|2,

1em01 = −
√

2 sin 2\; sin q;=(�+1
2 1
�+∗1

2 0
),

1em02 = −
√

2 sin 2\; cos q;=(�+1
2 1
�+∗1

2 0
),

1em11 = cos 2q; sin2 \; |�+1
2 1
|2 + 2

[
sin2 \; +

4<2
;

@2 − 4<2
;

]
|�+1

2 0
|2,

1em22 = − cos 2q; sin2 \; |�+1
2 1
|2 + 2

[
sin2 \; +

4<2
;

@2 − 4<2
;

]
|�+1

2 0
|2,

1em12 = − sin 2q; sin2 \; |�+1
2 1
|2,

1em23 = −
√

2 sin 2\; sin q;<(�+1
2 1
�+∗1

2 0
),

1em13 =
√

2 sin 2\; cos q;<(�+1
2 1
�+∗1

2 0
) .

(3.101)

Decay plane aligned parameters reduce to the following form

1em`a =

©«
1em00 0 1em02 0
0 1em11 0 1em13
1em02 0 1em22 0
0 −1em13 0 1em33

ª®®®®®¬
, (3.102)

where in the real form factors limit additionally the term 1em02 vanishes. Thus, no polarization
is induced, but the initial polarization and spin correlations of the baryon �1 are transferred
to the daughter baryon.

IV.d �1 → �2 [+∗ → %1%2]

Here we consider a decay of a spin-1/2 baryon to a spin-1/2 baryon and a pair of pseudoscalar
mesons %1 and %2 via an intermediate vector meson, + e.g. �1 → �2d

0 → c+c−. The decay
matrices are obtained as in Appendix IV.c by replacing the dilepton with the pseudoscalars,
and the virtual photon with a massive vector meson decaying strongly. Since the initial baryon
decays weakly into the intermediate state �1 → �2+

∗, all vector and axial vector form factors
should be used. The decay +∗(@) → %1(<1, pc)%2(<2,−pc) is described in the R+ frame
where the emission angles of the %1 pseudoscalar are \c and qc . The value of the momentum
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pc is

|pc | =

√
@4 + <4

2 + <
4
1 − 2@2<2

1 − 2@2<2
2 − 2<2

1<
2
2

4@2 . (3.103)

The tensor for the +∗ → %1%2 decay for the helicities _+ , _′+ = {−1, 0, 1} is:

ℌ_+_′+ (Ωc) := 48 (_+−_′
+
)qc |ℎ+ |231

_+ ,0(\c)3
1
_′
+
,0(\c) , (3.104)

where ℎ+ is a constant and it can be absorbed as a normalization factor. The resulting tensor
reads

ℌ_+_′+ (Ωc) =
©«

sin2 \c
2

4−8qc sin \c cos \c√
2

− 4−28qc

2 sin2 \c
48qc sin \c cos \c√

2
cos2 \c − 4

−8qc sin \c cos \c√
2

− 428qc

2 sin2 \c − 4
8qc sin \c cos \c√

2
sin2 \c

2

ª®®®¬ . (3.105)

The unrotated decay matrix can be obtained by replacing the leptonic tensor with the tensor
ℌ_+ ,_′+ in (3.40):

1+`a :=
1∑

_+ ,_
′
+
=−1

�_2_+�
∗
_′2_

′
+
T _+ ,_

′
+
,_2,_

′
2

`a . (3.106)

Its elements are

1+00 =

(
|� 1

2 0 |
2 + |�− 1

2 0 |
2
)

cos2 \c +
1
2

(
|� 1

2 1 |
2 + |�− 1

2 −1 |
2
)

sin2 \c ,

1+01 = <(A) cos qc + =(A) sin qc ,

1+02 = =(A) cos qc −<(A) sin qc ,

1+03 =

(
|� 1

2 0 |
2 − |�− 1

2 0 |
2
)

cos2 \c +
1
2

(
|� 1

2 1 |
2 − |�− 1

2 −1 |
2
)

sin2 \c ,

1+10 = <(B) cos qc + =(B) sin qc ,

1+20 = =(B) cos qc −<(B) sin qc ,

1+11 = <(C) − <(D) cos 2qc − =(D) sin 2qc ,

1+12 = =(C) − =(D) cos 2qc + <(D) sin 2qc ,

1+21 = −=(C) − =(D) cos 2qc + <(D) sin 2qc ,

1+22 = <(C) + <(D) cos 2qc + =(D) sin 2qc ,

1+13 = −<(E) cos qc − =(E) sin qc ,

1+23 = −=(E) cos qc + <(E) sin qc ,

1+30 =

(
|� 1

2 0 |
2 − |�− 1

2 0 |
2
)

cos2 \c −
1
2

(
|� 1

2 1 |
2 − |�− 1

2 −1 |
2
)

sin2 \c ,

1+31 = <(F ) cos qc + =(F ) sin qc ,

1+32 = =(F ) cos qc −<(F ) sin qc ,

1+33 =

(
|� 1

2 0 |
2 + |�− 1

2 0 |
2
)

cos2 \c −
1
2

(
|� 1

2 1 |
2 + |�− 1

2 −1 |
2
)

sin2 \c ,
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with

A =
√

2 cos \c sin \c
(
�∗

1
2 0�− 1

2 −1 − �
∗
1
2 1�− 1

2 0

)
, (3.108)

B =
√

2 cos \c sin \c
(
�∗

− 1
2 0�− 1

2 −1 − �
∗
1
2 1� 1

2 0

)
, (3.109)

C = 2�∗
1
2 0�− 1

2 0 cos2 \c , (3.110)

D = �∗
1
2 1�− 1

2 −1 sin2 \c , (3.111)

E =
√

2 cos \c sin \c
(
�∗

− 1
2 0�− 1

2 −1 + �
∗
1
2 1� 1

2 0

)
, (3.112)

F =
√

2 cos \c sin \c
(
�∗

1
2 0�− 1

2 −1 + �
∗
1
2 1�− 1

2 0

)
. (3.113)

Decay plane aligned parameters reduce to the following form

1+`a =

©«
1+00 <(A) =(A) 1+03

<(B) <(C − D) =(C − D) −<(E)
=(B) −=(C + D) <(C + D) −=(E)
1+30 <(F ) =(F ) 1+33

ª®®®®®¬
. (3.114)

The differential decay rate of the process with unpolarized baryon �1 and the spins of �2

summed over is

dΓ ∝ +%ℎ (@2)1+00d@dΩ2dΩc , (3.115)

where +%ℎ (@2) is the three-body phase space density factor given by the product of the mo-
menta |p2 | and |pc |.
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Summary of the third chapter

• Semileptonic decay of ..̄ pairs are investigated. This analysis refers to the potential
signal using the data statistics collected by current 4+4− colliders with an unpolarized
beam of electrons (e.g. BESIII).

• The semileptonic transition amplitude between spin-1/2 baryons, with a final-state dilep-
ton, is derived in the helicity formalism. Using the helicity rotation, the complete
semileptonic decay matrix for a � = 1/2 ��̄ pair is presented.

• The JAD for the semileptonic transition of the spin-entangled ..̄ is obtained. This is a
first-time result, as previously this formalism had been applied only to hadronic decays.

• The JAD is employed in the approximate maximum likelihood method to compute the
statistical uncertainties for the SL form factors. Several hyperon decays are studied,
using the most recent results on hyperon–antihyperon production from BESIII.

• The spin correlation within the pair significantly affects the extracted uncertainties,
offering a new approach to semileptonic decay studies. In particular, including the
information from the production process shows a better precision for the SL FFs, for a
similar number of events.

• The angular dependence of the semileptonic decay matrix on the final baryon spherical
angle is isolated and generalized to spin-1/2 baryon–baryon transitions with various
final-state bosons.
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4
Summary and Outlook

This thesis collects my research work on hyperon decays and their properties. This chapter
outlines the findings of this research and includes discussions of future directions.

Hyperons are three-quark bound states made of combinations of the three lightest flavors,
u, d, and s, with at least one s quark. That is to say, any baryon with a non-zero value of the
“strangeness” quantum number, by definition. The descriptor ‘strange particles’ originates
at the time of their discovery, being long-lived particles created in strong flavor-conserving
processes. Both interactions are relevant to the discussion carried out in this thesis.

Electromagnetism has been vastly utilized as a probe for investigating the structure of
matter, e.g., in fixed-target experiments involving the nucleons. In this setup, the nucleon
EM form factors have been widely studied in the space-like @2 regime. The shorter lifetimes
of hyperons make them unsuitable for such an investigation: instead, they offer complemen-
tary information via 4+4− annihilation into ..̄ pairs. There, hyperon EM form factors are
investigated in the time-like kinematical region, which can be linked to the space-like form
factors exploiting analyticity and crossing symmetry. Such FFs are complex-valued, and the
relative phase between them results in the polarization of the produced pair. The baryon
and antibaryon are also spin-entangled, a feature that improves the uncertainty determina-
tion of observables deriving from the weak decays of the pair. The research included in this
dissertation is focused on weak hyperon decays, when the mother particles are produced in
spin-entangled pairs through electron–positron annihilation.

The polarization of the EM-produced ..̄ is retrieved by studying the subsequent decays
of the hyperons. It is measured via the anisotropic distribution of the final-state particles,
in nonleptonic decays. Independent measurements of baryon and antibaryon decay asymme-
tries are accessible by employing the spin-correlation of the pair. The asymmetries are then
compared to construct tests of direct CP violation.

The first study, in Chapter 2, describes the impact of a longitudinally polarized beam
of electrons on the decay studies. The spin-correlation matrix for the 4+4− → ..̄ reaction
gains additional elements directly proportional to the beam polarization, particularly for the
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(anti)hyperon polarization vector. The statistical uncertainties of the CPV observables are
significantly reduced for hyperons produced with a longitudinally polarized electron beam.
With this improvement, envisioned at the next-generation 4+4− colliders, the observed CPV
signal has the potential to reach the strength of the SM predictions.

Next-generation electron–positron colliders, known as Super g-charm factories (STCF),
offer higher statistics at �/k energies. As an increased luminosity is not enough to reach
the SM CPV signal, the electron beam polarization has also been discussed as an additional
improvement to these facilities. This is the starting point of our feasibility study, where we
assume a dataset of 1012 �/k events and evaluate the effects of a longitudinally polarized
beam of electrons on the statistical uncertainties of the hyperon CPV observables.

This research involves the use of a modular framework to describe the production process
and the decay chains: with the appropriate modifications, it can be applied to other sources
of polarized hyperons. For example, charm baryons nonleptonic or semileptonic decays in-
volving a daughter hyperon are produced in large numbers in proton–proton collisions at the
LHC. This situation would be the case of single polarized (anti)hyperons, also discussed in
Chapter 2. Here, the polarization vectors are assumed to have a fixed magnitude.

Charm baryons can also be produced in 4+4− colliders. The beam polarization-dependent
production matrix is extracted without any assumptions on the flavor content of the produced
pair, only on their spin. This formalism would apply to charm baryon–antibaryon pairs in a
straightforward manner, provided that they are spin-1/2 baryons. Charm pairs are being pro-
duced at the BEPCII collider, with the world’s first threshold data on the Λ+

2Λ̄
−
2 pair collected

in 2014 [181]. However, as I show in Chapter 2, the viability of such an inquiry hinges on
the spin-correlation information, retrievable via the DT reconstruction method. Nonleptonic
decays of charm baryons have too small branching fractions to be employed successfully in
a similar analysis. A focused strategy incorporating the envisioned enhancements for STCFs
may effectively tackle the issue, providing a framework for the direct application of our results.

Chapter 3 focuses on the semileptonic decays of spin-correlated baryon–antibaryon pro-
duced at 4+4− colliders with an unpolarized electron beam. The derived SL “decay” matrix
represents the transition between two � = 1/2 baryons, where the mother particle decays into
the daughter semileptonically. That is combined with the information from the production
process to obtain the joint angular distribution, in the same manner as in Chapter 2. Using
the asymptotic maximum likelihood method, the Fisher information matrix for the SL form
factor parameters is obtained.

The spin-correlation effects are shown to have a non-negligible influence on the extracted
uncertainties, a conclusion shared by the work in Chapter 2. Currently, our results are being
employed in the extraction of the hyperon SL FFs from the data collected by the BESIII collab-
oration. A significant increase in the number of events, e.g. from the luminosity enhancement
planned in STCFs, will improve the statistical precision of the SL form factor parameters. As
in the previous study, an extension would entail the inclusion of a longitudinally polarized 4−

beam and studies of the impact of beam polarization on the SL FF parameter uncertainties.
Moreover, the generic nature of this approach enables its direct application to spin-entangled



Chapter 4. Summary and Outlook 111

� = 1/2 charm baryon–antibaryon pairs.

Finally, the decay matrix is decomposed to isolate its dependence from the spherical angle
defined in the mother helicity frame. The remaining amplitude contains information on the
SL transition, that can be easily modified to depict scenarios of � = 1/2 → 1/2 baryon decays
emitting different final-state bosons. Among the detailed examples, the case of nonleptonic
decay (a final pseudoscalar) is obtained, along with the matrix for a pseudoscalar pair produc-
tion via a vector meson resonance. Radiative and Dalitz decays are also discussed, with the
latter being currently utilized in a BESIII analysis of transitions between Σ0 and Λ hyperons
with a dilepton pair.

The main feature of both works is the generic nature of the formulae derived therein.
Possible extensions of both works would involve spin-3/2 baryons, by changing the spin basis
in which to expand the production matrix for one or both (anti)baryons with � = 3/2. This
would entail expanding the already derived production matrices [52] for processes with a
longitudinally polarized electron beam. Likewise, the SL decay matrix would be derived
after replacing the initial baryon with a spin-3/2 mother particle – keeping the final state to a
spin-1/2 baryon and a virtual W boson. From there, the aforementioned examples of aligned
decay matrices should be obtained with a similar procedure as in Chapter 3.

Studies on nonleptonic hyperon decays are worth mentioning as an extension of the decays
investigated in Chapter 2. The revised value of the Λ decay asymmetry [65] calls for an up-
date of the nonleptonic transition amplitudes. From the new hyperon data, one can extract the
latest values for the two contributions to the decay amplitude, of opposite behavior under par-
ity transformation. These partial-wave amplitudes have been previously calculated in chiral
perturbation theory (jPT), up to one-loop corrections in the non-relativistic limit. Since the
first publication on the topic in the 1980s [182], different approaches to deriving such correc-
tions have been taken, and the theoretical framework has been updated to favor a relativistic
approach. I am currently working on producing first-time calculations of such l-wave am-
plitudes in relativistic jPT, including contributions from the spin-3/2 decuplet baryons and
resonance saturation effects, to provide the best fitting description of hyperon nonleptonic
decays.

The works presented in this thesis differ in the used methodology or the investigated case
study, however, they share the common aim to showcase the potential of hyperon studies.
Overall, in this era of increasing interest in hadron physics and high-precision measurements,
hyperon decays have proved to be an invaluable tool in providing a deeper insight into our
understanding of the laws of nature and the structure of matter.





113

Bibliography

[1] W.K. Tung.Group Theory in Physics.World Scientific, 1985. isbn: 978-9-971-96656-
0.

[2] D. Griffiths. Introduction to Elementary Particles. Wiley, 2008. isbn: 978-3-527-
40601-2.

[3] M. Srednicki. Quantum field theory. Cambridge University Press, 2007.
[4] G. D. Rochester and C. C. Butler. Evidence for the Existence of New Unstable Ele-

mentary Particles. Nature 160 (1947), pp. 855–857. doi: 10.1038/160855a0.
[5] C. F. Powell. Mesons. Reports on Progress in Physics 13.1 (Jan. 1950), p. 350. doi:

10.1088/0034-4885/13/1/309. url: https://dx.doi.org/10.1088/0034-
4885/13/1/309.

[6] H. L. Anderson et al. Total Cross-sections of Positive Pions in Hydrogen. Phys. Rev.
85 (1952), p. 936. doi: 10.1103/PhysRev.85.936.

[7] A. Pais. Some Remarks on the V-Particles. Phys. Rev. 86 (1952), pp. 663–672. doi:
10.1103/PhysRev.86.663.

[8] M.Gell-Mann. Isotopic Spin andNewUnstable Particles.Phys. Rev. 92 (1953), pp. 833–
834. doi: 10.1103/PhysRev.92.833.

[9] T. Nakano and K. Nishijima. Charge Independence for V-particles. Prog. Theor. Phys.
10 (1953), pp. 581–582. doi: 10.1143/PTP.10.581.

[10] M. Gell-Mann. The Eightfold Way: A Theory of strong interaction symmetry. Report
No. CTSL-20, TID-12608 (1961). doi: 10.2172/4008239.

[11] Y. Ne’eman. Derivation of strong interactions from a gauge invariance. Nucl. Phys.
26 (1961), pp. 222–229. doi: 10.1016/0029-5582(61)90134-1.

[12] M. Gell-Mann. Symmetries of baryons and mesons. Phys. Rev. 125 (1962), pp. 1067–
1084. doi: 10.1103/PhysRev.125.1067.

[13] G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Report
No. CERN-TH-401 (1964).

[14] M. Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett. 8 (1964),
pp. 214–215. doi: 10.1016/S0031-9163(64)92001-3.

[15] W. Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom
mit der Komplexstruktur der Spektren. Z. Phys. 31.1 (1925), pp. 765–783. doi: 10.
1007/BF02980631.

[16] V. E. Barnes et al. Observation of a Hyperon with Strangeness Minus Three. Phys.
Rev. Lett. 12 (1964), pp. 204–206. doi: 10.1103/PhysRevLett.12.204.

https://doi.org/10.1038/160855a0
https://doi.org/10.1088/0034-4885/13/1/309
https://dx.doi.org/10.1088/0034-4885/13/1/309
https://dx.doi.org/10.1088/0034-4885/13/1/309
https://doi.org/10.1103/PhysRev.85.936
https://doi.org/10.1103/PhysRev.86.663
https://doi.org/10.1103/PhysRev.92.833
https://doi.org/10.1143/PTP.10.581
https://doi.org/10.2172/4008239
https://doi.org/10.1016/0029-5582(61)90134-1
https://doi.org/10.1103/PhysRev.125.1067
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631
https://doi.org/10.1103/PhysRevLett.12.204


114 Bibliography

[17] O. W. Greenberg. Spin and Unitary Spin Independence in a Paraquark Model of
Baryons and Mesons. Phys. Rev. Lett. 13 (1964), pp. 598–602. doi: 10 . 1103 /
PhysRevLett.13.598.

[18] O. W. Greenberg and D. Zwanziger. Saturation in Triplet Models of Hadrons. Phys.
Rev. 150 (1966), pp. 1177–1180. doi: 10.1103/PhysRev.150.1177.

[19] H. Fritzsch, M. Gell-Mann, and H. Leutwyler. Advantages of the Color Octet Gluon
Picture. Phys. Lett. B 47 (1973), pp. 365–368. doi: 10 . 1016 / 0370 - 2693(73 )
90625-4.

[20] M. E. Peskin and D. V. Schroeder. An Introduction to quantum field theory. Addison-
Wesley, 1995.

[21] R. L. Workman et al. Review of Particle Physics. PTEP 2022 (2022), p. 083C01. doi:
10.1093/ptep/ptac097.

[22] D.J. Gross and F.Wilczek. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys.
Rev. Lett. 30 (1973). Ed. by J. C. Taylor, pp. 1343–1346.doi: 10.1103/PhysRevLett.
30.1343.

[23] H.D. Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett.
30 (1973). Ed. by J. C. Taylor, pp. 1346–1349. doi: 10.1103/PhysRevLett.30.
1346.

[24] R.Alkofer and J. Greensite. QuarkConfinement: TheHard Problem ofHadron Physics.
J. Phys. G 34 (2007), S3. doi: 10.1088/0954-3899/34/7/S02.

[25] E. Fermi. An attempt of a theory of beta radiation. Z. Phys. 88 (1934), pp. 161–177.
doi: 10.1007/BF01351864.

[26] C. S. Wu et al. Experimental Test of Parity Conservation in V Decay. Phys. Rev. 105
(1957), pp. 1413–1414. doi: 10.1103/PhysRev.105.1413.

[27] R. P. Feynman andM.Gell-Mann. Theory of Fermi interaction.Phys. Rev. 109 (1958),
pp. 193–198. doi: 10.1103/PhysRev.109.193.

[28] E. C. G. Sudarshan and R. e. Marshak. Chirality invariance and the universal Fermi
interaction. Phys. Rev. 109 (1958), pp. 1860–1860. doi: 10.1103/PhysRev.109.
1860.2.

[29] N. Cabibbo. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett. 10 (1963),
pp. 531–533. doi: 10.1103/PhysRevLett.10.531.

[30] C.N. Yang and Robert L. Mills. Conservation of Isotopic Spin and Isotopic Gauge
Invariance. Phys. Rev. 96 (1954), pp. 191–195. doi: 10.1103/PhysRev.96.191.

[31] Gerard ’t Hooft and M. J. G. Veltman. Regularization and Renormalization of Gauge
Fields. Nucl. Phys. B 44 (1972), pp. 189–213. doi: 10 . 1016 / 0550 - 3213(72 )
90279-9.

[32] S. Weinberg. A Model of Leptons. Phys. Rev. Lett. 19 (1967), pp. 1264–1266. doi:
10.1103/PhysRevLett.19.1264.

[33] A. Salam. Weak and Electromagnetic Interactions. Conf. Proc. C 680519 (1968),
pp. 367–377. doi: 10.1142/9789812795915_0034.

[34] P. W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett.
13 (1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508.

https://doi.org/10.1103/PhysRevLett.13.598
https://doi.org/10.1103/PhysRevLett.13.598
https://doi.org/10.1103/PhysRev.150.1177
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1088/0954-3899/34/7/S02
https://doi.org/10.1007/BF01351864
https://doi.org/10.1103/PhysRev.105.1413
https://doi.org/10.1103/PhysRev.109.193
https://doi.org/10.1103/PhysRev.109.1860.2
https://doi.org/10.1103/PhysRev.109.1860.2
https://doi.org/10.1103/PhysRevLett.10.531
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1103/PhysRevLett.13.508


Bibliography 115

[35] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons.
Phys. Rev. Lett. 13 (1964), pp. 321–323. doi: 10.1103/PhysRevLett.13.321.

[36] C. E. Carlson. Electromagnetic # − Δ transition at high &2. Phys. Rev. D 34 (1986),
p. 2704. doi: 10.1103/PhysRevD.34.2704.

[37] V. Punjabi et al. The Structure of the Nucleon: Elastic Electromagnetic Form Factors.
Eur. Phys. J. A 51 (2015), p. 79. doi: 10.1140/epja/i2015-15079-x.

[38] B. Kubis and U. G. Meissner. Baryon form-factors in chiral perturbation theory. Eur.
Phys. J. C 18 (2001), pp. 747–756. doi: 10.1007/s100520100570.

[39] D.R. Yennie, M.M. Lévy, and D.G. Ravenhall. Electromagnetic Structure of Nucle-
ons. Rev. Mod. Phys. 29.1 (1957), p. 144. doi: 10.1103/RevModPhys.29.144.

[40] R.G. Sachs. High-Energy Behavior of Nucleon Electromagnetic Form Factors. Phys.
Rev. 126 (1962), pp. 2256–2260. doi: 10.1103/PhysRev.126.2256.

[41] J.Z. Bai et al. Decays of the J/k to ΛΛ,ΛΛW and ΛΛc0 final states. Phys. Lett. B 424
(1998). [Erratum: Phys.Lett.B 438, 447–448 (1998)], pp. 213–218. doi: 10.1016/
S0370-2693(98)00171-3.

[42] M. Ablikim et al. Measurement of J/psi decays into Lambda anti-Lambda pi+ pi-.
Chin. Phys. C 36 (2012), pp. 1031–1039. doi: 10.1088/1674-1137/36/11/001.

[43] M. Ablikim et al. Study of �/k and k(3686) decay to ΛΛ̄ and Σ0Σ̄0 final states. Phys.
Rev. D 95.5 (2017), p. 052003. doi: 10.1103/PhysRevD.95.052003.

[44] M. Ablikim et al. Design and Construction of the BESIII Detector. Nucl. Instrum.
Meth. A 614 (2010), pp. 345–399. doi: 10.1016/j.nima.2009.12.050.

[45] G. Fäldt and A. Kupsc. Hadronic structure functions in the 4+4− → Λ̄Λ reaction.
Phys. Lett. B 772 (2017), pp. 16–20. doi: 10.1016/j.physletb.2017.06.011.

[46] A. Z. Dubnickova, S. Dubnicka, and M. P. Rekalo. Investigation of the nucleon elec-
tromagnetic structure by polarization effects in e+ e- —> N anti-N processes. Nuovo
Cim. A 109 (1996), pp. 241–256. doi: 10.1007/BF02731012.

[47] N. Salone et al. Study of CP violation in hyperon decays at super-charm-tau factories
with a polarized electron beam. Phys. Rev. D 105.11 (2022), p. 116022. doi: 10.
1103/PhysRevD.105.116022.

[48] J.J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Quantum physics, quan-
tum information and quantum computation. Cambridge University Press, Oct. 2020.
isbn: 978-1-108-47322-4. doi: 10.1017/9781108587280.

[49] M. Jacob and G. C. Wick. On the General Theory of Collisions for Particles with
Spin. Annals Phys. 7 (1959), pp. 404–428. doi: 10.1006/aphy.2000.6022.

[50] M.G. Doncel et al. Properties of polarization density matrix in Regge pole models.
Phys. Rev. D 7 (1973), pp. 815–835. doi: 10.1103/PhysRevD.7.815.

[51] M.G. Doncel, L. Michel, and P. Minnaert. Rigorous spin tests from usual strong de-
cays. Nucl. Phys. B 38 (1972), pp. 477–528. doi: 10.1016/0550-3213(72)90321-
5.

[52] E. Perotti et al. Polarization observables in 4+4− annihilation to a baryon-antibaryon
pair. Phys. Rev. D 99.5 (2019), p. 056008. doi: 10.1103/PhysRevD.99.056008.

https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevD.34.2704
https://doi.org/10.1140/epja/i2015-15079-x
https://doi.org/10.1007/s100520100570
https://doi.org/10.1103/RevModPhys.29.144
https://doi.org/10.1103/PhysRev.126.2256
https://doi.org/10.1016/S0370-2693(98)00171-3
https://doi.org/10.1016/S0370-2693(98)00171-3
https://doi.org/10.1088/1674-1137/36/11/001
https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1016/j.physletb.2017.06.011
https://doi.org/10.1007/BF02731012
https://doi.org/10.1103/PhysRevD.105.116022
https://doi.org/10.1103/PhysRevD.105.116022
https://doi.org/10.1017/9781108587280
https://doi.org/10.1006/aphy.2000.6022
https://doi.org/10.1103/PhysRevD.7.815
https://doi.org/10.1016/0550-3213(72)90321-5
https://doi.org/10.1016/0550-3213(72)90321-5
https://doi.org/10.1103/PhysRevD.99.056008


116 Bibliography

[53] E. Wigner. Einige Folgerungen aus der Schrödingerschen Theorie für die Termstruk-
turen. Z. Phys. 43 (1927), pp. 624–652. doi: 10.1007/BF01397327.

[54] F. Tabakin and R.A. Eisenstein. Meson Exchange Calculation of the ?̄ ? → Λ̄Λ Re-
action. Phys. Rev. C 31 (1985), p. 1857. doi: 10.1103/PhysRevC.31.1857.

[55] G. Fäldt. Polarization observables in the 4+4− → Λ̄Λ reaction. Eur. Phys. J. A 52.5
(2016), p. 141. doi: 10.1140/epja/i2016-16141-y.

[56] J.H. Christenson et al. Evidence for the 2c Decay of the  0
2 Meson. Phys. Rev. Lett.

13 (1964), pp. 138–140. doi: 10.1103/PhysRevLett.13.138.
[57] B. Aubert et al. Observation of CP violation in the �0 meson system. Phys. Rev. Lett.

87 (2001), p. 091801. doi: 10.1103/PhysRevLett.87.091801.
[58] K. Abe et al. Observation of large CP violation in the neutral � meson system. Phys.

Rev. Lett. 87 (2001), p. 091802. doi: 10.1103/PhysRevLett.87.091802.
[59] A. Poluektov et al. Evidence for direct CP violation in the decay �± → � (∗) ±,

� →  0
(
c+c− and measurement of the CKM phase phi3. Phys. Rev. D 81 (2010),

p. 112002. doi: 10.1103/PhysRevD.81.112002.
[60] R. Aaij et al. Observation of CP Violation in Charm Decays. Phys. Rev. Lett. 122.21

(2019), p. 211803. doi: 10.1103/PhysRevLett.122.211803.
[61] M. Kobayashi and T. Maskawa. CP Violation in the Renormalizable Theory of Weak

Interaction. Prog. Theor. Phys. 49 (1973), pp. 652–657. doi: 10.1143/PTP.49.652.
[62] A.D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymmetry

of the universe. Pisma Zh. Eksp. Teor. Fiz. 5 (1967), pp. 32–35. doi: 10 . 1070 /
PU1991v034n05ABEH002497.

[63] E.D. Commins and P.H. Bucksbaum. Weak Interactions of Leptons and Quarks. Cam-
bridge University Press, 1983. isbn: 978-0-521-27370-1.

[64] C.-Z. Yuan and S.L. Olsen. The BESIII physics programme. Nature Rev. Phys. 1.8
(2019), pp. 480–494. doi: 10.1038/s42254-019-0082-y.

[65] M. Ablikim et al. Polarization and Entanglement in Baryon-Antibaryon Pair Produc-
tion in Electron-Positron Annihilation. Nature Phys. 15 (2019), pp. 631–634. doi:
10.1038/s41567-019-0494-8.

[66] N. Cabibbo, E.C. Swallow, and R. Winston. Semileptonic hyperon decays. Ann. Rev.
Nucl. Part. Sci. 53 (2003), pp. 39–75. doi: 10.1146/annurev.nucl.53.013103.
155258.

[67] V.A. Kuzmin, V.A. Rubakov, andM.E. Shaposhnikov. On theAnomalous Electroweak
Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155 (1985),
p. 36. doi: 10.1016/0370-2693(85)91028-7.

[68] M.E. Shaposhnikov. Standard model solution of the baryogenesis problem. Phys. Lett.
B 277 (1992). [Erratum: Phys.Lett.B 282, 483 (1992)], pp. 324–330. doi: 10.1016/
0370-2693(92)90753-Q.

[69] B. Aubert et al. Observation of CP violation in the �0 meson system. Phys. Rev. Lett.
87 (2001), p. 091801. doi: 10.1103/PhysRevLett.87.091801.

[70] K. Abe et al. Observation of large CP violation in the neutral � meson system. Phys.
Rev. Lett. 87 (2001), p. 091802. doi: 10.1103/PhysRevLett.87.091802.

https://doi.org/10.1007/BF01397327
https://doi.org/10.1103/PhysRevC.31.1857
https://doi.org/10.1140/epja/i2016-16141-y
https://doi.org/10.1103/PhysRevLett.13.138
https://doi.org/10.1103/PhysRevLett.87.091801
https://doi.org/10.1103/PhysRevLett.87.091802
https://doi.org/10.1103/PhysRevD.81.112002
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1038/s42254-019-0082-y
https://doi.org/10.1038/s41567-019-0494-8
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1016/0370-2693(92)90753-Q
https://doi.org/10.1016/0370-2693(92)90753-Q
https://doi.org/10.1103/PhysRevLett.87.091801
https://doi.org/10.1103/PhysRevLett.87.091802


Bibliography 117

[71] A.J. Buras et al. The � → ?8 puzzle and its relation to rare B and K decays. Eur.
Phys. J. C 32 (2003), pp. 45–54. doi: 10.1140/epjc/s2003-01379-9.

[72] R. Aaij et al. Observation of CP Violation in Charm Decays. Phys. Rev. Lett. 122.21
(2019), p. 211803. doi: 10.1103/PhysRevLett.122.211803.

[73] J.R. Batley et al. A Precision measurement of direct CP violation in the decay of
neutral kaons into two pions. Phys. Lett. B 544 (2002), pp. 97–112. doi: 10.1016/
S0370-2693(02)02476-0.

[74] A. Alavi-Harati et al. Measurements of direct CP violation, CPT symmetry, and other
parameters in the neutral kaon system. Phys. Rev. D 67 (2003). [Erratum: Phys.Rev.D
70, 079904 (2004)], p. 012005. doi: 10.1103/PhysRevD.70.079904.

[75] E. Abouzaid et al. Precise Measurements of Direct CP Violation, CPT Symmetry, and
Other Parameters in the Neutral Kaon System.Phys. Rev. D 83 (2011), p. 092001. doi:
10.1103/PhysRevD.83.092001.

[76] A.J. Buras. The Y/Y-story: 1976–2021. Acta Physica Polonica B 52.1 (2021), p. 7.
issn: 1509-5770. doi: 10.5506/aphyspolb.52.7. url: http://dx.doi.org/
10.5506/APhysPolB.52.7.

[77] Z. Bai et al. StandardModel Prediction for Direct CPViolation inK→ccDecay.Phys.
Rev. Lett. 115.21 (2015), p. 212001. doi: 10.1103/PhysRevLett.115.212001.

[78] R. Abbott et al. Direct CP violation and the Δ� = 1/2 rule in  → cc decay from the
standard model. Phys. Rev. D 102.5 (2020), p. 054509. doi: 10.1103/PhysRevD.
102.054509.

[79] H. Gisbert and A. Pich. Direct CP violation in  0 → cc: Standard Model Status.
Rept. Prog. Phys. 81.7 (2018), p. 076201. doi: 10.1088/1361-6633/aac18e.

[80] J. Aebischer, C. Bobeth, and A.J. Buras. Y′/Y in the Standard Model at the Dawn of
the 2020s. Eur. Phys. J. C 80.8 (2020), p. 705. doi: 10.1140/epjc/s10052-020-
8267-1.

[81] S. Okubo. Decay of the Sigma+ Hyperon and its Antiparticle. Phys. Rev. 109 (1958),
pp. 984–985. doi: 10.1103/PhysRev.109.984.

[82] A. Pais. Notes on Antibaryon Interactions. Phys. Rev. Lett. 3 (1959), pp. 242–244.
doi: 10.1103/PhysRevLett.3.242.

[83] T. Brown, S.F. Tuan, and S. Pakvasa. CP Nonconservation in Hyperon Decays. Phys.
Rev. Lett. 51 (1983), p. 1823. doi: 10.1103/PhysRevLett.51.1823.

[84] L.-L. Chau and H.-Y. Cheng. Partial Rate Differences From CP Violation in Hyperon
Nonleptonic Decays. Phys. Lett. B 131 (1983), pp. 202–208. doi: 10.1016/0370-
2693(83)91121-8.

[85] J.F. Donoghue and S. Pakvasa. Signals of CP Nonconservation in Hyperon Decay.
Phys. Rev. Lett. 55 (1985), p. 162. doi: 10.1103/PhysRevLett.55.162.

[86] J.F. Donoghue, X.-G. He, and S. Pakvasa. Hyperon Decays and CP Nonconservation.
Phys. Rev. D 34 (1986), p. 833. doi: 10.1103/PhysRevD.34.833.

[87] T. D. Lee and C.-N. Yang. General PartialWave Analysis of the Decay of a Hyperon of
Spin 1/2.Phys. Rev. 108 (1957), pp. 1645–1647.doi: 10.1103/PhysRev.108.1645.

https://doi.org/10.1140/epjc/s2003-01379-9
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1016/S0370-2693(02)02476-0
https://doi.org/10.1016/S0370-2693(02)02476-0
https://doi.org/10.1103/PhysRevD.70.079904
https://doi.org/10.1103/PhysRevD.83.092001
https://doi.org/10.5506/aphyspolb.52.7
http://dx.doi.org/10.5506/APhysPolB.52.7
http://dx.doi.org/10.5506/APhysPolB.52.7
https://doi.org/10.1103/PhysRevLett.115.212001
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1103/PhysRevD.102.054509
https://doi.org/10.1088/1361-6633/aac18e
https://doi.org/10.1140/epjc/s10052-020-8267-1
https://doi.org/10.1140/epjc/s10052-020-8267-1
https://doi.org/10.1103/PhysRev.109.984
https://doi.org/10.1103/PhysRevLett.3.242
https://doi.org/10.1103/PhysRevLett.51.1823
https://doi.org/10.1016/0370-2693(83)91121-8
https://doi.org/10.1016/0370-2693(83)91121-8
https://doi.org/10.1103/PhysRevLett.55.162
https://doi.org/10.1103/PhysRevD.34.833
https://doi.org/10.1103/PhysRev.108.1645


118 Bibliography

[88] P.M. Ho et al. Measurement of the polarization and magnetic moment of Anti-xi+
anti-hyperons produced by 800-GeV/c protons. Phys. Rev. D 44 (1991), pp. 3402–
3418. doi: 10.1103/PhysRevD.44.3402.

[89] R.A. Burnstein et al. HyperCP: A High-rate spectrometer for the study of charged
hyperon and kaon decays. Nucl. Instrum. Meth. A 541 (2005), pp. 516–565. doi: 10.
1016/j.nima.2004.12.031.

[90] J. Tandean and G. Valencia. CP violation in hyperon nonleptonic decays within the
standard model. Phys. Rev. D 67 (2003), p. 056001. doi: 10.1103/PhysRevD.67.
056001.

[91] T. Holmstrom et al. Search for CP violation in charged-Xi and Lambda hyperon de-
cays. Phys. Rev. Lett. 93 (2004), p. 262001. doi: 10 . 1103 / PhysRevLett . 93 .
262001.

[92] P.A. Zyla et al. Review of Particle Physics. PTEP 2020.8 (2020), p. 083C01. doi:
10.1093/ptep/ptaa104.

[93] N. Cabibbo and R. Gatto. Electron Positron Colliding Beam Experiments. Phys. Rev.
124 (1961), pp. 1577–1595. doi: 10.1103/PhysRev.124.1577.

[94] M. Ablikim et al. Polarization and Entanglement in Baryon-Antibaryon Pair Produc-
tion in Electron-Positron Annihilation. Nature Phys. 15 (2019), pp. 631–634. doi:
10.1038/s41567-019-0494-8.

[95] M. Ablikim et al. Weak phases and CP-symmetry tests in sequential decays of entan-
gled double-strange baryons. Nature 606 (2022), pp. 64–69. doi: 10.1038/s41586-
022-04624-1.

[96] Q. Luo and D. Xu. Progress on Preliminary Conceptual Study of HIEPA, a Super
Tau-Charm Factory in China. 9th International Particle Accelerator Conference. June
2018. doi: 10.18429/JACoW-IPAC2018-MOPML013.

[97] E.B. Levichev et al. Electron–positron beam collision studies at the Budker Institute
of Nuclear Physics. Phys. Usp. 61.5 (2018), pp. 405–423. doi: 10.3367/UFNe.
2018.01.038300.

[98] M.-H. Ye and Z.-P. Zheng. BEPC, THE BEIJING ELECTRON POSITRON COL-
LIDER. Int. J. Mod. Phys. A 2 (1987), pp. 1707–1725.doi: 10.1142/S0217751X87000880.

[99] A. Renieri. Possibility of AchievingVeryHigh-EnergyResolution in electron-Positron
Storage Rings. LNF-75/6-R. Feb. 1975.

[100] A.A. Avdienko et al. THE PROJECT OF MODERNIZATION OF THE VEPP-4
STORAGE RING FOR MONOCHROMATIC EXPERIMENTS IN THE ENERGY
RANGE OF PSI AND UPSILON MESONS. Conf. Proc. C 830811 (1983). Ed. by
F.T. Cole and R. Donaldson. Contribution to: HEACC83, pp. 186–189.

[101] V.I. Telnov. Monochromatization of 4+4− colliders with a large crossing angle. Aug.
2020. arXiv: 2008.13668 [physics.acc-ph].

[102] I.A. Koop, A.V. Bogomyagkov, andA.V.Otboev. Longitudinal Polarization inNovosi-
birsk c-tau factory. Joint Workshop on Future charm-tau Factory. Sept. 2019. url:
https://c-tau.ru/indico/event/3/contributions/206/.

https://doi.org/10.1103/PhysRevD.44.3402
https://doi.org/10.1016/j.nima.2004.12.031
https://doi.org/10.1016/j.nima.2004.12.031
https://doi.org/10.1103/PhysRevD.67.056001
https://doi.org/10.1103/PhysRevD.67.056001
https://doi.org/10.1103/PhysRevLett.93.262001
https://doi.org/10.1103/PhysRevLett.93.262001
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRev.124.1577
https://doi.org/10.1038/s41567-019-0494-8
https://doi.org/10.1038/s41586-022-04624-1
https://doi.org/10.1038/s41586-022-04624-1
https://doi.org/10.18429/JACoW-IPAC2018-MOPML013
https://doi.org/10.3367/UFNe.2018.01.038300
https://doi.org/10.3367/UFNe.2018.01.038300
https://doi.org/10.1142/S0217751X87000880
https://arxiv.org/abs/2008.13668
https://c-tau.ru/indico/event/3/contributions/206/


Bibliography 119

[103] A. Kupsc. Hyperon physics at SCTF with polarized beams. Joint Workshop on Future
charm-tau Factory. Sept. 2019. url: https://c-tau.ru/indico/event/3/
contributions/206/.

[104] A. Bondar et al. Measurement of the weak mixing angle at a Super Charm-Tau fac-
tory with data-driven monitoring of the average electron beam polarization. JHEP 03
(2020), p. 076. doi: 10.1007/JHEP03(2020)076.

[105] P. Adlarson and A. Kupsc. CP symmetry tests in the cascade-anticascade decay of
charmonium. Phys. Rev. D 100.11 (2019), p. 114005. doi: 10.1103/PhysRevD.
100.114005.

[106] D.G. Ireland et al. Kaon Photoproduction and the Λ Decay Parameter U−. Phys. Rev.
Lett. 123.18 (2019), p. 182301. doi: 10.1103/PhysRevLett.123.182301.

[107] R. Handler et al. PRECISE MEASUREMENT OF THE ASYMMETRY PARAME-
TER IN THE DECAYXI0—> LAMBDA PI0. Phys. Rev. D 25 (1982), pp. 639–651.
doi: 10.1103/PhysRevD.25.639.

[108] J.R. Batley et al. New Precise Measurements of the Ξ0− > ΛW and Ξ0− > Σ0W Decay
Asymmetries. Phys. Lett. B 693 (2010), pp. 241–248. doi: 10.1016/j.physletb.
2010.08.046.

[109] M. Huang et al. New measurement of Xi- —> Lambda pi- decay parameters. Phys.
Rev. Lett. 93 (2004), p. 011802. doi: 10.1103/PhysRevLett.93.011802.

[110] W.E. Cleland et al. A measurement of the beta-parameter in the charged nonleptonic
decay of the lambda0 hyperon. Nucl. Phys. B 40 (1972), pp. 221–254. doi: 10.1016/
0550-3213(72)90544-5.

[111] O.E. Overseth and R.F. Roth. Time Reversal Invariance in Lambda0 Decay. Phys. Rev.
Lett. 19 (1967), pp. 391–393. doi: 10.1103/PhysRevLett.19.391.

[112] J.W. Cronin andO.E. Overseth.Measurement of the decay parameters of the Lambda0
particle. Phys. Rev. 129 (1963), pp. 1795–1807. doi: 10.1103/PhysRev.129.1795.

[113] M. Ablikim et al. Σ+ and Σ̄− polarization in the �/k and k(3686) decays. Phys. Rev.
Lett. 125.5 (2020), p. 052004. doi: 10.1103/PhysRevLett.125.052004.

[114] F. Harris et al. Proton polarization in sigma+ —> p pi0. Phys. Rev. Lett. 24 (1970),
pp. 165–168. doi: 10.1103/PhysRevLett.24.165.

[115] N.H. Lipman et al. A test of the delta-i=1/2 rule and the lee-sugawara relation in the
decay sigma+ —> p pi0. Phys. Lett. B 43 (1973), pp. 89–92. doi: 10.1016/0370-
2693(73)90551-0.

[116] V. Cirigliano et al. Isospin breaking in K —> pi pi decays. Eur. Phys. J. C 33 (2004),
pp. 369–396. doi: 10.1140/epjc/s2003-01579-3.

[117] M. Hoferichter et al. Roy–Steiner-equation analysis of pion–nucleon scattering. Phys.
Rept. 625 (2016), pp. 1–88. doi: 10.1016/j.physrep.2016.02.002.

[118] R. Nath and A. Kumar. The effect of final-state interactions on the asymmetry param-
eter in cascade decay processes. Nuovo Cim 36 (1965), pp. 669–671. doi: 10.1007/
BF02751336.

https://c-tau.ru/indico/event/3/contributions/206/
https://c-tau.ru/indico/event/3/contributions/206/
https://doi.org/10.1007/JHEP03(2020)076
https://doi.org/10.1103/PhysRevD.100.114005
https://doi.org/10.1103/PhysRevD.100.114005
https://doi.org/10.1103/PhysRevLett.123.182301
https://doi.org/10.1103/PhysRevD.25.639
https://doi.org/10.1016/j.physletb.2010.08.046
https://doi.org/10.1016/j.physletb.2010.08.046
https://doi.org/10.1103/PhysRevLett.93.011802
https://doi.org/10.1016/0550-3213(72)90544-5
https://doi.org/10.1016/0550-3213(72)90544-5
https://doi.org/10.1103/PhysRevLett.19.391
https://doi.org/10.1103/PhysRev.129.1795
https://doi.org/10.1103/PhysRevLett.125.052004
https://doi.org/10.1103/PhysRevLett.24.165
https://doi.org/10.1016/0370-2693(73)90551-0
https://doi.org/10.1016/0370-2693(73)90551-0
https://doi.org/10.1140/epjc/s2003-01579-3
https://doi.org/10.1016/j.physrep.2016.02.002
https://doi.org/10.1007/BF02751336
https://doi.org/10.1007/BF02751336


120 Bibliography

[119] M. Lu, M.B. Wise, and M.J. Savage. Strong Lambda pi phase shifts for CP violation
in weak Xi —> Lambda pi decay. Phys. Lett. B 337 (1994), pp. 133–136. doi: 10.
1016/0370-2693(94)91456-7.

[120] A.N. Kamal. pi Lambda scattering phase shifts and CP violation in Xi—> pi Lambda
decay. Phys. Rev. D 58 (1998), p. 077501. doi: 10.1103/PhysRevD.58.077501.

[121] A. Datta, P. O’Donnell, and S. Pakvasa. Lambda - pi phase shifts in chiral perturbation
theory. June 1998. arXiv: hep-ph/9806374.

[122] J. Tandean, A.W. Thomas, and G.E Valencia. Can the Lambda pi scattering phase
shifts be large? Phys. Rev. D 64 (2001), p. 014005. doi: 10.1103/PhysRevD.64.
014005.

[123] U.-G. Meissner and J.A. Oller. The S wave Lambda pi phase shift is not large. Phys.
Rev. D 64 (2001), p. 014006. doi: 10.1103/PhysRevD.64.014006.

[124] B.-L. Huang et al. Meson-baryon scattering to one-loop order in heavy baryon chiral
perturbation theory. Phys. Rev. D 96.1 (2017), p. 016021. doi: 10.1103/PhysRevD.
96.016021.

[125] K.M. Watson. Some general relations between the photoproduction and scattering of
pi mesons. Phys. Rev. 95 (1954), pp. 228–236. doi: 10.1103/PhysRev.95.228.

[126] J. Tandean. New physics and CP violation in hyperon nonleptonic decays. Phys. Rev.
D 69 (2004), p. 076008. doi: 10.1103/PhysRevD.69.076008.

[127] D. Chang, X.-G. He, and S. Pakvasa. CP violation in hyperon decays due to left-right
mixing. Phys. Rev. Lett. 74 (1995), pp. 3927–3930. doi: 10.1103/PhysRevLett.
74.3927.

[128] X.-G. He and G. Valencia. CP violation in Lambda —> p pi- beyond the Standard
Model. Phys. Rev. D 52 (1995), pp. 5257–5268. doi: 10.1103/PhysRevD.52.5257.

[129] A.J. Buras et al. Connections between epsilon-prime / epsilon and rare kaon decays
in supersymmetry. Nucl. Phys. B 566 (2000), pp. 3–32. doi: 10 . 1016 / S0550 -
3213(99)00645-8.

[130] X.-G. He et al. CP violation in hyperon decays from supersymmetry. Phys. Rev. D 61
(2000), p. 071701. doi: 10.1103/PhysRevD.61.071701.

[131] C.-H. Chen. CP violation in hyperon decays from SUSY with Hermitian Yukawa and
Amatrices. Phys. Lett. B 521 (2001), pp. 315–319. doi: 10.1016/S0370-2693(01)
01236-9.

[132] V. Cirigliano et al. Isospin-violating contributions to n ′/n . JHEP 02 (2020), p. 032.
doi: 10.1007/JHEP02(2020)032.

[133] Joachim Brod, Martin Gorbahn, and Emmanuel Stamou. Standard-Model Predic-
tion of n with Manifest Quark-Mixing Unitarity. Phys. Rev. Lett. 125.17 (2020),
p. 171803. doi: 10.1103/PhysRevLett.125.171803.

[134] J. Aebischer, A.J. Buras, and J. Kumar. Another SMEFT story: / facing new results on
n ′/n , Δ" and  → caa. JHEP 12 (2020), p. 097. doi: 10.1007/JHEP12(2020)
097.

[135] S.R. Beane et al. Exploring hyperons and hypernuclei with lattice QCD. Nucl. Phys.
A 747 (2005), pp. 55–74. doi: 10.1016/j.nuclphysa.2004.09.081.

https://doi.org/10.1016/0370-2693(94)91456-7
https://doi.org/10.1016/0370-2693(94)91456-7
https://doi.org/10.1103/PhysRevD.58.077501
https://arxiv.org/abs/hep-ph/9806374
https://doi.org/10.1103/PhysRevD.64.014005
https://doi.org/10.1103/PhysRevD.64.014005
https://doi.org/10.1103/PhysRevD.64.014006
https://doi.org/10.1103/PhysRevD.96.016021
https://doi.org/10.1103/PhysRevD.96.016021
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRevD.69.076008
https://doi.org/10.1103/PhysRevLett.74.3927
https://doi.org/10.1103/PhysRevLett.74.3927
https://doi.org/10.1103/PhysRevD.52.5257
https://doi.org/10.1016/S0550-3213(99)00645-8
https://doi.org/10.1016/S0550-3213(99)00645-8
https://doi.org/10.1103/PhysRevD.61.071701
https://doi.org/10.1016/S0370-2693(01)01236-9
https://doi.org/10.1016/S0370-2693(01)01236-9
https://doi.org/10.1007/JHEP02(2020)032
https://doi.org/10.1103/PhysRevLett.125.171803
https://doi.org/10.1007/JHEP12(2020)097
https://doi.org/10.1007/JHEP12(2020)097
https://doi.org/10.1016/j.nuclphysa.2004.09.081


Bibliography 121

[136] C.G. White et al. Search for direct CP violation in Lambda and Xi hyperon decays.
Nucl. Phys. B Proc. Suppl. 71 (1999). Ed. by G. Capon et al., pp. 451–456. doi:
10.1016/S0920-5632(98)00377-6.

[137] C. Materniak. Search for CP violation in Xi and Lambda hyperon decays with the
HyperCP spectrometer at Fermilab. Nucl. Phys. B Proc. Suppl. 187 (2009). Ed. by
Marco Bozzo et al., pp. 208–215. doi: 10.1016/j.nuclphysbps.2009.01.030.

[138] M. Ablikim et al. Study of �/k and k(3686) decay to ΛΛ̄ and Σ0Σ̄0 final states. Phys.
Rev. D 95.5 (2017), p. 052003. doi: 10.1103/PhysRevD.95.052003.

[139] M. Ablikim et al. First measurements of J/Psi decays into Sigma+ anti-Sigma- andXi0
anti-Xi0. Phys. Rev. D 78 (2008), p. 092005. doi: 10.1103/PhysRevD.78.092005.

[140] M. Ablikim et al. Study of �/k and k(3686) → Σ(1385)0Σ̄(1385)0 and Ξ0Ξ̄0. Phys.
Lett. B770 (2017), pp. 217–225. doi: 10.1016/j.physletb.2017.04.048.

[141] S.J. Brodsky and G.P. Lepage. Helicity Selection Rules and Tests of Gluon Spin in Ex-
clusive QCD Processes. Phys. Rev. D 24 (1981), p. 2848. doi: 10.1103/PhysRevD.
24.2848.

[142] R.A. Fisher and E.J. Russell. On the mathematical foundations of theoretical statis-
tics. Philosophical Transactions of the Royal Society of London. Series A. 222.594-
604 (1922), pp. 309–368. doi: 10 . 1098 / rsta . 1922 . 0009. url: https : / /
royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009.

[143] I.I. Bigi, X.-W. Kang, and H.-B. Li. CPAsymmetries in Strange Baryon Decays. Chin.
Phys. C 42.1 (2018), p. 013101. doi: 10.1088/1674-1137/42/1/013101.

[144] M. Ablikim et al. Study of k decays to the Ξ−Ξ̄+ and Σ(1385)∓Σ̄(1385)± final states.
Phys. Rev. D 93.7 (2016), p. 072003. doi: 10.1103/PhysRevD.93.072003.

[145] Y.B. Li et al. Measurements of the branching fractions of the semileptonic decays
Ξ0
2 → Ξ−ℓ+aℓ and the asymmetry parameter of Ξ0

2 → Ξ−c+. Phys. Rev. Lett. 127.12
(2021), p. 121803. doi: 10.1103/PhysRevLett.127.121803.

[146] O.E. Overseth and S. Pakvasa. Final-state interactions in nonleptonic hyperon decay.
Phys. Rev. 184 (1969), pp. 1663–1667. doi: 10.1103/PhysRev.184.1663.

[147] M. Suzuki. Helicity conservation in inclusive nonleptonic decay � → VX: Test of
long distance final state interaction. Phys. Rev. D 66 (2002), p. 054018. doi: 10 .
1103/PhysRevD.66.054018.

[148] J.-P. Dedonder et al. S-, P- and D-wave final state interactions and CP violation in B+-
–> pi+- pi-+ pi+- decays. Acta Phys. Polon. B 42 (2011), p. 2013. doi: 10.5506/
APhysPolB.42.2013.

[149] D.-L. Yao et al. A review on partial-wave dynamics with chiral effective field theory
and dispersion relation. Rept. Prog. Phys. 84.7 (2021), p. 076201. doi: 10.1088/
1361-6633/abfa6f.

[150] L.-Y.Dai andM.R. Pennington. Comprehensive amplitude analysis of WW → c+c−, c0c0

and  below 1.5GeV.Phys. Rev. D 90.3 (2014), p. 036004.doi: 10.1103/PhysRevD.
90.036004.

https://doi.org/10.1016/S0920-5632(98)00377-6
https://doi.org/10.1016/j.nuclphysbps.2009.01.030
https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1103/PhysRevD.78.092005
https://doi.org/10.1016/j.physletb.2017.04.048
https://doi.org/10.1103/PhysRevD.24.2848
https://doi.org/10.1103/PhysRevD.24.2848
https://doi.org/10.1098/rsta.1922.0009
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1922.0009
https://doi.org/10.1088/1674-1137/42/1/013101
https://doi.org/10.1103/PhysRevD.93.072003
https://doi.org/10.1103/PhysRevLett.127.121803
https://doi.org/10.1103/PhysRev.184.1663
https://doi.org/10.1103/PhysRevD.66.054018
https://doi.org/10.1103/PhysRevD.66.054018
https://doi.org/10.5506/APhysPolB.42.2013
https://doi.org/10.5506/APhysPolB.42.2013
https://doi.org/10.1088/1361-6633/abfa6f
https://doi.org/10.1088/1361-6633/abfa6f
https://doi.org/10.1103/PhysRevD.90.036004
https://doi.org/10.1103/PhysRevD.90.036004


122 Bibliography

[151] Y.-J. Shi, U.-G.Meißner, and Z.-X. Zhao. Resonance contributions in �− →  + −c−

within the light-cone sum rule approach. Eur. Phys. J. C 82.2 (2022), p. 113. doi:
10.1140/epjc/s10052-022-10062-0.

[152] J.T. Daub, C. Hanhart, andB.Kubis. Amodel-independent analysis of final-state inter-
actions in �0

3/B → �/kcc. JHEP 02 (2016), p. 009. doi: 10.1007/JHEP02(2016)
009.

[153] R. Omnes. On the Solution of certain singular integral equations of quantum field
theory. Nuovo Cim. 8 (1958), pp. 316–326. doi: 10.1007/BF02747746.

[154] W. Detmold, C. Lehner, and S. Meinel. Λ1 → ?ℓ− āℓ andΛ1 → Λ2ℓ
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