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Abstract
Identification and characterization of strong gravitational lenses and low surface

brightness galaxies using deep learning

Hareesh THURUTHIPILLY

Despite the success of the ΛCDM model over the past two decades, the model has
encountered several unresolved tensions with observations. These include the nature of
dark energy and dark matter, the missing baryon problem, and galaxy-scale tensions, col-
lectively known as small-scale problems. To resolve these tensions, we need to test the
predictions of the ΛCDM model on galaxy systems, which could challenge and refine our
understanding of the Universe. Strong gravitational lenses (SGLs) and low surface bright-
ness galaxies (LSBGs) are two such sources that we could use to resolve the tension of
the ΛCDM model with observations. SGLs are systems formed when the gravitational
field of a massive foreground galaxy distorts the image of a background galaxy or quasar
to produce multiple images, arcs, or rings of the background source. SGLs can be used
to constrain the cosmological models and estimate cosmological parameters. LSBGs are
generally defined as galaxies that are fainter than the night sky, making them difficult to
detect. Current predictions estimate that LSBGs occupy a significant fraction of the total
galaxy population. Upcoming large-scale surveys, such as the Legacy Survey of Space and
Time (LSST) and Euclid, are expected to identify about 105 SGLs and more than 105 LS-
BGs in the coming years, paving the way for the big data era in astronomy. However, the
identification of these systems is challenging due to the rarity of SGL systems and the
difficulty of distinguishing LSBGs from artefacts. In this thesis, inspired by the success of
deep learning models in analysing everyday images, I introduce transformer models for
identifying SGLs and LSBGs from large-scale surveys and successfully implement these
models for this purpose.

To compare the performance of the transformers with CNNs for the identification of
SGLs, I constructed and trained 21 transformer models and five CNNs to identify gravi-
tational lenses from the simulated dataset of the Bologna lens challenge. I used four dif-
ferent metrics for evaluation: classification accuracy, the area under the receiver operating
characteristic (AUROC) curve, and TPR0 and TPR10 scores (two metrics of evaluation for
the Bologna challenge). I compared the performance of the transformer models and the
best-performing models from the Bologna lens challenge and found that the transformer
models performed better than all the models that participated in the challenge, including
the CNNs that won the challenge. Transformer models can identify SGL candidates with
a high level of confidence and will be able to filter out potential candidates from real data.
I tested the transformer models on the SGL candidates found by the SGL searches in the
Kilo Degree Survey (KiDS) and despite not being trained on the KiDS data, the transformer
models were able to identify 65% of the SGL candidates.

In my next work, I study the use of transformer models in separating LSBGs from
artefacts in the data from the Dark Energy Survey (DES) Data Release 1. I created eight
different transformer models which achieved an accuracy of ∼ 94% and used two ensem-
bles of these eight models to identify LSBGs from DES. Using the transformer models, I
then searched for new LSBGs from the DES that the previous searches may have missed
and found 4 083 new LSBGs that had not been reported in the previous searches. Subse-
quently, the properties of the newly found LSBGs are investigated, along with an analysis
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of the properties of the total LSBG sample in DES. With the addition of 4 083 new LSBGs
I increased the sample size of known LSBGs in DES by ∼ 17% and increased the number
density of LSBGs in DES to 5.5 deg−2. The new LSBG sample consists of mainly blue and
compact galaxies. I performed a clustering analysis of the LSBGs in DES using an angular
two-point auto-correlation function and found that LSBGs cluster more strongly than their
high-surface-brightness counterparts. This effect is mainly driven by the red LSBG. I asso-
ciated 1310 LSBGs with galaxy clusters and identified 317 ultra-diffuse galaxy candidates
among them. Analysing the cluster-centric properties, I found that these cluster LSBGs in
DES are getting bluer and larger in size towards the edge of the clusters when compared
with those in the centre.

For my next work, I studied the scope of transfer learning for the identification of
LSBGs. I trained two ensembles of transformer models with data from the DES which
achieved an accuracy ∼ 95%. Subsequently, these models are tested on the data of the
Abell 194 cluster acquired from targeted observations with the Hyper Suprime-Cam (HSC),
which is two orders of magnitude deeper than the DES data. I identified a sample of 171
LSBGs, of which 87 are completely new from the HSC data and further classified 28 LS-
BGs as ultra-diffuse galaxies (UDGs). The number of UDGs in the Abell 194 cluster aligns
with observations in the literature that the number of UDGs scales proportionally with
the mass of the cluster. Analyzing the cluster-centric properties of the sample, I found that
the LSBGs and UDGs near the cluster centre are brighter and have higher Sérsic index
values compared to those in the outer regions. Additionally, the LSBGs near the cluster
centre tend to be redder than those in the outer parts of the Abell 194 cluster, with this
trend being more pronounced in FUV − NUV and NUV − r colors compared to the g − r
color. Examining the color-magnitude (NUV − r vs Mr) space of LSBGs it is found that the
majority of the NUV emitting LSBGs are in the blue cloud with only two LSBGs being red
in color which both are massive galaxies.

I have shown that the transformer models have the potential to be on par with CNNs
as state-of-the-art algorithms in identifying SGLs and LSBGs. In addition, I have shown
that transfer learning from a shallow survey to a deeper survey using transformer models
could be successfully achieved. The methodology, I have developed as part of this thesis
could prove valuable for identifying and analyzing astronomical data in upcoming sur-
veys like LSST and Euclid.
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Streszczenie
Identification and characterization of strong gravitational lenses and low surface

brightness galaxies using deep learning

Hareesh THURUTHIPILLY

Pomimo sukcesu modelu ΛCDM w ciągu ostatnich dwóch dekad, model ten napotkał
kilka nierozwiązanych napięć z obserwacjami. Obejmują one naturę ciemnej energii i ciem-
nej materii, problem brakujących barionów oraz niezgodności w skali galaktyk, zwane
łącznie problemami małych skal. Aby rozwiązać te napięcia, musimy przetestować przewidy-
wania modelu ΛCDM na układach galaktyk, co może stanowić wyzwanie i udoskonalić
nasze rozumienie Wszechświata. Silne soczewki grawitacyjne (SGL) i galaktyki o niskiej
jasności powierzchniowej (LSBG) to dwa takie źródła, które możemy wykorzystać do
rozwiązania napięć w modelu ΛCDM za pomocą obserwacji. SGL to systemy powstające,
gdy pole grawitacyjne masywnej galaktyki pierwszego planu zniekształca obraz galak-
tyki tła lub kwazara, tworząc wiele obrazów, łuków lub pierścieni źródła. LSBG są ogól-
nie definiowane jako galaktyki, które są bledsze niż nocne niebo, co czyni je trudnymi
do wykrycia. Oczekuje się, że przyszłe wielkoskalowe przeglądy, takie jak Legacy Survey
of Space and Time (LSST) i Euclid, w nadchodzących latach zidentyfikują około 105 SGL
i ponad 105 LSBG, torując drogę do ery dużych zbiorów danych w astronomii. Jednak
identyfikacja tych systemów stanowi wyzwanie ze względu na rzadkość systemów SGL
i trudność w odróżnieniu LSBG od artefaktów. W niniejszej rozprawie, zainspirowany
sukcesem modeli głębokiego uczenia się w analizie zwyczajnych obrazów, wprowadzam
modele transformatorowe do identyfikacji SGL i LSBG z przeglądów na dużą skalę i z
powodzeniem wdrażam te modele do tego celu.

Aby porównać wydajność transformatorów z CNN do identyfikacji SGL, skonstruowałem
i wytrenowałem 21 modeli transformatorów i pięć CNN do identyfikacji soczewek graw-
itacyjnych z Bologna Lens Challenge. Do oceny wykorzystałem cztery różne wskaźniki:
dokładność klasyfikacji, obszar pod krzywą charakterystyki operacyjnej odbiornika (AU-
ROC) oraz wyniki TPR0 i TPR10 (dwa wskaźniki oceny dla wyzwania bolońskiego). Porów-
nałem wydajność modeli transformatorowych oraz najlepszych modeli z wyzwania bolońskiego
i stwierdziłem, że modele transformatorowe wypadły lepiej niż wszystkie modele, które
wzięły udział w wyzwaniu, w tym również CNN, które wygrały to wyzwanie. Mod-
ele transformatorowe mogą identyfikować kandydatów na SGL z wysokim poziomem
ufności i będą w stanie odfiltrować potencjalnych kandydatów z rzeczywistych danych.
Przetestowałem modele transformatorowe na kandydatach na SGL znalezionych przez
wyszukiwanie SGL w Kilo Degree Survey (KiDS) i pomimo tego, że nie zostały one przeszkolone
na danych KiDS, modele transformatorowe były w stanie zidentyfikować 65% kandy-
datów na SGL.

W mojej kolejnej pracy badam wykorzystanie modeli transformatorowych do odd-
zielania LSBG od artefaktów w danych z Dark Energy Survey (DES) Data Release 1. Stworzyłem
osiem różnych modeli transformatorowych, które osiągnęły dokładność ∼ 94% i wyko-
rzystałem dwa zespoły tych ośmiu modeli do identyfikacji LSBG z DES. Korzystając z
modeli transformatorowych, wyszukałem nowe LSBG z DES, które mogły zostać pominięte
w poprzednich wyszukiwaniach i znalazłem 4083 nowe LSBG w gromadach galaktyk,
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które nie zostały zgłoszone w poprzednich poszukiwaniach. Następnie zbadano właści-
wości nowo znalezionych LSBG w gromadach, wraz z analizą całej próbki LSBG w gro-
madach w DES. Dodając 4083 nowe LSBG w gromadach, zwiększyłem rozmiar próbki
znanych LSBG w gromadach w DES o ∼ 17% i zwiększyłem gęstość liczbową LSBG w
gromadach w DES do 5,5 deg−2. Nowa próbka LSBG składa się głównie z niebieskich i
zwartych galaktyk. Przeprowadziłem analizę skupień galaktyk LSBG w DES przy użyciu
funkcji autokorelacji kątowej dwupunktowej i odkryłem, że galaktyki LSBG grupują się
silniej niż ich odpowiedniki o dużej jasności powierzchniowej. Efekt ten jest spowodowany
głównie przez czerwone LSBG w gromadach. Powiązałem 1310 LSBG z gromadami galak-
tyk i zidentyfikowałem wśród nich 317 kandydatów na galaktyki ultra-rozproszone. Anal-
izując właściwości gromad, odkryłem, że te LSBG w gromadach w DES stają się coraz
bardziej niebieskie i większe w kierunku krawędzi gromad w porównaniu z LSBG w cen-
trum.

W mojej następnej pracy badałem zakres uczenia transferowego do identyfikacji LSBG.
Wyszkoliłem dwa zespoły modeli transformatorów z danymi z DES, które osiągnęły dokład-
ność ∼ 95%. Następnie modele te zostały przetestowane na danych gromady Abell 194
uzyskanych z ukierunkowanych obserwacji za pomocą Hyper Suprime-Cam (HSC), które
są o dwa rzędy wielkości głębsze niż dane DES. Zidentyfikowałem próbkę 171 galaktyk
LSBG, z których 87 jest zupełnie nowych na podstawie danych HSC, a następnie sklasy-
fikowałem 28 galaktyk LSBG jako galaktyki ultra-rozproszone (UDG). Liczba UDG w
gromadzie Abell 194 jest zgodna z obserwacjami w literaturze, zgodnie z którymi liczba
UDG skaluje się proporcjonalnie do masy gromady. Analizując właściwości próbki w cen-
trum gromady, stwierdziłem, że gromady LSBG i UDG w pobliżu centrum gromady są
jaśniejsze i mają wyższe wartości indeksu Sérsic’a w porównaniu do LSBG w regionach
zewnętrznych. Dodatkowo, LSBG w pobliżu centrum gromady mają tendencję do bycia
bardziej czerwonymi niż te w zewnętrznych częściach gromady Abell 194, przy czym
trend ten jest bardziej wyraźny w kolorach FUV − NUV i NUV − r w porównaniu do
koloru g− r. Analizując przestrzeń barwno-magnitudową (NUV − r vs Mr) LSBG stwierd-
zono, że większość LSBG emitujących NUV jest w kolorze niebieskim, a tylko dwie LSBG
są w kolorze czerwonym, przy czym obie są masywnymi galaktykami.

Wykazałem, że modele transformatorowe mają potencjał, aby dorównać CNN jako
najnowocześniejsze algorytmy w identyfikacji SGL i LSBG. Ponadto wykazałem, że ucze-
nie transferowe z płytkiego przeglądu do głębszego przeglądu przy użyciu modeli trans-
formatorowych może być z powodzeniem osiągnięte. Metodologia, którą opracowałem
w ramach tej pracy, może okazać się cenna przy identyfikacji i analizie danych astro-
nomicznych w nadchodzących przeglądach, takich jak LSST i Euclid.
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triangles and black plus symbols represent UDGs from the Coma cluster re-
ported by Singh et al. (2019) and Lee et al. (2020), respectively. Downward
navy blue triangles and pink rhombuses denote the upper limits of NUV − r
for UDGs in the Coma cluster from Singh et al. (2019) and Lee et al. (2020),
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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1
Introduction

From time immemorial, humans have wondered about our status on the vast scale of the
cosmos and pondered questions such as what is our origin and what is our ultimate fate.
Not surprisingly, these questions have been the subject of religious and philosophical spec-
ulation, and humans have always looked at astronomical bodies with curiosity to answer
them. Observational astronomy and cosmology are the results of our scientific endeavour
to answer these questions. Owing to technological advancements such as charge-coupled
device (CCD) cameras and pioneering breakthroughs in our theoretical understanding of
the cosmos, namely via general relativity, we have been able to unravel the cosmos on an
exponential scale in the last 20th century. However, we still have loose ends, and this thesis
is focused on ways to navigate in the era of big data to tighten some of the loose ends.

1.1 Introduction to Cosmology

Compared to other areas of physics, cosmology could be considered a very new discipline.
Shortly after Einstein (1915) established the theoretical framework of general relativity, he
explored the solutions of the field equations to the universe (Einstein 1917). To his sur-
prise, all of the solutions to the universe described either an expanding or a contracting
universe, contrary to the popular belief that the universe was static. To make the universe
static, Einstein introduced a cosmological constant to his field equations, which would
counteract the expansion and make the universe static.

In the same period, Alexander Friedmann, Georges Lemaitre, Howard P. Robertson,
and Arthur Geoffrey Walker independently explored the solutions to Einstein’s field equa-
tions for our universe (Friedmann 1924; Lemaître 1927; Robertson 1935). The solutions they
have found are known as the Friedmann-Lemaître-Robertson-Walker metric, or FLRW
metric, which describes a homogenous and isotropic universe undergoing expansion. The
concept that the cosmos is homogenous and isotropic may seem counter-intuitive, as it is
evident from our everyday experiences that the world we inhabit is not homogenous or
isotropic. Nevertheless, the solutions to the field equations were derived with the premise
that the cosmos will exhibit homogeneity and isotropy on extremely large scales, a concept
referred to as the cosmological principle. The early solutions of the universe assumed that
the major components of the universe were baryonic matter and radiation.

1.1.1 Evidence for Dark matter

Zwicky was the first to introduce the idea of dark matter in 1933 when he was analysing
the rotational velocities of galaxies in the Coma Cluster. His analysis found that the total
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matter needed to hold the cluster together, as found with the virial theorem, was 400 times
larger than the mass of the luminous matter found in the cluster (Zwicky 1933). He called it
dunkle Materie, which is German for dark matter. However, the idea of the existence of dark
matter was not completely accepted until the 1970s, which is 40 years after the discovery
of Zwicky. Ostriker et al. (1974) and Einasto et al. (1974) found that the very massive halos
are required to support the motion of the satellite galaxies around the Milky Way as well
as for the nearby galaxies. Similarly, the lack of falloff in the rotational velocities of the
spiral galaxies at larger radii also indicated the presence of non-visible matter extended
beyond visible boundaries of the galaxy (Roberts & Rots 1973; Rubin et al. 1978, 1980).
These results pave the pathway to the idea that the galaxies are embedded in large dark
matter halos and an illustration of the Milky Way galaxy embedded in the dark matter
halo is shown in Fig. 1.1.

FIGURE 1.1: Illustration of the Milky Way galaxy embedded in the dark mat-
ter halo. Image credit: L. Jaramillo & O. Macias(Virginia Tech)

In the same period, numerous candidates were proposed to account for this missing
matter, such as brown dwarfs, white dwarfs, black holes and neutrinos. However, the exact
nature of dark matter is still debated. Neutrino-based dark matter candidates or particles
with a mass less than 30eV are generally called hot dark matter (HDM) because of their
velocity being comparable to the speed of light (Bond et al. 1980; Sato & Takahara 1980).
However, HDM models could not correctly explain the formation of large-scale structures
in the universe (Tremaine & Gunn 1979; White et al. 1984). With the introduction of su-
persymmetry in the 1980s and the development of various particle physics-based mod-
els, there were numerous candidates for dark matter, such as photinos, neutralinos, and
gravitinos which were non-relativistic particles. As a result, the class of candidates with
non-relativistic velocity is generally known as cold dark matter (CDM) (Peebles 1982). It
should be noted that the distinction between HDM and CDM is based on their relativistic
nature. Simulations show that the large-scale structure forms hierarchically in a universe
with CDM, which is in excellent agreement with observations (Davis et al. 1985).
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1.1.2 Accelerated Expansion of the Universe

In 1929, Edwin Hubble showed that the recession velocities of galaxies are linearly pro-
portional to the distance (v ∝ r) to the galaxy (Hubble 1929). This relation is nowadays
known as Hubble–Lemaître law and can be mathematically represented as v = H(t)r. It
is important to note that the proportionality constant, known as Hubble’s constant, varies
with time but remains constant in space. This indicated that all the galaxies are moving
away from each other and supported the argument that we are living in an expanding
universe. The news of the expanding universe made Einstein announce that the introduc-
tion of the cosmological constant was the greatest blunder in his life. However, the cat was
out of the bag, and in the present age, the cosmological constant solves a different problem
and creates another.

If the universe is expanding, it also logically follows that in the past, the universe was
in a state of high density and high temperature. This led George Gamow to predict that
the elements observed in the universe might be synthesised through thermonuclear re-
actions during the early stages of the universe, referred to as primordial nucleosynthesis
(Gamow 1946, 1948; Alpher et al. 1948). Another prediction stemming from this concept
was the existence of residual heat radiation from the early universe that would persist in
the present universe (Alpher et al. 1948). Fred Hoyle mockingly referred to the idea that
the universe originated from a dense and hot starting state as the Hot Big Bang. However,
the accidental discovery of cosmic microwave background radiation (CMBR) by Penzias
& Wilson (1965) validated the Bing Bang model of cosmology.

By the end of the 20th century, the idea that the universe was expanding was widely
accepted. However, it was anticipated that the recession velocity, at which galaxies move
apart, would be slowing down due to the gravitational forces of attraction. Since the galax-
ies are moving away from us, the radiation from these galaxies will be redshifted, and
measuring the redshift in the radiation can be used as a proxy for the recession velocities
of the galaxies. Nevertheless, accurately determining the distance to the galaxies poses a
significantly more challenging issue. Since the intrinsic brightness of supernova-Ia (SN-Ia)
is expected to be constant, measuring the apparent brightness of SN-Ia could be used to
determine the distance to the explosion. Based on this idea, Riess et al. (1998) and Perl-
mutter et al. (1999) independently analysed the light curves from the SN-Ia and found
that the universe is not decelerating and, on the contrary, is undergoing an accelerated
expansion. The accelerated expansion of the universe points to a strictly positive cosmo-
logical constant corresponding to a mysterious energy component known as dark energy.
The exact nature of dark energy is still debated and remains one of the unsolved problems
in physics.

1.1.3 Λ CDM Cosmology

A universe described by a positive cosmological constant and with dark matter as CDM
is known as ΛCDM universe. The detection of cosmic microwave background radiation
turned a new leaf in astronomy as it gave a way to probe the early universe. Indepen-
dent measurements of the acoustic peaks and their amplitude and wavelength in the CMB
power spectrum showed that they were in excellent agreement with the predictions of
ΛCDM cosmology (de Bernardis et al. 2000; Hanany et al. 2000; Halverson et al. 2002).
Similarly, precise measurements of the cosmological variables estimated from the CMB
data with the Wilkinson Microwave Anisotropy Probe (WMAP) were in good agreement
with independent measurements of these quantities (Hinshaw et al. 2013a). For instance,
the baryon density estimated with cosmological nucleosynthesis and the dark energy den-
sity content estimated from the SN-Ia were consistent with the measurements of the same



4 Chapter 1. Introduction

with CMB (Spergel et al. 2007). These results made the ΛCDM model the current standard
model of cosmology.

One of the remarkable results of the ΛCDM model is the prediction of structure for-
mation that is consistent with the large-scale structures observed in the current universe.
In the very early stages of the universe with CDM, both dark matter and baryonic mat-
ter were coupled with radiation. As cosmic time progresses, the universe begins to cool
down, and the dark matter decouples from the radiation faster than the baryons so that
their density perturbation can grow. Following the decoupling of baryons from radiation,
they rapidly fall into these dark matter potential wells. Thereby starting the formation of
structures at a sufficiently rapid rate to align with the presently observed large-scale struc-
ture. Davis et al. (1985) used simulations to show that the present large-scale structures
could be well explained by CDM models, and even since the 1990s, CDM models have
been considered the best-fit model for describing dark matter.

Nevertheless, it should be noted that the ΛCDM model is only a best-fit model of the
universe, and there could be a better model for the universe that is waiting to be discovered
or tested. The ΛCDM model was successful in explaining the components of the universe
and the distribution of large-scale structures. However, in the scientific realm, a few con-
tradicting experiments or observations are needed to doubt the legitimacy of the theory. In
the case of the ΛCDM model, we also have some problems that need to be addressed and
resolved. For a detailed discussion and review, please refer to Perivolaropoulos & Skara
(2022) or Di Valentino et al. (2021). One of the probes to test the consistency of a cosmo-
logical model is to observe how the galaxies are distributed in the cosmos and study their
properties to check with the predictions from the ΛCDM model.

1.2 World of Galaxies

Having developed powerful telescopes by the end of the 18th century, astronomers have
understood that not all the intrinsically bright objects in the sky are stars or comets. These
objects were fuzzy rather than point-like objects, as stars would be, and were collectively
called nebulae. From 1771 to 1784, Charles Messier compiled a catalogue of these neb-
ulae with more than 100 sources so as not to get confused with comets. John Herschel
conducted the first organized search for nebulae, and in 1864, he published a list of 5079
objects that resembled nebulae (Mo et al. 2010).

Even after many years of its discovery, the debate about whether the nebulae were part
of the Milky Way or not continued. One hypothesis was that all nebulae are celestial bod-
ies situated within our Milky Way, while the other suggested that certain nebulae might be
extragalactic entities, functioning as distinct "island universes" similar to the Milky Way.
In 1925, Edwin Hubble solved this dispute once and for all by measuring the distance
to the cephid variable stars and concluded that some nebulae are extra-galactic and have
the same size and luminosity as our host Milky Way galaxy (Hubble 1925). This discov-
ery began the journey of observational extra-galactic astronomy, and currently, more than
107 galaxies similar to our Milky Way galaxy have been catalogued compared to the 100
nebulae sampled by Charles Messier.

As per our current understanding, the fundamental building blocks of the large-scale
structures that we see in our universe are galaxies, which are gravitationally bound sys-
tems of stars, stellar remnants, dust, interstellar gas, and dark matter. Analysing the for-
mation and evolution of galaxies is intended to test our understanding of physics across
vast scales in terms of size and time. Studying galaxy evolution and formation is distinct
from other areas of experimental physics due to the significant disparity in timescales.
Even the shortest timescales in galaxy evolution models are considerably longer than the
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average duration of human civilisations. However, due to the finite speed of light, observ-
ing galaxies that are farther away is essentially equal to observing galaxies at a younger
phase in the universe. Hence, in a statistical sense, one can study galaxy evolution and
formation by comparing the properties of the galaxies at different epochs of the universe
and also studying the relations between the galaxies in each epoch.

1.2.1 Observational tools in astronomy

Galaxies are a diverse class of astronomical objects; consequently, we need numerous pa-
rameters to characterise or represent a galaxy. Not surprisingly, all the information about a
galaxy is derived from the radiation it emits at different wavelengths and from measuring
the flux of the radiation. Due to historical reasons, the flux from an astronomical object as
observed by an observer is represented by the apparent magnitude, which is given by:

mx = −2.5log10(Fx/Fx,0) (1.1)

where Fx is the measured flux in the photometric filter x and Fx,0 is the reference flux (zero-
point) for that photometric filter (Mo et al. 2010). By definition, the apparent magnitude is
reverse logarithmic; hence, the brighter an object, the lower its magnitude. In addition, the
apparent magnitude also depends on the distance between the astronomical object and
the observer. To represent the intrinsic brightness of an astronomical object, one needs to
measure its absolute brightness (MX), which is the apparent magnitude it would possess
if it were observed from a distance of 10 parsecs. Here, a parsec (∼ 3× 1016m) is defined as
the distance between the Sun and an astronomical object that has a parallax angle of one
arcsecond and is often used as a unit for distance in astronomy.

The absolute magnitude and the apparent magnitude are related by the relation:

Mx = mx − 5(log10dL − 1) (1.2)

dL =
√

L/4πFx. (1.3)

Where dL is the luminosity distance to the astronomical object and L is the intrinsic lumi-
nosity of the object (Mo et al. 2010). By definition, one needs to know the luminosity dis-
tance of an astronomical object to measure its absolute magnitude. Similarly, if one knows
the Mx and mx, which are often combined to define the distance modulus (Mx − mx) of
an astronomical object, one could determine the luminosity distance to that astronomi-
cal object. These relations are fundamental in astronomy to investigate and study galaxy
evolution and cosmology.

The galaxies also come in different colours. Generally, in astronomy, the color of a
galaxy is determined by the ratio of its luminosity in two different photometric passbands.
In practice, the color of a galaxy between two bands can be found by subtracting the mag-
nitude in the red filter band from those in the blue filter band (blue-red), owing to the
logarithmic relationship between magnitudes. In practice, a population of galaxies can
generally be attributed to a bimodality in color and is typically classified into either the
red or blue population. A galaxy is classified as red if its luminosity in the redder filter
band is much greater than its luminosity in the bluer filter band. Blue galaxies typically
denote highly active, star-forming spiral or irregular systems, while red galaxies predom-
inantly represent spheroidal or elliptical formations (Strateva et al. 2001).

In addition to the magnitudes, astronomers often also use the surface brightness of a
galaxy. The surface brightness of an astronomical object is defined as the apparent bright-
ness per angular area and resembles how luminous matter is distributed in the galaxy.
Knowing the apparent magnitude (m), and the surface area (A) occupied in the sky by the
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object, one can calculate the mean surface brightness as (Tanoglidis et al. 2021b):

µ̄ = m + 2.5log10(A). (1.4)

For observing an astronomical object, the surface brightness might be more informative
than the magnitude. Because it tells how much the light from the galaxy is distributed in
the galaxy, and if it has a higher concentration, then it would be easy to spot in the sky.

Generally, the variation of the surface brightness of a galaxy as a function of the dis-
tance from its centre can be described by the mathematical function known as Sérsic profile
(Sérsic 1963). The Sérsic profile in terms of surface brightness is given as (Caon et al. 1993):

µ(R) = µe +
2.5

ln10
bn

[(
R
Re

)1/n

− 1
]

(1.5)

where Re is the radius at which half of the total light from the galaxy is contained, which is
also known as the half-light radius, µe is the surface brightness at the half-light radius and
n is known as the Sérsic index. The constant bn is chosen such that it satisfies the condition
Γ(n) = γ(2n, bn) where Γ and γ are the complete and incomplete gamma functions. The
variation of surface brightness as a function of distance from the centre with fixed Re in
arbitrary units is shown in Fig. 1.2. It should be noted that when the Sérsic index value
n increases, the centre core becomes steeper and the surface brightness outside of Re be-
comes more extended. Whereas a smaller value of n results in a flatter surface brightness
distribution in the core and has a sharper cut-off in the surface brightness outside Re. For
a detailed discussion of the surface brightness profiles of galaxies, please refer to Graham
& Driver (2005).

1.2.2 Galaxy Classifications

The Sérsic index is also found to be correlated to the galaxy morphology. Historically, the
first attempt to classify galaxies based on their morphology was made by Hubble (1926)
using the images from the photographic plates. Hubble (1926) divided the galaxies into
four different morphologies-elliptical (E), spiral (S), lenticular (S0 and SB0), and irregu-
lar (Irr). The elliptical galaxies were again subdivided based on their ellipticities, and the
spiral galaxies were divided based on the presence of bars or not (S and SB). This classi-
fication scheme is known as the Hubble tuning fork because of the shape in which it is
usually represented. An illustration of the Hubble tuning fork is shown in Fig. 1.3.

Generally, the discs of spiral galaxies are observed to host many young stars and re-
gions of active star formation, while elliptical galaxies have predominantly old stellar pop-
ulations. Early-day astronomers hypothesised that the galaxy classification resembling
a tuning fork is a consequence of galaxy evolution and labelled elliptical and lenticular
galaxies as early-type galaxies, and spiral and irregular galaxies were labelled as late-type
galaxies. This arrangement, depicted in the schematic known as the Hubble tuning fork or
sequence, was later discovered to be inaccurate, and as per our current understanding, the
early universe consisted of more spiral and irregular galaxies than elliptical galaxies (Kuhn
et al. 2023). However, the classification persists, labelling irregular and spiral galaxies as
late-type, while lenticular and elliptical galaxies are termed early-type galaxies.

Elliptical galaxies generally have smooth surface brightness distributions and have lit-
tle amounts of cold gas or dust. Usually, the elliptical galaxy population tends to be redder
in color indicating that the stellar population in the elliptical galaxies is older. Similarly,
the surface brightness profiles of bright elliptical galaxies are found to be best described by
the Sérsic index, n = 4 which is also known as the de Vaucouleurs profile (de Vaucouleurs
1948). However, this could not be generalised as the n is strongly correlated with the size
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FIGURE 1.2: The Sérsic profile with different Sérsic index and same half-
light radius (Re). Re is represented by a vertical dotted line. Image credits:

Ciambur (2016)

and luminosity of the galaxy (Graham & Guzmán 2003). The faint elliptical galaxies are
found to have n ∼ 0.5 whereas the best fit for bright elliptical galaxies is found to have n
as high as 10 (please see figure 2.13 from Mo et al. 2010). In general, the statistical disper-
sion of velocities attributed to the stars within an elliptical galaxy, known as the central
velocity dispersion (σ0), is found to be correlated with the mass of the galaxy as well as its
size. This correlation is best described by the relation logRe = alogµe + blogσ0 (Djorgovski
& Davis 1987), where a and b are proportionality constants and µe is the mean surface
brightness within the radius Re.

Spiral galaxies have far more complexity in nature compared to elliptical galaxies. Usu-
ally, they have a thin, rotationally supported disc with spiral arms, a bar, and a central
bulge component. Depending on the presence of a bar or not, they have been further sub-
divided into two different morphologies (S and SB) which in turn are subdivided based
on distinct arm structures (see Fig. 1.3). Young stars, HII regions, molecular gas, and dust
absorption are the main characteristics of the spiral structure and are most easily observed
in face-on systems. The disks in the spiral galaxies are generally described by a surface
brightness profile with an Sérsic index, n ∼ 1 whereas the bulge component might be best
described with a higher Sérsic index. Similar to elliptical galaxies, spiral galaxies also fol-
low a scaling relation known as the Tully-Fischer relation, which states that the luminosity
of a spiral galaxy is proportional to the rotation velocity (Tully & Fisher 1977).

The lenticular galaxies have similarities to elliptical and spiral galaxies and share the
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FIGURE 1.3: The Hubble tuning fork diagram. Image credits: Zooniverse.

characteristics of both of them. Similar to ellipticals, lenticulars lack spiral limbs and HII
regions, resulting in a smooth light distribution and generally a redder population of stars.
However, similar to spiral galaxies, they have a slender disc and a bulge in the centre, mak-
ing them a distinct class compared to spiral or elliptical galaxies. The last class of galaxies,
according to Hubble’s classification, are characterised by the absence of a dominant bulge,
a disc that is rotationally symmetric, and any discernible symmetry. In short, there is no
regular pattern or structure for these galaxies, and hence they were named irregular galax-
ies. Hubble omitted this particular class from his initial sequence due to his uncertainty
regarding whether it constituted an extension of the preceding classes. Presently, irregular
galaxies are considered extensions of spiral galaxies. The classification scheme created by
Hubble was later revised with the identification of more and more distinct morphologies,
such as the peculiar galaxies. However, the general structure of the Hubble tuning fork is
still used with revised morphologies to show the different galaxy morphologies.

It should also be noted that the galaxies could be classified based not only on their
morphologies but also on their other properties, such as luminosity, surface brightness,
gas content, the current level of star formation, and the presence of active nuclei in the
centre of the galaxy.

1.2.3 Galaxy Surveys

Owing to the advancements in technology, we currently have the ability to observe the
cosmos in various wavelength in the electromagnetic spectrum. Generally, astronomical
surveys can be classified into two categories: spectroscopic and photometric surveys. In a
spectroscopic survey, a high-resolution spectrograph is used to capture the spectrum of an
astronomical object, which could be used to estimate its characteristics and redshift. If an
object is moving away from us, then the wavelength of the light emitted by the object will
shift to a higher wavelength, which is represented by the quantity known as redshift (z).
The mathematical representation of redshift is

z =
λobserved − λemitted

λemitted
=

λobserved

λemitted
− 1 (1.6)
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where λobserved is the wavelength observed and Λemitted is the wavelength of the emitted
radiation. The redshift surveys can map the 3D distribution of the universe in great de-
tail. Generally, the time taken to obtain the spectrum depends on the apparent brightness
of the object, and the redshift surveys generally map the bright galaxies in the universe.
Hence, their effectiveness is constrained by the sensitivity of spectrographs and the time
and financial limitations required to obtain high-quality spectra from a large number of
sources.

Photometric surveys, on the other hand, use wide-field cameras with different photo-
metric filters to image large regions of the sky in detail. Hence, the photometric survey
can detect very faint sources over a large scale, depending on the sensitivity of the cam-
era. Photometric surveys image the sky in different wavelengths, encoding most of the
information about the galaxy in these images which could be used to estimate the flux
radiated by the sources in each wavelength. Multi-wavelength observations of a galaxy
are important because the observations at each specific wavelength trace back to different
physical processes. For instance, observing the sky at radio frequency helps us understand
the presence of gas cool enough for molecules such as CO2 and neutral hydrogen atoms to
exist. Similarly, the main sources of emission in the infrared frequency range are low-mass
stars as well as interstellar dust. The radiation in the optical regime comes from stars with
masses similar to those of our sun, while highly massive stars (in comparison to the mass
of the sun) emit ultraviolet radiation. High-energy radiation, such as X-rays, is emitted
from the hot gas surrounding supermassive black holes as well as from the intracluster
medium, which is a characteristic of galaxy clusters. The image of the Andromeda galaxy
observed at various wavelengths is shown in Fig. 1.4, and here you can see that the struc-
tures traced in the image are different. Hence, multiwavelength observation is crucial to
understanding the complete picture of a galaxy.

FIGURE 1.4: Image of the Andromeda galaxy as observed from radio to the
X-ray. Credits: ESA / NASA.

As previously mentioned, the colors of galaxies provide valuable information about
their stellar populations. Multi-wavelength observations allow us to estimate the colors
of galaxies across different bands, each of which traces different physical phenomena. For
instance, large-scale surveys typically cover the sky in the g, r, and i bands within the
optical regime, with the g − i color indicating the presence of an older stellar population.
Additionally, an excess of UV radiation compared to optical or infrared radiation suggests
recent star formation in the galaxy, as highly massive stars, which emit strongly in the UV,
burn out more quickly.



10 Chapter 1. Introduction

In the early days of astronomical observations, because of the limited technology and
resources, astronomers were only able to observe very small parts of the sky. As a con-
sequence, sometimes the conclusions drawn from surveying such a small region of the
sky were biased. Due to the limited resources, observing larger areas of the sky results
in incompleteness in imaging the fainter structures in the sky. Currently, with improved
technology, we have been able to develop powerful telescopes such as the Hubble Space
Telescope (HST) and the James Webb Space Telescope (JWST). These modern telescopes
can capture deep images of the local universe as well as observe galaxies from the early
universe, providing unprecedented insights into cosmic history. However, due to techni-
cal limitations, these telescopes can only be used for targeted observation of small regions
of the sky and can not be used for imaging a large region of the sky. Hence, generally, we
need a trade-off between the completeness of the objects observed and the area of the sky
observed to reach optimum results. To draw statistically confident conclusions about the
properties of galaxies, we need larger samples of galaxies across different wavelengths.

Keeping this goal in mind, we have started imaging large parts of the sky at different
wavelengths. For instance, the 2MASS has surveyed the whole sky in infrared wavelength
(Skrutskie et al. 2006). Similarly, another notable survey of the sky is the Sloan Digital Sky
Survey, which imaged ∼ 35% of the sky, observing ∼ 109 objects and acquiring the spectra
over 4 × 106 objects (Abazajian et al. 2009; Eisenstein et al. 2011; Ahumada et al. 2020). All
these surveys at longer wavelengths were done with ground-based telescopes; however,
to probe the universe at shorter wavelengths, such as ultraviolet or X-ray, one has to use
space-based telescopes due to the atmospheric cut-off limits at these wavelengths. For in-
stance, the Galaxy Evolution Explorer (GALEX), also known as Explorer 83 was a space
telescope designed to study the universe in ultraviolet wavelengths (Martin et al. 2005;
Bianchi et al. 2017). Its primary objective was to quantify the timeline of star formation
across cosmic history. Similarly, with the ROSAT Survey, the entire sky was mapped in
the X-ray regime, which helped us understand more about galaxy clusters and supermas-
sive black holes (Voges et al. 1999; Boller et al. 2016). These large-scale observations help
us understand how galaxies are distributed in space and about the environment of these
galaxies.

One of the shortcomings of the earlier large-scale surveys was that they were not deep
enough to detect faint sources and lacked completion in the faint end of the galaxy pop-
ulations. For instance, the completeness of galaxies in the SDSS drops quickly for surface
brightness greater than ∼ 24.5 mag arcsec−2 (Kniazev et al. 2004; Driver et al. 2005). How-
ever, this scenario has changed with the current optical surveys, such as the Kilo Degree
Survey (KiDS), Dark Energy Survey (DES), and Hyper Suprime-Cam Subaru Strategic Pro-
gramme. These modern surveys have pushed the boundaries, reaching depths of approx-
imately 28 mag arcsec−2. Nevertheless, this progress marks just the beginning. The forth-
coming large-scale surveys, including the Legacy Survey of Space and Time (LSST) and
Euclid, are designed to go even deeper. These surveys are anticipated to uncover struc-
tures with surface brightness around 30 mag arcsec−2 in almost half of the sky and will
revolutionise the era of observational astronomy.

LSST and Euclid

The LSST is an upcoming ground-based large-scale imaging survey planned to cover
18 000 deg2 of the sky in g, r, i, z, and y bands, with a surface brightness detection limit of
around 30 mag arcsec−2 (Ivezić et al. 2019). Similarly, Euclid is a space-based large-scale
survey that will observe 15 000 deg2 of the sky in visible and near-infrared (NIR) wave-
lengths (Euclid Collaboration et al. 2022a). LSST and Euclid represent the next phase in
large-scale surveys, surpassing their predecessors like DES and KiDS in both detection
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limits and sky coverage. The area of the sky that will be observed by LSST and Euclid is
shown in FIg. 1.5. In addition, it should be noted that both LSST and Euclid will cover
the already observed regions of the sky by surveys such as DES and KiDS to extend our
understanding.

FIGURE 1.5: Footprint of DES, LSST, and Euclid. The area of the sky overlap-
ping between Euclid and LSST is also marked. Credits: Rhodes et al. (2017).

The main goals of LSST and Euclid are to resolve some of the challenging questions
faced by the ΛCDM model, such as the nature of dark energy and dark matter, by mapping
the structure of the universe and studying the formation and evolution of galaxies.

1.3 Challenges of ΛCDM universe

In the previous two sections, I have described the ΛCDM cosmology and the properties
of the galaxies that we observe in the visible universe. If the universe we live in is truly a
ΛCDM universe, then all the observations that we see in the universe should be explained
by the ΛCDM model. However, despite its undeniable success, the ΛCDM model has
encountered some potential challenges in recent years. With the increasing availability of
data from large-scale surveys and improved computing power enabling highly precise N-
body simulations, tensions have begun to emerge between the observational data and the
prediction of the model. For a detailed discussion on the challenges faced by the ΛCDM
model, please refer to Perivolaropoulos & Skara (2022).



12 Chapter 1. Introduction

Nature of the dark sector and the lack of direct detection

Current estimates of the cosmological parameters predict that ∼ 70% of the universe is
composed of dark energy and ∼ 25% is filled with dark matter. Despite being the major
components of the universe, we do not have an exact idea about the nature of dark energy
and dark matter, and we have not been able to detect them directly in any experiments
(Merritt 2017). Dark energy is expected to be distributed uniformly over the universe and
will not interact with matter through any fundamental interactions other than gravity. At-
tempts have been made to explain dark energy as the ground state energy in quantum
field theories but have resulted in a discrepancy of the order of 120 magnitudes with the
observed energy density. Even after an extensive search for particles that could be con-
sidered CDM, they have not been detected yet, and as for the case of dark energy, their
predicted energy density is very low, making it almost impossible to detect them in labo-
ratories.

Hubble tension

Another prominent tension that needs to be solved in the ΛCDM model is the Hubble
tension. Independent measurements of the Hubble constant (H0) with CMBR by Planck
Collaboration et al. (2020) and using SN-Ia by Brout et al. (2022) have resulted in values
that do not agree with each other in 3σ uncertainty. The measurement of H0 by combining
the data on baryon acoustic oscillations (BAO), clustering, and big bang nucleosynthesis
(BBN) has resulted in a value that is in agreement with the measurements from CMBR
(Abbott et al. 2018b). On the contrary, independent measurements of the Hubble constant
with strong gravitational lenses (SGLs) also result in a Hubble constant that agrees with
SN-Ia measurements but is in tension with the results from the CMBR (Wong et al. 2020). In
short, the Hubble tension can be summarised as the disagreement in the measurement of
the Hubble constant between early-universe probes (such as CMBR, BAO, BBN) and late-
universe probes (such as SN-Ia, SGLs). A comparison of the measurements of the Hubble
constant with different probes and the resulting Hubble tension is shown in Fig. 1.6. One
of the possible solutions to the Hubble tension is to revise the cosmological model itself.

In cosmology, the relation between the pressure (p) and the density (ρ) of a component
is known as the equation of state and is generally represented as

p = wρ (1.7)

where w will depend on the component. For matter and radiation, the value of w is 0
and 1/3, respectively. If a cosmological constant describes dark energy, then the value
of w is -1. However, there are arguments that the dark energy density might vary with
time, so w will be a function of time (or redshift). Collectively, these models are known
as quintessence models (Tsujikawa 2013). Independently constraining the equation of the
state of dark energy could help us alleviate the Hubble tension. For a detailed discussion
on the Hubble tension and its possible solutions, please refer to Di Valentino et al. (2021).

Missing Baryons

The measurements of anisotropies in the CMBR by Planck Collaboration et al. (2016) have
estimated the baryonic density in the early universe as ωb = 0.0486 ± 0.0010. Similarly,
Persic & Salucci (1992) estimated the baryonic density of the current universe in galaxies,
groups, and clusters by integrating the baryonic mass-to-light ratio in these systems and
found that the majority of the baryonic mass is unaccounted for in the present universe
and got a value of ωb = 0.003. However, their calculation did not take into account the
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FIGURE 1.6: Comparison of the Hubble constant (H0) with different probes
within a ΛCDM universe. The orange line shows the measurement from
Planck Collaboration et al. (2020). The grey line shows the combined esti-
mate of H0 by clustering, BAO, and BBN (Abbott et al. 2018b). The blue line
displays the calculation of Riess et al. (2019) and the red line shows the esti-

mate with SGLs by Wong et al. (2020). Image credits: Wong et al. (2020)

baryons that may reside in the intergalactic medium. Revised estimates of the baryonic
mass density predict that 10% of the baryons reside in galaxies, while 50 − 60% of the
baryons reside in the intergalactic medium, and ∼ 30% of the baryons are missing (Shull
et al. 2012). The distribution of the baryons in the present day universe is shown in Fig.
1.7.

In summary, the baryonic density estimated for the early universe using CMBR and
the baryonic mass density estimated for the present-day universe by counting the mass in
the galaxies are not in agreement with each other. It is speculated that some fraction of the
missing baryons must be reading in the very faint galaxies that have not been observed yet
in the previous photometric surveys (Impey & Bothun 1997; O’Neil 1997), and the majority
of the missing baryons reside towards the filament axes (Tuominen et al. 2021).

Small scale problems

The predictions of the ΛCDM cosmology using N-body simulations are in good agree-
ment with the observations on scales ranging from 15000 Mpc to 1 Mpc (Schaye et al. 2015;
Vogelsberger et al. 2014). However, examining the universe on smaller scales (<1Mpc) and
in the realm of structures with masses less than 1011M⊙, discrepancies from simulations
and observations start arising, which are generally referred to as small-scale problems. It
is still debated whether the small-scale problem arises because the ΛCDM model is not the
correct description of the universe or due to the limited particle mass resolution in large
cosmological simulations. Some of the small-scale problems are described below, and for
a detailed discussion on the small-scale problems, please see Bullock & Boylan-Kolchin
(2017a) or Perivolaropoulos & Skara (2022).
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FIGURE 1.7: A pie chart showing the distribution of baryons in the universe
at present. CGM represents the circum-galactic medium, ICM stands for the
intracluster medium and WHIM stands for warm-hot intergalactic medium.

Image credits; Shull et al. (2012).

Simulations based on the ΛCDM model of the universe predict that there will be
∼ 1000 subhalos capable of hosting galaxies in the local group. Typically, satellite galax-
ies hosted by subhaloes will have a mass of less than 1010M⊙ and are considered dwarf
satellite galaxies. However, we have only found 50 of these satellite galaxies in the local
group (Mateo 1998; Drlica-Wagner et al. 2015), which is much less than what we expected
from the simulations (Springel et al. 2008; Griffen et al. 2016). However, it should be noted
that the simulations do predict the number of Milky Way-sized galaxies in agreement with
observations. The discrepancy arises only for dwarf satellite galaxies, and this problem is
known as the missing satellite problem. One possible solution for the missing satellites
would be that these galaxies might not have been observed yet. If galaxy formation be-
comes less efficient at smaller halo masses, the smallest dark matter halos may not have
produced enough stars to be detectable by current observational methods, which is sup-
ported by detections of ultra-faint dwarf galaxies (Simon & Geha 2007).

Another challenge faced by the ΛCDM model is known as the core-cusp problem. N-
body simulations of the ΛCDM model of the universe predict that the density profile of
the dark matter halos should increase steeply in the inner regions of the halo (de Blok
2010; Navarro et al. 2010). However, for galaxies, the observed rotation curves point to
a flat central dark matter profile. One other problem faced by the ΛCDM model is the
satellite plane, in which the observed satellite galaxies are distributed in a plane rather
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than randomly, as predicted from simulations. Similarly, ΛCDM model fails to explain an-
other problem known as the too-big-to-fail problem, where some of the massive subhalos
around the Milky Way are too massive to not form satellite galaxies, yet they have failed to
form satellite galaxies (Boylan-Kolchin et al. 2011). These subhalos were too large to fail to
form galaxies, and they were later discovered to be true for the Andromeda galaxy as well
(Tollerud et al. 2014). One possible reason for these problems might be the nature of the
CDM and other dark matter candidates such as warm dark matter or fuzzy dark matter
could resolve these problems (McGaugh et al. 2007). Please refer to Tulin & Yu (2018) for
a detailed discussion of the small-scale problems in the ΛCDM model and how different
dark matter profiles try to resolve these problems.

1.4 Laboratories to resolve the tensions of ΛCDM model

In the previous chapter, I have described only some of the challenges faced by the ΛCDM
model. For a detailed discussion on all the challenges faced by the ΛCDM model, I en-
courage the readers to go through Famaey & McGaugh (2013); Bull et al. (2016); Popolo
& Le Delliou (2017); Di Valentino et al. (2021); Perivolaropoulos & Skara (2022). Numer-
ous proposals have been suggested to address the challenges encountered by the ΛCDM
model. Many of these proposals involve introducing new forms of dark matter such as
warm dark matter (Viel et al. 2013; Dekker et al. 2022) or fuzzy dark matter (Lee 2021) and
dark energy such as quintessence models (Tsujikawa 2013). Others argue that modifying
the theory of gravitation could explain observations without the need for dark matter or
dark energy. These attempts are collectively termed modified theories of gravity (Clifton
et al. 2012; Joyce et al. 2016; Shankaranarayanan & Johnson 2022). On the other hand, rather
than attributing the issues to the ΛCDM model, some of the proposed solutions argue that
improving our understanding of the intricate processes involved in galaxy formation and
evolution will resolve the challenges faced by the ΛCDM model.

In a scenario where multiple solutions are available, the most effective approach is
to test the solutions and check their consistency rigorously. Hence, to test these solutions
we need to find galaxy systems which will have falsifiable predictions. In my thesis, I
concentrate on the detection and analysis of two distinct types of galaxy systems: strong
gravitational lenses (SGLs) and low-surface-brightness galaxies (LSBGs), which have the
potential to test these proposed solutions. With the upcoming large-scale surveys such as
the LSST (Ivezić et al. 2019) and Euclid (Euclid Collaboration et al. 2022b), an unprece-
dented number of these systems will be discovered, giving us enough statistics to resolve
the tensions within the framework of the ΛCDM model or to test the new solutions.

1.4.1 Strong gravitational lenses

Strong gravitational lensing occurs as a consequence of general relativity, where the grav-
itational field of a massive foreground object bends and distorts the light from a back-
ground object. This distortion of spacetime around the massive foreground object leads to
the formation of multiple paths for the light from the background object to traverse, result-
ing in the creation of multiple images of the background source. Einstein (1936) showed
that the light would be distorted in the presence of a massive object such as a star, but
Einstein himself did not believe that distortion could be observed as it was very small
(∼ 0.001 arcsec). It was Zwicky (1937) who noticed that this effect could be observed for
galaxies since their masses are very high, and later it was confirmed with the detection of
a strongly lensed quasar by Walsh et al. (1979).
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If the strongly lensed source is a quasar or a supernova explosion which has luminosity
fluctuations then the space-time distortion caused by a foreground object will result in
multiple images of the source with time delays in its luminosity variations. One could
show that this time delay (∆t) is inversely proportional to the Hubble constant (H0) (Treu
& Marshall 2016). Hence, one can estimate the Hubble constant independently of other
cosmological probes such as the CMBR and SN-Ia by precisely measuring the time delay
in lensing systems. Recently, Wong et al. (2020) estimated the Hubble constant as 73.7+1.7

−1.8
with 2.4% precision by measuring the time delay of 6 quasars. The six quasars used by
Wong et al. (2020) are shown in Fig. 1.8.

FIGURE 1.8: The images of the six quasars used by Wong et al. (2020) to
estimate the Hubble constant. The centre of each image shows the lensing
galaxy and the surrounding images are formed by the multiple images of

the source. Image credit: Wong et al. (2020)

On the other hand, if the foreground and the background objects are galaxies, then
the system is known as a galaxy-galaxy strong lens. In a galaxy-galaxy strong lensing
system, if the source galaxy, lens galaxy, and observer are perfectly aligned in a straight
line, a ring-like structure appears around the lensing galaxy. This ring structure, known
as the Einstein ring, is the distorted image of the source galaxy, and the angular radius
of this ring is referred to as the Einstein radius. The formation of an Einstein ring by the
deflection of a massive galaxy is shown in Fig. 1.9. By definition, the mass (Mlens) inside
the Einstein radius (θE) is given by the relation (Koopmans 2006)

Mlens =
c2

4G
DsDl

Dls
θ2

E. (1.8)
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If we assume that a simple singular isothermal sphere (SIS) describes the density profile
of the matter (baryonic+dark matter) in the lensing galaxy as:

ρ(r) =
σ2

2πGr2 , (1.9)

where σ is the observed stellar velocity dispersion of the lensing galaxy. Then the Einstein
radius (θE), which represents the deflection by the lensing galaxy, can be represented as:

θE = 4π
Dls

Ds

σ2

c2 . (1.10)

Here, Ds is the angular distance to the source, and Dls is the angular distance between the
lens and the source.

FIGURE 1.9: Formation of an Einstein ring by strong gravitational lensing.
Image credits: Pinochet & Van Sint Jan (2018).

However, the SIS model assumes a relatively simple density profile, which could be
generalised by assuming a spherical power law mass distribution ρ = r−γ. Where γ is
known as the mass density power-law index and γ = 2 describes an SIS profile (Koop-
mans 2006; Koopmans et al. 2006). If we can obtain the velocity dispersion (σap) inside
an aperture of angular size θap, then the dynamical mass inside the aperture could be ex-
pressed as

Mdyn =
π

G
σ2

apDlθE
( θE

θap

)2−γ f (γ) (1.11)

where

f (γ) = − 1√
π

(5 − 2γ)(1 − γ)

3 − γ

Γ(γ − 1)
Γ(γ − 3/2)

(
Γ(γ/2 − 1/2)

Γ(γ/2)

)2

. (1.12)
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Hence, galaxy-galaxy strong lenses can be used to estimate the mass of the lensing galaxy
and it is one of the few observational probes capable of estimating the total mass (baryonic
+ dark matter). In addition, the galaxy-galaxy lenses can be used to constrain the cosmo-
logical models (Biesiada et al. 2010; Cao et al. 2015; Li et al. 2024), and study how the mass
profile of the lensing galaxies evolve as a function of the redshift (Chen et al. 2019).

Observing strong gravitation lenses

As promising as it sounds, the current number of confirmed SGL systems (<250) is insuf-
ficient to constrain cosmological models precisely. In addition, we also need the velocity
dispersion measured for the SGL system, which is not readily available. However, we are
expected to observe and obtain spectra of around 105 SGL systems with large-scale pho-
tometric surveys such as LSST and Euclid (Collett & Auger 2014; Verma et al. 2019) and
upcoming spectroscopic surveys such as 4MOST (de Jong et al. 2022). In this scenario, the
first course of action should be to find all the SGL systems from the photometric surveys
efficiently. However, SGL systems are really rare, and to find these 105 SGL systems, one
has to analyse around 109 astronomical objects, which is a time-consuming task if we rely
on non-automated or any other traditional methods. Hence, SGL systems could be used as
an independent probe to constrain cosmological models in the era of LSST and Euclid but
we need better methodologies to complete the required data. In my thesis, I take the first
step in this direction by focusing on the detection of SGL systems from large-scale surveys
using simulated datasets.

1.4.2 Low surface brightness galaxies

Our limited knowledge of the actual galaxy population has profound implications for
nearly every aspect of observational cosmology and galaxy evolution. Our understand-
ing of stellar populations, kinematics, dark matter content, star formation history, and
large-scale clustering of galaxies beyond the Milky Way is predominantly based on stud-
ies of high surface brightness objects. For instance, Freeman (1970) compiled a sample of
36 disk galaxies with surface brightness known at that time and postulated that all the
disk galaxies have a central surface brightness, µ0,B = 21.65 ± 0.30 mag arcsec−2. This hy-
pothesis was known as the Freeman’s law. Disney (1976) was the first to argue that Free-
man’s law might be arising from the selection bias and not a true characteristic of the disk
galaxy populations. Disney (1976) pointed out that the sky surface brightness of the pho-
tographic plates used by Freeman (1970) is close to µ0,B = 21.65 mag arcsec−2. Since the
surface brightness of the sky background can not be removed from photographic plates
unlike the CCD cameras, the galaxies fainter than the night sky were not included in the
sample used by Freeman (1970) causing a biased conclusion.

The low surface brightness (LSB) regime is expected to host the majority of the galaxy
population, which is supported by both simulations (e.g. Martin et al. 2019; Di Cintio et al.
2019; Jackson et al. 2021; Pérez-Montaño et al. 2022) and observations (e.g. Dalcanton et al.
1997; O’Neil & Bothun 2000). Within the LSB regime, galaxies that are fainter than the
night sky are generally called low-surface-brightness galaxies (LSBGs). Since the LSBGs
are poorly represented in the current galaxy catalogues, our understanding of the com-
plete range of the galaxy population is limited. Consequently, many contradictions be-
tween theory and observation can be attributed to the LSB/dwarf regime, such as the
missing satellite galaxies (Griffen et al. 2016) and the core-cusp problem (Navarro et al.
1996). Hence, the LSBG galaxies could be used as a testing ground to resolve the small-
scale problems in the ΛCDM cosmology. In addition, it is speculated that some fraction of
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the missing baryons must be residing in the LSB regime (Impey & Bothun 1997). In addi-
tion to LSBGs, one more candidate from the LSB regime for finding the missing baryons
is known as the intra-cluster light (ICL). During interactions between galaxies in clusters,
individual stars are often stripped from their parent galaxies, causing them to drift freely
within the gravitational potential of the cluster (Zibetti 2008; Montes 2019). These stars
give rise to the ICL in clusters.

Currently, there is no exact definition for an LSBG and in literature, the threshold
values of µ0(B) for classifying a galaxy as LSBG vary from µ0(B) ≥ 23.0 mag arcsec−2

(Bothun et al. 1997) to µ0(B) ≥ 22.0 mag arcsec−2 (Burkholder et al. 2001). The conven-
tional Hubble classification fails to differentiate between LSBGs and regular galaxies (Mc-
Gaugh et al. 1995), often referred to as high surface brightness galaxies HSBGs. LSBGs en-
compass various sub-classes distinguished by their physical size, surface brightness, and
gas content. For example, ultra-diffuse galaxies (UDGs) are extended LSBGs with effective
radii Reff > 1.5 kpc and central surface brightness µg,0 < 24 mag arcsec−2 (van Dokkum
et al. 2015a). Another sub-class is giant LSBGs (GLSBGs), which are extremely gas-rich
faint galaxies (MHI > 1010M⊙) that are also extended (Bothun et al. 1987; Sprayberry et al.
1995; Saburova et al. 2023). Almost dark galaxies (ADGs) form yet another sub-class of LS-
BGs, characterised by their extremely faint optical emissions, making them challenging to
detect in wide-field surveys like the SDSS (Janowiecki et al. 2015; Leisman et al. 2017; Xu
et al. 2023; Montes et al. 2024). The formation and evolution of these extreme sub-classes
of LSBGs—UDGs, GLSBGs, and ADGs—are subjects of ongoing debate and serve as ro-
bust platforms to test models of galaxy evolution and cosmology (Amorisco & Loeb 2016a;
Di Cintio et al. 2017; Saburova et al. 2021; Benavides et al. 2023; Laudato & Salzano 2023;
Montes et al. 2024).

One major obstacle in analysing the physical properties of the LSBGs is the difficulty
in obtaining their spectroscopic data and thereby their distance due to their characteristic
faintness (Kadowaki et al. 2021). One solution to this problem is to estimate the photomet-
ric redshift (photo-z) of the LSBGs and use the photo-z to estimate the physical properties
of the LSBGs (Junais et al. 2023). Another alternative solution is to assume that the LSBGs
within the virial radius of a cluster or group are members of it and use the redshift of
the cluster to estimate the physical properties of the LSBGs, such as size and stellar mass.
In my thesis, I use the sample of LSBGs within the virial radius of clusters to estimate the
physical size and subsequently study the population of LSBGs and UDGs in these clusters.

In the local universe, unlike luminosity, the surface brightness of an extended source is
independent of the distance between the source and the observer. The reason for this lies
in the fact that the flux from an extended source falls as the inverse square of its distance,
(1/d2), whereas the area within a 1 arcsec2 region increases as d2, effectively cancelling
out each other. However, for sources at high redshifts, one should also take into account
the cosmological dimming factor, where µ ∝ (1 + z)−4, which makes the sources at high
redshifts appear fainter than their true surface brightness. Hence the lack of redshift of the
LSBG samples will sometimes result in minor contamination from high-z sources.

One compelling reason to study LSBGs is their significance as the dominant population
among galaxies. For example, Martin et al. (2019) estimated the number density of galax-
ies as a function of their effective surface brightness in the r-band using the Horizon-AGN
cosmological simulations across various environments (field, group, and cluster), which
is shown in Fig. 1.10. In Fig. 1.10, galaxies are categorized into HSBGs, classical LSBGs,
and UDGs based on their surface brightness. It is clear from Fig. 1.10 that the majority of
the galaxy population resides in the faint regime, irrespective of the environment. There-
fore, without understanding the LSBG population, our models of galaxy evolution will
remain incomplete, and understanding the formation and evolution of LSBGs will help us
to alleviate observational tensions on the galaxy scale.
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FIGURE 1.10: The number density of galaxies as a function of their r-band ef-
fective surface brightness at z = 0. The number density in the field, groups,
and clusters is represented by green, blue and red colour curves. The black
curve represents the total number density, irrespective of the environment.
The blue, yellow, and red-shaded regions represent the HSBGs, classical LS-
BGs, and UDG populations, respectively. The dashed line indicates the ex-
trapolated surface-brightness function with stellar mass down to 107M⊙.

Image credits: Martin et al. (2019).

Ultra-diffuse galaxies

As mentioned earlier, ultra-diffuse galaxies (UDGs) represent a subclass of LSBGs char-
acterised by their considerable size, comparable to that of Milky Way-like galaxies, yet
exhibiting very faint luminosities akin to dwarf galaxies. van Dokkum et al. (2015a) was
the first to detect UDGs in significant numbers (47) in the Coma cluster, and later searches
for UDGs found that Coma alone hosts around 103 UDGs (Koda et al. 2015; Yagi et al. 2016;
Bautista et al. 2023). Similar searches in the other clusters have also found that UDGs are
abundant in clusters (van der Burg et al. 2016) such as Virgo (Lim et al. 2020) and Fornax
(Venhola et al. 2022). Later studies have shown that the abundance of UDGs scales lin-
early with host halo mass (van der Burg et al. 2016; Mancera Piña et al. 2018), and massive
clusters can host thousands of UDGs (Janssens et al. 2019). It should also be noted that the
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UDGs are not exclusively found in clusters, as they can be found in groups (Cohen et al.
2018; Marleau et al. 2021) as well as in field environments (Prole et al. 2019).

The term ‘UDG’ was coined by van Dokkum et al. (2015a); however, such galaxies were
identified in several earlier studies in the literature (Sandage & Binggeli 1984; McGaugh
& Bothun 1994; Dalcanton et al. 1997; Conselice et al. 2003a). van Dokkum et al. (2015b)
initially suggested that UDGs are failed Milky Way-like galaxies hosted by dark matter
halos similar to our Milky Way (∼ 1012M⊙). In contrast, Amorisco & Loeb (2016b) argued
that UDGs are not failed galaxies but rather the tail end of the dwarf galaxy population,
which has dark matter halos with high angular momentum. One other formation scenario
of UDGs suggested is the inflation of a dwarf-like progenitor because of internal processes
such as stellar feedback (Di Cintio et al. 2017; Chan et al. 2018) or external processes such
as tidal interaction (Carleton et al. 2019; Jones et al. 2021) or mergers (Conselice 2018) or
ram pressure stripping (Junais et al. 2022). Observations indicate that UDGs in the field are
richer in HI gas, tend to be bluer and have an irregular morphology in comparison to the
UDGs in the clusters indicating that the environment can also be a factor in the formation
and characterization of UDGs (Barbosa et al. 2020; Kadowaki et al. 2021)..

UDGs also exhibit extremes in dark matter content, with examples like DF44 contain-
ing 99.99% dark matter (van Dokkum et al. 2016), while NGC 1052-DF2 is nearly devoid
of dark matter (van Dokkum et al. 2018). The colour image of the NGC 1052-DF2 galaxy
is shown in Fig. 1.11. The dynamics and formation of these galaxies are still debated and
these galaxies could be used as a testing ground to test our models on dark matter and
galaxy evolution. For instance, the formation scenario of UDGs like NGC 1052-DF2 or
DF44 has not been accurately explained by CDM-based models (van Dokkum et al. 2016,
2018). These discrepancies have led to investigations into alternative dark matter theories
and modified gravity theories to better understand the origins of these galaxies (Haghi
et al. 2019; Laudato & Salzano 2023; Mancera Piña et al. 2024; Golini et al. 2024).

FIGURE 1.11: Image of NGC 1052-DF2 taken with the Hubble space tele-
scope. Image credits: van Dokkum et al. (2018)
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As I mentioned earlier, getting the spectroscopy of the structures in the LSB regime is
a hard and time-consuming task due to their characteristic faintness. This applies to the
case of UDGs as well, limiting our knowledge of the physical properties of the UDGs. As
of now, the spectroscopic data of only less than 50 UDGs has been observed and used to
confirm their status as UDGs. Hence, it should be pointed out that all the UDGs iden-
tified from the clusters, groups, and fields can only be considered UDG candidates and
confirmed as UDGs after knowing their physical size by measuring their redshift. Since
measuring the redshifts of the UDG candidates studied in this thesis is beyond the scope
of this work, for simplicity, I prefer to refer to the UDG candidates as UDGs.

Observing the low surface brightness universe

Due to their characteristic faintness, the detection of structures within the LSB regime
poses significant observational challenges and has limited our exploration of these sys-
tems. In recent years, advancements in digital imaging have enhanced our ability to detect
LSBGs, despite the persistent challenges. The upcoming large-scale surveys such as LSST
and Euclid are expected to find more than 105 LSBGs (Thuruthipilly et al. 2024b) and go-
ing to revolutionise our understanding of galaxy evolution. However, the LSB regime is
plagued by artefacts and often needs a visual inspection to separate LSBGs and artefacts
(Greco et al. 2018; Tanoglidis et al. 2021b) which would not be a practical solution in the era
of LSST and Euclid. In my work, I focus on the detection and the analysis of LSBGs using
machine learning (ML) to better prepare for the LSST and Euclid era. For this, in this the-
sis, I develop deep learning-based models to identify LSBGs and UDGs from large-scale
surveys such as DES and also on deep datasets such as those obtained from the Hyper
Supriem Cam (HSC). I follow the definitions of Greco et al. (2018) and Tanoglidis et al.
(2021b) to classify all the galaxies that have a mean surface brightness (µ̄g) within the ef-
fective radius greater than 24.2 mag arcsec−2 and a half-light radius (r1/2,g) greater than
2.5 arcsec in the g−band as LSBGs.

1.5 Astronomy in the era of big data

In the previous sections, I briefly gave an overview of the ΛCDM model of cosmology
and discussed the observable characteristics of galaxies that probe the universe. I also
highlighted some of the challenges encountered by the ΛCDM model and how SGLs and
LSBGs can be utilized to constrain as well as test the alternatives to the ΛCDM model.
Both SGLs and LSBGs are situated at the extreme ends of the galaxy population in terms
of mass as well as luminosity. Similarly, the SGL systems are very rare whereas the LSBGs
constitute the most dominant fraction of the galaxy population. However, one common
feature of both of these two systems is the difficulty in finding them. For instance, the
number of confirmed SGL systems is less than 300, and the previous searches for LSBGs
from large-scale surveys had to visually inspect the samples to remove the artefacts, which
were around ∼ 50% of the sample size (Greco et al. 2018; Tanoglidis et al. 2021b).

In the coming decade, the amount of data generated in astronomy will exponentially
increase, as shown in Fig. 1.12. Consequently, more efficient methodologies will be neces-
sary to analyze these large volumes of data to find SGLs and LSBGs, as well as to manage
astronomical data in general. In this scenario, the regime of ML automatically becomes the
natural choice, as the regime with big datasets is where the ML models excel. In addition,
as the volume of data grows, ML models are expected to improve and become even more
efficient, surpassing human capabilities in data analysis. For instance, in a recent study
comparing the efficiency of different methodologies in finding SGLs, it was found that ML
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models performed better than human experts (Metcalf et al. 2019). Hence, in the coming
age of data, ML models could be used to identify complex patterns more efficiently in as-
tronomy. In my thesis, one of my major focuses is to develop state-of-the-art ML-based
methods for the identification of SGLs and LSBGs, which I will explain in the upcoming
chapter.

FIGURE 1.12: The evolution of the volume of data generated from major
astronomical surveys and projects over the years. Image credits: Rosa (2020).
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2
Introduction to machine learning

The regime of machine learning (ML) has exponentially developed in the last decade,
thanks to ever-growing datasets and the introduction of new concepts and ideas in ML.
Unlike conventional computer programmes, which rely on predefined logic to generate
outputs based on inputs, ML operates on a different premise. In ML, the system au-
tonomously learns the relationship between inputs and outputs, bypassing the need for
explicitly programmed logic. The advantage of this is that the systems can learn to iden-
tify complex patterns similar to those of humans and sometimes work more efficiently
than humans.

2.1 Machine Learning Taxonomy

Any algorithm that improves its performance with iterations could be considered a ma-
chine learning algorithm. A simple example of an ML algorithm is linear regression, in
which we try to map the outputs (yi) to the inputs (xi) under the assumption that they
follow the relation yi = mxi + c. From different combinations of m and c, the optimum
value of m and c that best describes the relation between x and y can be found by minimis-
ing the error between the output yi and the value calculated from mxi + c. This process
is commonly called curve fitting. One could say ML algorithms are sophisticated curve-
fitting algorithms with parameters as high as 109. Generally, all the ML algorithms try to
minimise the error between the predictions and the true outputs for a given input during
their training phase. The error function that the ML tries to use during its training phase
is generally known as the cost function.

ML algorithms can be classified based on the need for human supervision into two
types: supervised and unsupervised learning. In supervised ML, the algorithm is trained
using labelled data, allowing it to differentiate between various classes or predict outputs
based on provided input-output examples. One of the drawbacks of supervised ML is the
need for a labelled dataset as a training sample, and if there are any errors or problems in
the training dataset, it would also be reflected in the performance of the ML model. Unsu-
pervised ML algorithms tackle this problem by removing the need for a training set. Un-
supervised ML algorithms could be used to cluster data points with common features and
give labels to each cluster to achieve classifications similar to supervised ML algorithms.
Other examples of the applications of unsupervised ML algorithms are dimensionality re-
duction and principle component analysis. However, unsupervised learning models have
their own set of challenges, such as the lack of ground truth, ambiguity in clustering, and
the curse of dimensionality. For a detailed discussion on machine learning, please refer to
Sammut & Webb (2010) or Ivezić et al. (2014).
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2.2 Deep learning

Deep learning is a subset of ML algorithms that use artificial neural networks (ANNs)
or similar networks inspired by the human nervous system. Deep learning-based models
perform exceptionally well in analysing complex patterns, such as in images, compared
to other ML methods. Generally, creating a deep learning model requires more data and
longer training times compared to other machine learning models. However, the results
from deep learning models have consistently demonstrated superior performance (Jani-
esch et al. 2021). One fascinating feature of the deep learning model is its capacity to gen-
eralise the data and go beyond the training data to apply learned patterns to new, unseen
data (Bay & Yearick 2024). In contrast, traditional models like polynomial regression are
limited to interpolating within the provided data range and cannot extrapolate beyond its
boundaries.

In this chapter, I will introduce the basics of deep learning and describe the different
deep learning models.

2.2.1 Perceptron & artificial neuron

The fundamental building block of ANNs is known as the perceptron, which tries to mimic
the action of a neuron in the human nervous system. Mcculloch & Pitts (1943) introduced
the perceptrons as binary classifiers that can distinguish between linear classes. For a set
of inputs (xi), the perceptron classifies them into different classes based on the value of the
function: f (x) = θ(w⃗.⃗x + b), where θ is the Heaviside step-function (outputs 0 or 1 based
on a threshold), x⃗ represents the input vector, w⃗ is the vector of real-valued weights, and
b is a real number known as bias. The bias term allows the model to adjust the output
independently of the input values. This is especially useful when input features are zero
but the true output is non-zero, ensuring the output defaults to the bias value instead of
zero. By optimising the w⃗ and the bias term, one can use perceptron as a linear binary
classifier.

If the decision boundary between the classes is non-linear, the perceptrons cannot be
used for classification. One can overcome this limitation by using a non-linear function
such as a sigmoid or tanh instead of the Heaviside step function, allowing for the classifi-
cation of non-linear classes. In this scenario, the non-linear function used is known as the
activation function. The modified structure of the perceptron is often called an artificial
neuron because of its resemblance to the neuron. The structure of the artificial neuron and
a neuron from the human nervous system is shown in Fig. 2.1 for comparison.

2.2.2 How deep learning models learn

The learning part of any DL model happens during the phase known as training. In the
training phase, the DL model tries to optimise the weight vectors (w⃗i) of the network to
learn the patterns in the input data correctly and minimise the error between the prediction
and the true output. Usually, in the training phase, there are five steps involved, which are
listed below.

• Initialization: The weights of the neural networks are set to random values. This is
important because if all the weights had the same values, then the output of each
artificial neuron would be the same in a layer, making it difficult for the network to
learn the features.

• Forward Propagation: The input data is propagated forward through the network
by computing the output of each artificial neuron in each layer.
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FIGURE 2.1: Comparison between a biological neuron (a) and an artificial
neuron (b) with sigmoid (1/1+ e−x) as the activation function. Image taken

from Wang et al. (2021)

• Loss calculation: After forward propagation, the output predicted by the final layer
of the network is compared to the true output value to calculate the prediction error.
This error is estimated with a predefined function known as the loss function (J).

• Backward propagation and weight update: Using the gradient of the estimated error
with respect to the weight, the value of each weight is updated in such a way that
it will minimize the prediction error. Mathematically, the update of an individual
weight vector can be represented as

wnew = wold − α
∂J
∂w

. (2.1)

Here, α is known as the learning rate of a model and it decides the speed at which
the model learns the patterns in the data.

• Iteration: Steps from 2–4 are repeated until the value of the loss function (also re-
ferred to as simply loss) no longer decreases with repetition and the value is small.
Each iteration is also known as an epoch.

For creating a robust DL model, it is essential to divide the available data into three dif-
ferent sets: training, validation, and test datasets. The training data is used to train the DL
model, whereas the validation data is employed to validate the performance of the model
at each step during training. The difference between the training data and the validation
data is that steps 1–5 are performed with the training data, whereas the validation data
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is not used for this. Validation data is used to estimate the loss (validation loss) at each
iteration and compare it with the training loss. If both the training loss and validation loss
plateau and do not decrease after several iterations, it indicates that the DL model has suc-
cessfully learned the patterns in the data. Generally, the validation loss will be less than
or similar to the training loss at each epoch. If the training loss is significantly less than
the validation loss, it suggests that the model has overfitted to the training data. Hence,
the validation dataset is crucial for monitoring the training process of the DL model at
each epoch, helping to ensure that the model generalizes well to new, unseen data. Finally,
the test data is used to evaluate the performance of the model after training. In practice,
during training, instead of the whole training data, small batches of training data are used
to update the weights of the DL model in each epoch. Since it would be computationally
expensive to load the entire training data in one epoch. One another important fact to be
considered during training is that the training dataset used to train the DL model should
be balanced. Otherwise, the DL model will fail to identify the patterns within the data.

2.3 Artificial neural networks

Artificial Neural Networks (ANNs) are computational models designed to recognize pat-
terns in data, inspired by the human nervous system. The universal approximation theo-
rem is fundamental to understanding how ANNs learn and represent complex patterns.
It states that a neural network with a single hidden layer can approximate any contin-
uous function, given sufficient artificial neurons in the hidden layer and an appropriate
non-linear activation function in the artificial neurons (Hornik et al. 1989). However, in
practice, it is computationally more efficient to have more interconnected layers with a
few artificial neurons than to have one single hidden layer with a large number of artifi-
cial neurons.

The fundamental units of ANNs are artificial neurons which are organized into layers,
and each neuron in one layer is connected to neurons in the next layer through weighted
connections. The layers that intake the input vectors are known as the input vectors, and
the layer that produces the final outputs from the network is known as the output layer.
Generally, the layers between the input and output layers are known as the hidden layers
of a DL model. An example of a 2-layer ANN (1 hidden layer and one output layer) is
shown in Fig. 2.2. In this example, the ANN takes 2 features as input and passes them to
the hidden layer, which consists of 5 artificial neurons. The output from this layer is passed
to the output layer to predict the three outputs in the output layer.

If X⃗i−1 represents the input to the ith layer of the ANN, Wi denotes the weight matrix
corresponding to the ith layer, and b⃗i is the bias vector, then the output of the ith layer can
be computed as:

X⃗i = ϕ
(

WiX⃗i−1 + b⃗i

)
. (2.2)

Similarly, during training the weight matrix and the bias vector are updated following the
relation

Wi,new = Wi,old − α
∂J

∂Wi,old
(2.3)

b⃗i,new = b⃗i,old − α
∂J

∂⃗bi,old
, (2.4)

where α is the learning rate of the ANN. Generally in an ANN, all the artificial neurons in
a layer are connected to all the artificial neurons in the previous and the next layer as sim-
ilar to shown in Fig. 2.2. Because of this ANNs are sometimes also called fully connected
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Input Layer ∈ ℝ² Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ³

FIGURE 2.2: Schematic diagram of a 2-layer ANN. The input layer has 2
artificial neurons and the output layer has 3 artificial neurons. The hidden

layers have 5 artificial neurons.

neural networks. For a detailed review on ANNs, please see Schmidgall et al. (2023).

2.4 Convolutional neural networks

The concept of using convolution neural networks (CNNs) to analyse image-like data was
first proposed by Lecun et al. (1998). The CNNs were created based on the structure of
the human visual cortex and how it processes spatial features. However, a breakthrough
for image recognition by CNNs did not happen until Krizhevsky et al. (2012) created an
architecture that won the ImageNet Large-Scale Visual Recognition Challenge 2012. Since
then, CNNs have been extensively employed in various research disciplines, following
the proposed architecture. One advantage of CNNs over ANNs in analyzing image data
is their ability to directly process the image without the need to manually identify features
and feed it to the network like ANNs.

A regular CNN can be thought of as consisting of two parts. The first part consists of
convolution layers and pooling layers which extract the features of the image. The con-
volution layers can learn the local spatial correlation in the data, hence using multiple
convolution layers will help us to detect the features in the data (Mallat 2016). The convo-
lutional layers consist of multiple matrices typically of size 3 × 3 or 5 × 5 which are also
referred to as filters or kernels. However, a CNN is restricted by the size of its kernels
to collect spatial information from the data. Hence, it may lead to poor performance in
some cases due to the ignorance of global information. Generally, the convolutional layers
are followed by a pooling layer to downsample the size of the feature maps to reduce the
computational cost. After a series of convolutional layers, all the feature maps are flattened
and joined together in sequence to connect them to a series of fully connected (FC) layers.
This is the second part of the CNN which resembles the structure of usual ANNs. The FC
layers process the extracted features of the image data to predict the required output.

The operation of the convolutional layers is based on the kernels or the filters. Each
filter in the convolution layer convolves the input data to generate the output known as
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feature maps which are multiplied by a weight and passed on to the filter in the next
convolutional layer. If we have k number of input features passed on to nth convolution
layer in the CNN that outputs l number of output feature maps, then the output feature
maps are computed based on the relation:

xl
n = ϕ

(
Wk,l

n ∗ xnn − 1k + bl
n

)
(2.5)

Here, Wk,l
n is the weight matrix that contains the filter of the nth layer, ∗ represents the

convolution operation and bl
n represents the bias matrix of the nth layer. During the train-

ing phase, the kernels are optimised to learn spatial features. For a detailed discussion on
CNNs, please refer to Khan et al. (2020) and Alzubaidi et al. (2021).

2.5 Transformers

While Convolutional Neural Networks (CNNs) have been the dominant choice for an-
alyzing image data in astronomy, the latest state-of-the-art models for image analysis
are transformers. Transformers were initially introduced in natural language processing
(NLP) as attention-based models (Vaswani et al. 2017). The fundamental concept behind
transformer architecture is the attention mechanism, which has found broad applications
across machine learning (Zhang et al. 2019; Fu et al. 2019; Parmar et al. 2019; Zhao et al.
2020; Tan et al. 2021). In NLP, attention mechanisms calculate the correlation of differ-
ent positions within a single sequence to derive its representation. This concept was later
adapted for computer vision, leading to state-of-the-art models for various image pro-
cessing tasks such as image classification (Wortsman et al. 2022) and image segmentation
(Chen et al. 2023).

Transformers in computer vision can be categorized into two types. The first type com-
bines both CNNs and attention mechanisms. This approach incorporates the strengths of
both architectures: CNNs are excellent at local feature extraction and capturing low-level
details and spatial hierarchies, while attention layers excel at modelling global context
and long-range dependencies. An example of this is the Detection Transformer (DETR),
proposed for end-to-end object detection by Carion et al. (2020). The second type of trans-
former operates entirely on self-attention mechanisms without using any convolutional
layers. An example is the Vision Transformer (ViT), proposed for object classification by
Dosovitskiy et al. (2021). ViTs have demonstrated remarkable performance in image clas-
sification tasks, surpassing the accuracy of CNN-based models on various benchmark
datasets (Dosovitskiy et al. 2021; Yu et al. 2022; Wortsman et al. 2022).

In the following subsections, I will briefly introduce the concept of self-attention which
is at the core of the transformer models, and then discuss the two transformer models
(DETR & ViT) mentioned above in detail. Throughout my thesis, I will use models based
on these two transformer models (DETR & ViT) to identify and classify strong gravita-
tional lenses and low surface brightness galaxies.

2.5.1 Self-attention

The introduction of attention mechanisms in machine learning has the potential to revo-
lutionise machine learning, and it has been found particularly useful in NLP. Depending
on the task at hand, various attention mechanisms can be employed. For a review of var-
ious attention mechanisms, please refer to Yang (2020); Niu et al. (2021). The idea of the
attention mechanism in transformers is to dynamically focus on relevant parts of the in-
put data, similar to how humans pay attention to important information in a conversation
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while ignoring irrelevant background noise. Mathematically, attention can be defined as

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2.6)

where Q, K, V are vectors and
√

dk is the dimension of the vector key (K). The softmax
function, by definition, is the normalised exponential function that takes an input vector
of K real numbers and normalises it into a probability distribution consisting of K probabil-
ities proportional to the exponential of the input numbers. As we compute the normalised
dot product between the query (Q) and the key (K), we get a tensor (QKT) that encodes
the relative importance of the features in the key to the query (Vaswani et al. 2017).

Among various attention mechanisms, self-attention is one of the most widely used
attention mechanisms for image analysis. The main idea of self-attention is to assign rela-
tive importance to the features of the input based on the input itself. For self-attention, the
vectors (Q), (V), and (K) are identical. Hence multiplying the tensor (QKT) by vector (V)
results in a vector that encodes the relative importance of features inside the input vec-
tor. In other words, the central idea of self-attention is to assign relative importance to the
features of the input based on the input itself. A physical interpretation of self-attention
applied to feature vectors can be thought of as filtering the input features based on the cor-
relation in the input. The structure of a multi-head attention layer is given in Fig. 2.3. It is
possible to provide self-attention with more power by creating several layers and dividing
the input vector into smaller parts (H, number of heads). Each attention layer is called a
head, which applies self-attention to one part of the divided input.

Positional encoding

If we pass the input directly to the attention layers, the input order or the positional in-
formation is lost as transformer models are permutation invariant. So to preserve the in-
formation regarding the order of features, we use positional encoding, and the lack of
positional encoding will lower the performance of a transformer model. Following the
work of Vaswani et al. (2017), I use fixed positional encoding defined by the function

PE(pos,2i) = sin
(

pos/12800
2i

dmodel

)
, (2.7)

PE(pos,2i+1) = cos
(

pos/12800
2i

dmodel

)
, (2.8)

where pos is the position, i is the dimension, and dmodel is the dimension of the input fea-
ture vector. Each dimension of the positional encoding corresponds to a sinusoid function.
For a detailed description of positional encoding and its importance, I refer the reader to
Vaswani et al. (2017); Liutkus et al. (2021); Su et al. (2024); Chen et al. (2021).

2.5.2 Detection Transformer

One class of transformer models that I created are inspired by the DEtection TRansformer
(DETR) created by Facebook (Carion et al. 2020). For simplicity, we call these models
DETR, but it should be kept in mind that the model presented in Carion et al. (2020) is
not the same as the transformer model presented here. The structure of the DETR is sim-
ple and is similar to a CNN except for the addition of self-attention layers in between
the convolutional layer and the fully connected layer. The extra component in between
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FIGURE 2.3: Scheme of the multi-head attention layer. The input vector is
split into small vectors V, K and Q and passed on to the attention layer with
multiple heads where the output is computed as per Eqn. 2.6. The resulting
sequences from multiple heads are concatenated to form a single sequence

output vector. Image taken from Thuruthipilly et al. (2022).

the convolutional layer and the fully connected layers is called an encoder layer or trans-
former encoder owing to its origin from NLP. The encoder layer has a standard architec-
ture and consists of a multi-head self-attention module as shown in Fig. 2.3 followed by a
feed-forward network (FFN). The structure of the DETR is shown in Fig. 2.4.

Similar to CNNs, the DETR can be considered to have three components. The first
component of the architecture is a sequence of convolutional layers known as the CNN
backbone to extract the features from the image. The output from the CNN backbone is
a vector with dimensions H×W×D, where D is the number of filters in the last convolu-
tion layer. The second component which is the self-attention layers demands a sequence
as input. Hence the output from the CNN backbone should be reshaped to a D×HW fea-
ture map. However, when reshaping the information about the spatial positions will be
lost and make the transformer architecture permutation-invariant. Hence, before passing
the output from the CNN backbone to the encoder layer, we add the output of the CNN
backbone with fixed positional encoding. The output from the CNN backbone added with
positional encoding is then processed by the encoder layer to filter out only the relevant
features extracted by the CNN. The third part of the DETR model is an FFN that is similar
to the regular CNNs and that learns the features filtered by the encoder layers.
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FIGURE 2.4: Scheme of the architecture of the detection transformer (DETR).
Image taken from Thuruthipilly et al. (2022).

2.5.3 Vision Transformer

Another class of transformer models that I have created is based on the Vision Transformer
(ViT) introduced by Google Brain (Dosovitskiy et al. 2021), which we also call ViT for sim-
plicity. One of the main features of ViT models is that it does not use any convolutional lay-
ers to process the image, unlike DETR models. In the ViT architecture, the input image is
divided into fixed-size patches, which are flattened into a sequence of 1D vectors. Since the
transformers are permutation invariant, the positional embedding is added to the patch
embedding before they are fed into the transformer layers. The positional embedding is
typically a fixed-length vector that is added to the patch embedding, and it is learned dur-
ing training along with the other model parameters. The combined 1-D sequence is then
passed through a stack of transformer layers. An additional learnable (class) embedding
is affixed to the input sequence, which encodes the class of the input image. This class em-
bedding for each input is calculated by applying self-attention to positionally embedded
image patches. Output from the class embedding is passed on to a multi-layer perceptron
(MLP) head to predict the output class. A schematic diagram of the Vision transformer
is shown in Fig. 2.5. For a detailed discussion on ViT models, please refer to Dosovitskiy
et al. (2021).

2.6 Transfer learning

Generally, transfer learning in machine learning refers to the practice of re-using a pre-
trained model for a new task. With transfer learning, we are trying to transfer the knowl-
edge gained by a DL model for one task to better understand the features in another. In
computer vision, deep learning models such as CNNs or Transformers typically aim to
detect edges in the first layers and learn how to integrate these edges for understanding
task-specific features in the latter layers. Hence, the features learned in the first few layers
of a DL model are general and the weights of the initial layers can be effectively transferred
from one task to another, facilitating faster and more efficient learning.

Transfer learning has been found to be very useful and successful in training large
natural language models and computer vision models. Given the need for better machine
learning models and techniques in the era of big data, the astronomy community has also
delved into the potential of transfer learning. For instance, Ackermann et al. (2018) used a
CNN model that has been trained on pictures of everyday objects (i.e. ImageNet data set,
Deng et al. (2009)) to be retrained for the detection of galaxy mergers. Similarly, Wei et al.
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FIGURE 2.5: Scheme of the general architecture of the vision transformer
(ViT). The input image is split into small patches and flattened into a se-
quence of 1D vectors and combined with positional encoding. The num-
bered circular patches represent the position encoding, and the counterpart
represents the flattened 1-D sequence of the image patches. The combined
1-D sequence is passed to the transformer layers. The extra learnable class
embedding has encoded the class of the input image after being updated by
self-attention and passed it on to an MLP head to predict the output. Image

taken from Thuruthipilly et al. (2024b)

(2020) and Hannon et al. (2023) have used DL models pre-trained on the ImageNet data
set for the classification of star clusters.

One fact that should be considered when applying transfer learning from one survey
to another is the difference in the instruments used in these surveys. For example, two
surveys with different zero points will have different pixel values for the same astronomi-
cal object in counts/second units. Similarly, various instruments will have different point
spread functions (PSF) and pixel scales, which will affect the pixel values of the same
source observed by each instrument. Hence, a model trained on one survey could not
be directly used on another survey and needs some standardisation. One of the common
trends is to re-scale the input image within a specific range (i.e. 0 to 1 or -1 to 1). This
also ensures that the input values are not very small, which would compromise the per-
formance of the DL model (de Amorim et al. 2023). Another obstacle to applying transfer
learning from surveys to surveys is the different types of instrumental artefacts present in
each survey.

For a detailed discussion on transfer learning and its applications, I encourage the
reader to see Vilalta (2018) or Hosna et al. (2022).
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2.7 Metrics for evaluating deep learning models

The DETR and ViT models described in this chapter are extensively used in my work for
the identification of SGLs and LSBGs. This is discussed in detail in Chapter 3 and Chapter
4, respectively. Since I will create various deep learning models in the upcoming chapters,
we need some performance metrics to compare the performance of the models created.
Here, I give a brief overview of the metrics used generally to compare the performance of
the deep learning models.

One commonly used metric to compare different classification models is the accuracy
of the classification. For a given model, the classification accuracy is calculated as

Accuracy =
TP + TN

TP + FP + TN + FN
, (2.9)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives (also known as type 1 error), and FN is the number of false
negatives (also known as type 2 error). Generally, in the literature along with accuracy, the
confusion matrix is also used to represent the TP, TN, FP and FN as a matrix to understand
how well the model performs in each class. The classification accuracy is a good metric
to represent the performance of the model in the cases of balanced datasets. However,
for unbalanced datasets, accuracy will not be an effective metric to compare the models.
For instance, consider if we had 90 images of galaxies and 10 images of stars. A model
predicting all the inputs as galaxies will have a 90% accuracy when tested on this dataset
but will not be a good star-galaxy classifier. Hence, we need more metrics such as precision
and recall to evaluate the performance of the models which will be described below.

The precision of a model is a useful metric when dealing with unbalanced datasets,
as it gives an estimate of how many of the predictions of a model are actually correct.
Precision is defined as the ratio between the TP to the total number of predicted positives
(TP+FP) and mathematically represented as:

Precision =
TP

TP + FP
. (2.10)

A high value of precision for a label means that the contamination in the predicted label is
low. Similar to precision one other useful metric is recall which gives us an estimate of how
much of the actual positive labels are correctly identified by the model. In other words, this
means that the model makes few false negative errors. The recall is also known as TPR and
is defined as the ratio of true predictions to the total number of true cases. Mathematically,
recall or TRP can be represented as:

TPR =
TP

TP + FN
. (2.11)

The TPR measures how well the classifier detects the true cases from the whole test popu-
lation of objects. For an ideal classification model, we will have a precision and recall value
equal to 1. In practice, models with precision and recall values close to 1 are considered as
good classification models.

One other useful metric in comparing unbalanced datasets is known as the false pos-
itive rate (FPR) which gives the probability of the models raising a false alarm. The FPR
represents the fraction of instances from the negative class incorrectly identified as the
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positive class by the model. Mathematically, the FPR can be estimated as:

FPR =
FP

FP + TN
. (2.12)

A high value of FPR means that the model is not performing well and predicts too many
false positives.

All the metrics defined above depend on a selection threshold to classify an input into
a specific class. For instance, in a binary classification model that separates a sample into
two classes (class 0 and class 1), a threshold must be chosen to determine the classifica-
tion of an input predicted with a probability of 0.6. Hence, all the metrics reported above
will depend on the chosen threshold. In this scenario, one metric that can be used to es-
timate the performance of a model is the area under the receiver operating characteristic
(AUROC) curve. The receiver operating characteristic curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) as a function of the threshold. The
AUROC assesses the overall ability of a classifier to distinguish between classes. A perfect
classifier will have AUROC = 1.0 with TPR = 1.0 and FPR = 0.0 for any threshold, whereas
a random classifier will have AUROC ∼ 0.5 with TPR = FPR for any threshold.

In the upcoming chapters, I will primarily use accuracy, AUROC TPR, and FPR to
compare the DL models I have developed for identifying strong gravitational lenses and
low-surface brightness galaxies from datasets ranging from simulated data to observations
from sky surveys.
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3
Finding strong gravitational lenses
through self-attention; Study based
on the Bologna Lens Challenge

This chapter originally appeared as ‘Finding strong gravitational lenses through self-attention;
Study based on the Bologna Lens Challenge’ by Thuruthipilly, H. et al. 2022, Astronomy
& Astrophysics, (Thuruthipilly et al. 2022).

3.1 Introduction

Strong gravitational lensing is the phenomenon by which a distant galaxy or quasar pro-
duces multiple highly distorted images because of the gravitational field of the foreground
galaxy or a nearby massive astronomical body. Finding and analysing these strong lenses
(SLs) is important; they have diverse applications in cosmology and astrophysics, ranging
from estimating the Universe’s dark matter distribution to constraining the cosmological
models (Koopmans et al. 2006; Covone et al. 2009; Collett & Auger 2014; Cao et al. 2015;
Bonvin et al. 2016; Bonvin et al. 2017). Consequently, the current and upcoming surveys
have given significant attention to detecting strong gravitational lensing systems. For a de-
tailed review of the applications of strong lensing, we refer to Blandford & Narayan (1992)
and Treu (2010).

However, for all these analyses a large sample of SLs is required. Unfortunately, only a
few hundred lensing systems have been detected and confirmed by the present astronomi-
cal surveys to date. One of the largest lens catalogues available now is from the Sloan Lens
ACS Survey (SLACS), with only 130 observed lenses (Bolton et al. 2008). With the upcom-
ing era of advanced missions such as Euclid (Euclid Collaboration et al. 2022b) and LSST
(Ivezić et al. 2019; Verma et al. 2019), the number of observable SLs is expected to reach 105,
which should be identified from around 109 astronomical objects. Similarly, the number of
new SLs expected to be in the Square Kilometre Array (SKA) survey will have similar
orders of magnitude (McKean et al. 2015). To analyse the enormous amount of data pro-
duced from the present and future large-scale surveys, various methods have been tried
out, including crowd science (Marshall et al. 2016) and semi-automated methods, for ex-
ample, arc detectors (Lenzen et al. 2004; Cabanac et al. 2007). However, these methods
have only had minor success and were too time-consuming to be a practical proposition.
Hence, the situation demands better and more effective alternative approaches to detect
SLs in future large-scale surveys.
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It is worth mentioning that the advancements in artificial intelligence (AI) have opened
up a plethora of opportunities and have been widely applied in astronomy and astro-
physics (e.g. galaxy classification by Pérez-Carrasco et al. 2019, supernova classification
by Cabrera-Vives et al. 2017, and lens modelling by Pearson et al. 2019). A particular class
of deep-learning models known as convolutional neural networks (CNNs) has recently
been shown to work exceptionally well in finding SLs. Hence, developing deep-learning-
based algorithms to detect SLs from large-scale surveys is an actively investigated area
now (Lanusse et al. 2017; Schaefer et al. 2018; Davies et al. 2019; Chianese et al. 2020). For
instance, Jacobs et al. (2017) applied CNNs to the data from the Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS) to find SLs, and numerous other successful attempts
of finding potential SL candidates from the Kilo Degree Survey (KiDS) have been reported
(Petrillo et al. 2017, 2019; Petrillo et al. 2019; He et al. 2020; Li et al. 2020). Likewise, various
groups have successfully used CNNs to identify strong lens galaxy-scale systems from
large-scale surveys, such as the Dark Energy Survey (DES) (Jacobs et al. 2019; Rojas et al.
2022), the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys (Huang et al.
2020, 2021), and Pan-STARRS (Cañameras et al. 2020), and from comparatively small-scale
surveys, such as VOICE (Gentile et al. 2021).

An exciting feature of the CNNs is that they can directly take the image as the input
and learn the image features, making them one of the most popular and robust architec-
tures currently being used. Generally, the learning capacity of a neural network increases
with the number of layers in the network. The network can then learn the low-level fea-
tures with the first layers and then learn more complex features with increasing depth
(Russakovsky et al. 2015; Simonyan & Zisserman 2015). However, increasing the layers
in the neural network will result in higher complexity, which in turn may lead to overfit-
ting (Hawkins 2004). In addition, the gradient of the cost function decreases exponentially.
Eventually, it vanishes for very deep networks, commonly called the vanishing gradient
effect (Hochreiter 1991; Hochreiter et al. 2001). These two problems meant that creating
very deep Convolution Networks was a challenging task.

However, the recently introduced idea of residual learning tackles these problems by
introducing skip connections between the input and output of a few convolution layers
(He et al. 2016). As a result, the CNN learns the difference between the inputs and outputs
rather than their direct mapping. Due to the skip connections, the gradients can reach
deeper layers, thus tackling the vanishing gradient effect. Recently, He et al. (2015) were
able to build models as deep as 1000 layers while increasing classification accuracy for the
ImageNet Large-Scale Visual Recognition Challenge 2015. However, the scientific com-
munity are constantly looking for alternative and simple solutions that can outperform
the existing models with reasonable computational cost.

Recently, there was a breakthrough in natural language processing (NLP) through
the introduction of a new self-attention-based architecture known as the transformers
(Vaswani et al. 2017). Since then, there have been attempts to adapt the idea of self-attention
to build better image processing models (Parmar et al. 2019; Zhao et al. 2020; Tan et al.
2021). The basic idea behind the transformer architecture is the attention mechanism,
which has also found a wide variety of applications in machine learning (Zhang et al.
2019; Fu et al. 2019). In the case of NLP, self-attention correlates with different positions of
a single sequence in order to calculate a representation of the sequence. Recently, Facebook
Inc. (Carion et al. 2020) and Google Brain (Dosovitskiy et al. 2021) have been able to sur-
pass the existing image recognition models with transformer-based architectures. To our
best knowledge, transformer-based models have not been employed in astrophysics yet.
In this paper, we explore the possibilities of this new architecture for detecting strongly
gravitationally lensed systems.

We implemented various transformer models similar to the architecture described in
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FIGURE 3.1: Distributions of source redshifts and Einstein radii (in arcsec)
of simulated gravitational lenses in the Bologna Lens Challenge.

2.5.2 to find the gravitational lenses from the Bologna Lens Challenge. We also compared
the performance of the transformer models with created CNNs, and the CNNs partici-
pated in the challenge. The main objective of our study was to explore how suitable the
transformers are for finding strong lenses and how to optimise the performance of trans-
formers. From our analysis, we found that the transformer models perform better than the
CNN models compared. We were able to beat the top TPR0 and TPR10 score (two metrics
of evaluation for the Bologna Challenge) by a significant margin and reach the top AUROC
reported during the challenge.

The paper is organised as follows. Section 2 briefly describes the data we used to train
our models. Section 3 provides a brief overview of the methodology used in our study,
including information on how the models were trained. The results of our analysis are
presented in section 4. A detailed discussion of our results with a brief review of the per-
formance of transformers compared to the CNN models that participated in the challenge
is presented in section 5. Section 6 concludes our analysis by highlighting the advantages
of the encoder models over CNN models.

3.2 Data

The data used in this study is from the Bologna Strong Gravitational Lens Finding Chal-
lenge (Metcalf et al. 2019). The challenge consisted of two different challenges that could
be registered independently. The first challenge was designed to mimic the datasets from
surveys such as Euclid consisting of single-band images. The second challenge was de-
signed to resemble data from ground-based detectors with multiple bands. It was roughly
modelled on the data from the Kilo-Degree Survey (KiDS) reported in de Jong et al. (2013).
However, the simulated images did not strictly mimic the surveys; they were only em-
ployed as references to set noise levels, pixel sizes, sensitivities, and other parameters. The
distributions of source redshift and Einstein radii in the challenge datasets are shown in
Fig. 3.1. The challenge was opened on November 25, 2016, and closed on February 5, 2017.
Surprisingly, automated methods such as CNN and SVM showed far better results than
human inspection. During the challenge, these methods were able to classify the images
with high confidence where a human would have doubt.

The mock images for the challenge were created using Millennium simulation and
GLAMER lensing code (Boylan-Kolchin et al. 2009; Metcalf & Petkova 2014). Sources from
the Hubble Ultra Deep Field (UDF) decomposed into shapelet functions were used to
create the lensed background objects. There were 9,350 such sources with redshifts and
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separate shapelet coefficients in four bands. The visible galaxies associated with the lens
were simulated using an analytic model for the surface brightness of these galaxies. In
particular, the Sérsic profile: I(R) = I0 exp−kR1/ns was used. The parameters employed
to simulate the galaxies were the total magnitude, the bulge-to-disc ratio, the disc scale
height, and the bulge effective radius. The magnitude and bulge-to-disc ratio are a func-
tion of the passband. Each galaxy was provided with an inclination angle between 0◦ and
80◦ and random orientation. An elliptical Sérsic profile describes the bulge with an axis
ratio randomly sampled between 0.5 and 1. The Sérsic index, ns, is given by

log(ns) = 0.4log
[
max

(B
T

, 0.03
)]

+ 0.1x, (3.1)

where x is a uniform random number between -1 and 1 and B/T is the bulge-to-total flux
ratio. The median redshift of sources in the space-based catalogue was zs = 2.35 and in
the ground-based catalogue it was zs = 1.81.

3.2.1 Space-based

The images for the space-based detector were simulated by Metcalf et al. (2019) to roughly
mimic the observations by the Euclid telescope in the visible channel. Metcalf et al. (2019)
set the pixel size as 0.1 arcsec, and applied a Gaussian point spread function (PSF) with
an FWHM of 0.18 arcsec to simulate the images. The reference band for background and
foreground galaxies was the SDSS i, overlapping with the broader Euclid VIS band. The
training set consisted of 20,000 images, and the challenge set consisted of 100,000 potential
lens candidates.

3.2.2 Ground-based

The ground-based images consisted of simulated images from four bands (u, g, r, and i),
and the reference band was the r band. In the challenge set, 85% of the images were purely
simulated. The other 15% were actual images chosen from a preliminary sample of bright
galaxies directly from the KiDS survey. These real images were added to the challenge set
for more realism. Some images had masked regions where removed stars, cosmic rays,
and bad pixels were present. The noise for the mock images was simulated by adding
normally distributed numbers with the variance given by the weight maps from the KiDS
survey. The example images of a mock simulated lens for the challenge are shown in Fig.
3.2. For a detailed review of how the data was created, we refer to Metcalf et al. (2019).

An exciting result reported from the challenge was that colour information was crucial
for finding strong lenses. All the methods that participated in the challenge performed bet-
ter on the data from the ground-based observatories, which had four photometric bands
(u, g, r, i), than on the data from the space-based detectors, which had a single band. Con-
sequently, it was advised by Metcalf et al. (2019) to add even low-resolution information
from other instruments or telescopes to the higher resolution data in one band to improve
the detection rates significantly. In other words, multiple bands make a significant differ-
ence, and future surveys will perform better if they have information provided in multiple
bands. Hence, for our study, we chose the data from the ground-based observatories with
four photometric bands (u, g, r, i) to study the attention-based models’ ability to detect
strong gravitational lenses. Since we are also interested in exploring the transformer archi-
tecture’s optimisation and analysing the transformers’ performance, a better data structure
was preferred to compare transformer models.
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FIGURE 3.2: Typical image of a mock simulated lens for the challenge. Bands
are shown in the following order: u (top left), g (top right), r (bottom left),

and i (bottom right).

3.2.3 Data pre-processing

The simulated datasets of the Ground-Based Bologna Strong Gravitational Lens Finding
Challenge were provided in the FITS format and were available for download to the public
1. The challenge datasets contained 100, 000 potential strong lens candidates, and the train-
ing set contained 20000 images along with other information, such as the Einstein area in
rad2 and number of pixels in the lensed image above 1 × σ. In this work we did not use
additional information about the images. We only used whole images (101×101 pixels) in
all four photometric bands (u, g, r, i) as an input to the model and information about the
lens present or not as the desired output for training the models. During training the 20000
images were split into two parts. We used a dataset of 18,000 to train the network, which
was used for validation. Before training the models, each image was re-scaled and rotated
by nπ/2, where n ∈ (0, 1, 2, 3), to enrich the dataset.

3.3 Methodology

I created 21 Transformer models similar to the model described in Sect. 2.5.2 which we call
encoder models because of its resemblance to the encoder part of the model presented by
Carion et al. (2020). I created different encoder models with different structures to study
how the hyperparameters in the encoder will affect the model’s performance. We used the
exponential linear unit (ELU) function as the activation function for all the layers in these
models. We initialise the weights of our model with the Xavier uniform initialiser, and all
layers are trained from scratch by the ADAM optimiser with the default exponential decay
rates (Glorot & Bengio 2010a; Kingma & Ba 2015).

1http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html
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3.3.1 Lens detector

Among the created encoder models, the best performance was given by the encoder model
that uses a CNN backbone similar to the LASTRO-EPFL model, from the Bologna Lens
Challenge (Schaefer et al. 2018). Here we present the two best architectures: Lens Detector
15 and Lens Detector 16, which outperformed all the other models during our analysis.

FIGURE 3.3: Scheme of the architecture of Lens Detector 15

Lens Detector 15 was first trained for 300 epochs with an initial learning rate of α =
10−4 and again trained for another 100 epochs starting with a learning rate of α = 10−5.
This version of the lens detector gave high scores in all three evaluation metrics for the
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challenge. The architecture of Lens Detector 15 is given in Fig. 3.3. In the spirit of repro-
ducible research, our code for Lens Detector 15 is publicly available2.

Lens Detector 16 was created by stacking two Lens Detector 15 models in parallel and
combining their outputs through an additional dense layer connected to a single neuron
to give the output. The architecture of Lens Detector 16 is shown in Fig. 3.4. Lens Detector
16 was first trained for 100 epochs with an initial learning rate of α = 10−4 and again
trained for another 100 epochs starting with a learning rate of α = 5 × 10−5. Furthermore,
the model was trained for 50 epochs with α = 10−5 and after that with α = 5 × 10−6 for
another 200 epochs.

FIGURE 3.4: Scheme of the architecture of Lens Detector 16

We created the Space Lens Detector model to identify strong lenses from the space-
based dataset. The Space Lens Detector has a similar structure to Lens Detector 15. The
only difference is the use of four heads in the encoder layers. The model was trained with
an initial learning rate of α = 10−4 using the ten-fold validation and iterating for 20 epochs
in each fold.

3.3.2 Metrics for evaluation

For comparing the models created, we use the metrics described in section 2.7. For the
Bologna Lens Challenge, the participants were instructed to optimise AUROC rather than
the accuracy. In addition, two more figures of merit were also considered for the compe-
tition, which are TPR0 and TPR10. The TPR0 is defined as the highest TPR reached, as a
function of the p threshold, before a single false positive occurs in the test set of 100,000
cases. This is the point where the ROC meets the FPR = 0 axis. If the classifier assigns a
high probability for a non-lensed image to be a lens, even for one case, the TPR0 will go
low. This means that the TPR0 parameter measures the confidence in the purity of the sam-
ples identified by a model. Similarly, the TPR10 is defined as the TPR at the point where
fewer than ten false positives are made, which is also a measure of confidence in the true
samples mined out by a model with a slight impurity. A high TPR0 and TPR10 indicate
that the classifier can clearly distinguish between lensed and non-lensed images.

2https://github.com/hareesht23/Lens-Detector
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3.4 Results

We created 5 convolution models to use as the backbones for the encoder models and 21
encoder models to study how the hyperparameters of the encoder layer affect the perfor-
mance. Since each architecture was implemented as a regression model, a probability of
0.5 was set as the threshold for classifying an image as a lens or not. Thus, input images
with a prediction value less than 0.5 were classified as non-lensed images labelled zero
and vice versa. Table 3.1 describes the architecture and total accuracy, AUROC, TPR0, and
TPR10 of all created models.

Model name Model structure Accuracy AUROC TPR0 TPR10
CNN 1 5 CNN Layers 88.21 0.951 0.000 0.07
CNN 2 4 CNN Layers 86.74 0.915 0.000 0.4
CNN 3 8 CNN Layers 88.51 0.968 0.033 0.37
CNN 4 3 CNN Layers 88.49 0.956 0.000 0.68
CNN 5 25 CNN Layers 91.26 0.974 0.004 0.004

Lens Detector 1 CNN 1+1 H16+1(E) 89.57 0.961 0.000 0.643
Lens Detector 2 CNN 2 + 1 H16 + 1(E) 88.13 0.950 0.001 0.001
Lens Detector 3 CNN 2 + 2 H16 + 1(E) 88.00 0.962 0.018 0.018
Lens Detector 4 CNN 2 + 2 H32 + 1(E) 88.12 0.952 0.121 0.124
Lens Detector 5 CNN 2 + 4 H64 + 2 (E) 88.46 0.955 0.125 0.133
Lens Detector 6 CNN 2 + 4 H128 + 4(E) 89.51 0.957 0.003 0.004
Lens Detector 7 CNN 3 + 8 H128 + 2(E) 91.45 0.968 0.000 0.410
Lens Detector 8 CNN 4 + 2 H384 + 2 (E) 89.43 0.954 0.000 0.758
Lens Detector 9 3 CNN Layers + 2 H384 + 2 (E) 89.61 0.959 0.000 0.789

Lens Detector 10 5 CNN Layers + 8 H128 + 2 (E) 90.58 0.970 0.180 0.23
Lens Detector 11 5 CNN Layers + 8 H128 + 4 (E) 90.45 0.966 0.219 0.34
Lens Detector 12 8 CNN Layers + 8 H128 + 4 (E) 89.82 0.960 0.040 0.680
Lens Detector 13 8 CNN Layers + 8 H128 + 4 (E) 91.94 0.975 0.175 0.525
Lens Detector 14 8 CNN Layers + 8 H128 + 4 (E) 91.95 0.975 0.002 0.539
Lens Detector 15 8 CNN Layers + 8 H128 + 4 (E) 92.99 0.978 0.140 0.48
Lens Detector 16 16 CNN Layers + 8 H128 + 8 (E) 90.97 0.962 0.225 0.24
Lens Detector 17 16 CNN Layers + 8 H128 + 8 (E) 92.19 0.973 0.00 0.717
Lens Detector 18 16 CNN Layers + 8 H128 + 8 (E) 92.09 0.976 0.113 0.590
Lens Detector 19 16 CNN Layers + 16 H128 + 8 (E) 90.03 0.961 0.114 0.115
Lens Detector 20 25 CNN Layers + 8 H128 + 4 (E) 91.26 0.973 0.212 0.223
Lens Detector 21 8 CNN Layers + 8 H128 + 4 (E) 92.79 0.98 0.00 0.64

TABLE 3.1: Table comprising the architecture, accuracy, AUROC, TPR0, and
TPR10 of all the models in chronological order of creation. The encoder mod-
els are named ‘Lens Detector’ followed by a number. The model structure
describes if the model uses transfer learning in the CNN backbone or not.
Generally, the term ‘XHY’ in the model structure means there are x heads
with dimension y in one encoder layer. Similarly, the term ‘Z(E)’ denotes

that there are Z encoders in the structure.

Among the created encoder models the highest accuracy was achieved by Lens De-
tector 15 and the highest AUROC, TPR0, and TPR10 were achieved by Lens Detector 21,
Lens Detector 16, and Lens Detector 9, respectively. From the presented models here, we
would like to highlight Lens Detector 15 as the best model since it performs well in all
categories and has the highest classification accuracy. The receiver operator characteristic
(ROC) curve of Lens Detector 15 is shown in Fig. 3.5. Similarly, Lens Detector 13, Lens
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Detector 18, and Lens Detector 20 can also be considered highly performing classifiers. All
of these models scored an AUROC equivalent to the second-best model that participated
in the challenge and a better TPR0 and TPR10 compared to all other models that partici-
pated in the challenge. The ROC curves of all the encoder models presented in Table 3.1
are displayed in Fig. 3.6.

FIGURE 3.5: Receiver operating characteristic (ROC) curve of Lens Detector
15.

Even though we chose 0.5 as the threshold for identifying a candidate as a strong lens,
in reality, such a threshold is not practical since the number of lenses to visually inspect
after the run of the network could be unrealistically high. In order to validate the per-
formance of Lens Detector 15, we plotted the confusion matrix of the lens detector with
varying thresholds (see Fig. 3.7). For the ground-based data, we were able to mine out
more than 80% of the true lenses with a threshold as high as 0.999.

To identify strong lenses from the space-based dataset, we created the Space Lens De-
tector, which scored an AUROC = 0.925. The corresponding AUROC is greater than the
second-best AUROC reported in the Bologna Lens Challenge and a little below the top
AUROC (0.93) of the Bologna Lens Challenge. The Space Lens detector scored a TPR0 of
0.039 and TPR10 of 0.166, which is comparable to the performance of the other machine
learning techniques that participated in the challenge. Since it is clear that the attention-
based encoder models can identify the SLs from single-band images, we did not try to
improve the scores further. The ROC curve of the Space Lens Detector is shown in Fig. 3.8.

Similarly to the models that participated in the challenge, encoder models also per-
formed better on the data from the ground-based observatories, which had four photo-
metric bands (u, g, r, i), compared to the data from the space-based detectors, which had
a single band. Our results support the argument presented in Metcalf et al. (2019) that
multiple bands make a significant difference and improve the detection.
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FIGURE 3.6: ROC curves of all the encoder models. The inset reports the
AUROC score of each model in order to facilitate comparison of the models.

3.5 Discussion

3.5.1 Transformers and models from the Bologna Lens Challenge

The Bologna Lens Challenge was intended to improve the efficiency and biases of tools
used to find strong gravitational lenses on galactic scales. It was clear from the challenge
that automated methods such as CNNs and SVM have a clear advantage compared to
conventional methods. The performance of all these models was evaluated using AU-
ROC, TPR0, and TPR10 scored on the challenge set. An SVM model named Manchester
SVM won the competition in the TPR0 category with a score of 0.22. (Metcalf et al. 2019;
Hartley et al. 2017). The model named CMU Deep Lens received an AUROC of 0.981 and
a TPR10 score of 0.45, the highest in their respective categories, and thus won the compe-
tition (Metcalf et al. 2019; Lanusse et al. 2017). Another variant of the model, named CMU
Deep Lens, also received an AUROC of 0.98 during the challenge. These models were 46
layers deep ResNets with around 23 ×106 parameters (Lanusse et al. 2017). Another model
worth mentioning from the challenge is LASTRO EPFL, an eight-layer CNN that won the
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FIGURE 3.7: Confusion matrix of Lens Detector 15 plotted for various
thresholds. Class 0 represents the non-lensed images, and Class 1 represents
the lensed images. The lower right square in each confusion matrix repre-
sents the true positives for which Lens Detector 15 identified strong lenses
correctly. The upper left square in each confusion matrix represents the true
negatives for which Lens Detector 15 identified non-strong lenses correctly.
The lower left square in each confusion matrix represents the false negatives
or the missed true lenses by Lens Detector 15. The upper right square in each
confusion matrix represents the false positives or the non-lenses identified

by Lens Detector 15 as strong lenses.

competition for the space-based dataset in the AUROC category. For a detailed look at the
models that participated in the challenge we refer to Hartley et al. (2017) for the SVM,
Lanusse et al. (2017) for CMU-DeepLens, and Schaefer et al. (2018) for LASTRO EPFL.

We would like to compare the performance of these models to the performance of the
encoder models to exhibit the advantages of encoder models over the CNNs and SVM
models. As mentioned earlier, we focused on the data from ground-based observatories.
Here we are only comparing the performance of the created encoder models and that of
the models that participated in the challenge only for the ground-based observatories data.
The values reported in Metcalf et al. (2019) are used here for the comparison.

During the challenge, the TPR0 was used to strongly penalise the classifiers with dis-
crete ranking because their highest classification level was not conservative enough to
eliminate all false positives, and they were likely to get TPR0 = 0. For the other models
that participated in the challenge, maximising the TPR0 was a tough challenge, also for en-
coder models. However, the encoder models performed very well compared to the CNN
models that participated in the challenge. The results of TPR0 for the top three encoder
models and the top three models that participated in the challenge are listed in Table 3.2.
We would like to note two models; Lens Detector 16 achieved a TPR0 of 0.225 and Lens
Detector 11 reached a TPR0 of 0.219, which are very high compared to the CNNs that
participated in the challenge.

Name AUROC TPR0 TPR10 Model type
Lens Detector 16 0.962 0.225 0.24 Transformer
Manchester SVM 0.93 0.220 0.35 SVM/Gabor
Lens Detector 11 0.966 0.219 0.34 Transformer
Lens Detector 15 0.978 0.140 0.48 Transformer
CMU-DeepLens
Resnet-ground3 0.98 0.09 0.45 CNN
LASTRO EPFL 0.97 0.07 0.11 CNN

TABLE 3.2: Comparison of encoder models and models that participated in
the Bologna Lens Challenge, listed in decreasing order of TPR0.
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FIGURE 3.8: ROC curve of the Space Lens Detector.

FIGURE 3.9: Variation of loss function with epochs for Lens Detector 13 and
CNN 3, respectively. Lens Detector 13 uses CNN 3 as its CNN backbone.

The next parameter used to evaluate the models in the challenge was TPR10 for which
the encoder models showed a high range of supremacy over all other models that partic-
ipated in the challenge. Particularly, Lens Detector 9 achieved TPR10 = 0.79. The results
of TPR10 for the top three encoder models and the top three models that participated in
the challenge are listed in Table 3.3. Three of our models were able to score a TPR10 above
0.70, which is very high compared to the top TPR10 reported during the challenge. Ta-
ble 3.1 clearly shows that most encoder models achieved a higher score in this category
compared to the other models that participated in the challenge.
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Name AUROC TPR0 TPR10 Model type
Lens Detector 9 0.959 0.00 0.789 Transformer
Lens Detector 8 0.954 0.00 0.758 Transformer
Lens Detector 17 0.973 0.00 0.717 Transformer
CMU-DeepLens 0.98 0.09 0.45 CNN
Resnet-ground3

Manchester SVM 0.93 0.220 0.35 SVM/Gabor
LASTRO EPFL 0.97 0.07 0.11 CNN

TABLE 3.3: Comparison of encoder models and models that participated in
the Bologna Lens Challenge, listed in decreasing order of TPR10.

Now looking at the third parameter of merit used in the Bologna Lens Challenge,
which is the AUROC, we can see that Lens Detector 21 was able to reach the highest
reported AUROC in the Bologna Lens Challenge (Metcalf et al. 2019). The top three en-
coder models and the top three models that participated in the challenge that scored the
highest AUROC are listed in Table 3.4. However, the CMU-DeepLens, was a 46 layer deep
ResNet with around 23 ×106 parameters (Lanusse et al. 2017), whereas Lens Detector 21
had only 3 ×106 parameters and achieved an AUROC of 0.9809, which is very close to the
performance of CMU Deep Lens (AUROC = 0.9814).

Name AUROC TPR0 TPR10 Model type
CMU-DeepLens 0.981 0.09 0.45 CNN
Resnet-ground3
Lens Detector 21 0.981 0.00 0.64 Transformer
CMU-DeepLens 0.980 0.02 0.10 CNN
Resnet-Voting

Lens Detector 15 0.978 0.140 0.48 Transformer
Lens Detector 18 0.976 0.113 0.59 Transformer
LASTRO EPFL 0.97 0.07 0.11 CNN

TABLE 3.4: Comparison of encoder models and models that participated in
the Bologna Lens Challenge, listed in decreasing order of AUROC.

3.5.2 Insights into transformers

An initial glance at the results in Table 3.1 shows that encoder models perform better than
CNN models. However, the encoder models depend on the CNN backbone to extract the
features, and as a result the performance of the encoder models depends upon the CNN
backbone. A detailed look at the results indicates that the encoder model is only good as its
CNN backbone. However, the encoder model always performs better than its CNN back-
bone. For example, the lowest accuracy achieved among the encoder models was for Lens
Detector 3, which has better performance than CNN 2. A similar trend can be observed for
other encoder models, which use trained CNNs as their backbone and perform better than
the trained CNNs. These observations show that the encoder models can achieve accuracy
that is better by a small percentage than a CNN with the same number of convolution
layers.

However, an interesting question that should be addressed is what happens if we use
deeper CNN backbones. We compare the performance of a deeper CNN and an encoder
model with a deeper CNN backbone. Model CNN 5 with 25 convolution layers and Lens
Detector 20 with the same number of convolution layers give same AUROC (0.97) and the
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same accuracy (0.91). We can see that the two models perform equally well. Using self-
attention in deeper CNNs did not significantly improve the AUROC or accuracy. How-
ever, the TPR0 score and TPR10 score of Lens Detector 20 (0.212 and 0.223, respectively) is
higher compared to CNN 5 (0.004 and 0.004, respectively). One probable reason why self-
attention does not improve the accuracy and AUROC of deeper CNNs is that the CNN
backbone will learn more about the image’s micro-scale features in deeper layers. Hence,
the model will miss the long-range correlations of the original image found by the encoder
layer.

In this section, we speak of the number of hyper-parameters in the encoder layer. On
analysing the results from the encoder models, we can see that increasing the number
of heads and the depth of the encoder increases the model’s performance. However, in-
creasing the number of heads and the depth of the encoder also increases the number of
trainable parameters in the model. During the training period, it was found that increasing
the number of parameters in the encoder layer helps the model to learn faster. This points
to an exciting aspect of the encoder models. The encoder’s performance is proportional to
the number of trainable parameters in the encoder layer or specifically in the multi-head
attention layer. The higher the number of trainable parameters, the better the learning
curve and performance. However, the performance saturates beyond a limit for a given
CNN backbone.

Another interesting observation was the difference in the number of trainable param-
eters in the CNNs and self-attention-based encoder models. For example, an eight-layer
CNN will have 4×106 parameters, whereas the encoder with eight CNN layers and four
encoder layers with eight heads each will have 3×106 parameters. In CNNs, most of the
parameters come from the connections between the flattened output of the last convo-
lution layer to the following dense layer. The weights in these layers help the CNNs to
learn the features of the image. However, for a transformer network most of the train-
able parameters are in the attention layers, which are only trying to learn the long-range
correlations in the data and effectively act as a filter. This is one of the reasons why trans-
former networks can prevent overfitting. However, transformer models did not show any
advantages over CNNs for the time taken to test and train the models.

We also tried different learning rates from different ranges to find the optimal learning
rate. We found that increasing the learning rate above 0.001 considerably reduced the per-
formance of the lens detectors. With an initial learning rate of 0.01, the models were not
able to learn the features of the lenses from the training set. The optimal learning rate for
our model was found to be between α = 5 × 10−5 and α = 2 × 10−4; we chose α = 10−4 as
the initial learning rate for our models.

Another striking feature worth pointing out is that, unlike convolution layers increas-
ing the number of parameters in the encoder layers has a very slight effect on overfitting
the model. Since the self-attention layers act as the filters for features extracted by CNN,
an increase in the number of parameters in the encoder layers helps the models to filter
the features faster and effectively without causing the overfitting of the model. The effect
of self-attention layers in filtering and smoothing the learning curve can also be seen in
comparing the loss curve of the CNN and encoder models presented in Fig. 3.9.

We also tried transfer learning by using an already trained CNN as the backbone of the
encoder model. Surprisingly, however, the encoder models that do not use transfer learn-
ing performed slightly better than the models that use transfer learning. Since a trained
CNN model has already learned to extract specific features of an image, the encoder model
with that CNN backbone is restricted to minimise the loss function in only a small part of
the hyperspace. So, the self-attention layers can only filter the features and improve the
accuracy by a small percentage (e.g. CNN 2 86.74% and Lens Detector 2, with CNN 2 as
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the backbone, 88.13%). Nevertheless, for a model without transfer learning, there is a pos-
sibility for the CNN part in the encoder model to learn more features than a solo CNN
about the image and improve the accuracy. For example, Lens Detector 7, which used the
trained CNN 3 as its backbone, scored an accuracy of 91.45%. In contrast, Lens Detector 15,
which used a CNN backbone similar to CNN 3 and without any transfer learning, scored
an accuracy of 92.99%. However, this result cannot be generalised since it also depends on
the trained CNN backbone.

An updated version of the CNN models that participated in the challenge and had
better scores in every category compared to their previous versions has recently been re-
ported by Magro et al. (2021). They used the same CNNs that participated in the challenge
and retrained the networks with different epochs. Even though the models had improved
scores, it was evident from the report that the performance of the models is highly depen-
dent on the number of epochs. In other words, the CNNs reported in the Bologna Lens
Challenge had lower stability. We have to monitor the training to achieve better results
carefully. In contrast, the encoder models are highly stable compared to the CNNs. As
shown in Fig. 3.9, we were able to train the encoder models up to 2000 epochs without any
sign of overfitting. Interestingly, the fluctuations in the validation loss were very stable up
to the end.

3.5.3 Lens detectors for strong lens detection

It is worth pointing out that encoder models can identify SLs and non-SLs better than their
CNN counterparts. The probability distribution of finding a lens in the challenge dataset
is depicted in Fig. 3.10. The encoder model can assign a probability for an input to be a
lens (p ≈ 1) or non-lens (p ≈ 0) with greater confidence than the CNN. Furthermore,
from Fig. 3.10, it is clear that the transformer models can approximately mimic a perfect
classifier by assigning a probability of 0 to non-lensed images and a probability of 1 to
lensed images. This feature of the encoder model will be beneficial and applicable in the
upcoming large-scale surveys to narrow down the potential lensing systems with great
confidence. Figure 3.7 shows that Lens Detector 15 was able to identify 82% of the true
lenses with a probability greater than 0.999, which explains the peak near the point 1.0 on
the x-axis of Fig. 3.10.

Here, we used all four bands available for training the models. However, the u-band
images are usually not used to search for strong lenses because, in the real scenario, the u-
band images often have lower image quality. It is also possible that they are not available
for fainter galaxies. In the literature, for detecting the strong lenses, the images from the
g, r, and i bands are used for training machine learning models. Sometimes along with a
three-channel CNN, another single-band CNN is also created, and the combined predic-
tions of these two CNNs are used to shortlist the real lens candidates (Petrillo et al. 2019;
Petrillo et al. 2019; Li et al. 2020). To test the adaptability of the encoder model for three
bands, we removed the u band and retrained the Lens Detector 15 model from scratch with
the images from the g, r, and i bands and named it the 3-band Lens Detector. The retrained
Lens Detector 15 achieved an AUROC = 0.974, which is comparable to the AUROC when
the u band was present. The ROC curve and the confusion matrix for various thresholds
are presented in Fig. 3.11 and Fig. 3.12. Comparing the confusion matrices in Fig. 3.7 and
Fig. 3.12, we can see that removing the u band slightly reduces the number of true pos-
itives for a given threshold since the information available in the u band was gone. For
example, for a threshold = 0.8, Lens Detector 15 identified 90% of the true positives and
the 3-band Lens Detector identified 88% of the true positives. This result also validates the
argument presented in Metcalf et al. (2019) to include even low-resolution information in
one band to improve the detection rates.
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FIGURE 3.10: Comparison of the output probabilities of CNN 3 and Lens
Detector 15 for the ground-based challenge dataset. In this histogram val-
ues leaning towards zero represent the lack of a strong lens in the image,
and values leaning towards one indicate the presence of a strong lens in the

image.

Since we already tested the encoder model on the space-based dataset and obtained
comparable results with models that participated in the Bologna Lens Challenge, it is clear
that encoder models can be adapted for a single-band analysis. However, another inter-
esting question to be investigated is the ability of the encoder models to find strong lenses
from a different data distribution than the model has been trained on. We retrained the
Space Lens Detector using the data in the r band from the ground-based data and tested it
on the space-based challenge dataset to investigate this aspect. The retrained Space Lens
Detector scored AUROC = 0.84, which shows the model has the minimum capacity to dis-
tinguish lenses from a different distribution. If we train the network again with 200 sam-
ples from the space-based dataset (1% of the space training set), the AUROC improves by
0.88. With 400 samples (2%), AUROC becomes 0.89, and with 600 samples (3%), AUROC
improves to 0.902. Each retraining was done independently of the others. The ROC curve
of the Space Lens Detector trained with r band and was tested on the space-based dataset,
and the improved ROC curves of the retrained model are shown in Fig. 3.13. The capacity
of the model to identify the lenses improves if we train the model with very few sam-
ples from a different distribution, which indicates the adaptability of the encoder model
in the presence of new data distributions. This feature also shows that the encoder models
trained on simulated data can be optimised to detect strong lenses from real data using
even a small sample of detected lenses.

Even though the encoder model performs better than the convolution models and the
other models that participated in the challenge, the encoder models that have been trained
here have a slight gap with a perfect classifier. We carefully examined the frequent false
positives and the false negatives reported by various encoder models. Some of the images
that have been identified as false positives and false negatives are given in Fig. 3.14 and
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FIGURE 3.11: ROC curve of the 3-band Lens Detector.

FIGURE 3.12: Confusion matrix of the 3-band Lens Detector on the challenge
dataset for various thresholds. Class 0 represents the non-lensed images,
and Class 1 represents the lensed images. The lower right represents TP in
each confusion matrix, the lower left represents FN, the upper left represents

TN, and the upper right represents FP.

Fig. 3.15. Looking at these false positives and false negatives, we can see that the encoder
models are trying to find whether the input image has an arc-like structure or multiple
distorted images. If we suppose the input image has any of these characteristics in at least
one of the bands, the detector identifies the image as a strong lens. Similarly, if both these
features are missing, then the detector classifies the image as a non-lens. In order to im-
prove the performance of the models, we need the model to be trained on more realistic
and complex data.

Since strong gravitational lensing is a rare phenomenon, we need to have a closer look
at the cases of false negatives. In real surveys false positives can be filtered out from a
candidate sample created by an automated classifier, whereas missing a true SL is not
favoured. Looking at the relations between the parameters of the strong lens and the
model’s performance is a possible way to search for a space of parameters where it is more
difficult to find lenses. We sorted the test dataset into ascending order in Einstein radii and
divided it into three subclasses depending on the Einstein radius. The first quartile (25,000)
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FIGURE 3.13: ROC curve of Space Lens Detector trained on r band and
tested on the space-based dataset. Improved ROC curves of the model re-
trained using 200, 400, and 600 samples from the space dataset are also plot-

ted.

and the third quartile (75,000) were used as the subclass boundaries. Looking at the confu-
sion matrices (threshold = 0.8) from Fig. 3.16, we can see that the best performance of Lens
Detector 15 is for the intermediate bin (0.873–3.547 arcsec). The performance of Lens De-
tector 15 is low for the first bin (0.3011–0.873 arcsec) and the third bin (3.547–10.08 arcsec).
This means that Lens Detector 15 has difficulty finding SLs with small and large Einstein
radii. A similar result for CNNs has also been reported by Li et al. (2020); Cañameras et al.
(2020).

Analysing the parameters of the false negatives, we found that another important pa-
rameter that impacts the identification of strong lenses is the ratio of the flux in lensed
pixels to the total flux. For a probability threshold of 0.8, we had 4981 false negatives
in the Bologna Ground-Based Challenge. All of them had a very low ratio of the flux in
lensed pixels to the total flux. Out of 4981 false negative cases, 4775 cases had a flux ratio
of the source to the lens lower than 0.1. Similarly, 3667 out of 4981 cases in the sample
of false negatives had a flux ratio of the source to the lens lower than 0.01. The Bologna
Ground-Based Challenge dataset contained 10,818 true strong lenses with a flux ratio of
the source to the lens lower than 0.01. Thus, Lens Detector 15 could identify 66% of the
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FIGURE 3.14: Four examples of false positives found by the encoder models.
The channels shown are u (top left), g (top right), r (bottom left), and i (bot-
tom right). Image ID from the test data is given below each set of images.

true strong lenses with a very low flux ratio (lower than 0.01). These results indicate that
Lens Detector 15 will have trouble distinguishing strong lens candidates for a very low
flux ratio between the source and the lens. The reason is that the distortions of the source
galaxy due to lensing may not be bright enough to be detected by the models. This result
is similar to the results reported by Li et al. (2020); Cañameras et al. (2020) where the CNN
models have low performance on fainter SLs samples. The distribution of false negatives
as a function of the ratio of flux in the lensed pixels to the total flux is plotted in Fig. 3.17.

We also would like to comment on another reported CNN model on the Bologna Lens
Challenge, which is the LensCNN, achieving a total accuracy of 0.8749 (TP 0.8817 and
TN 0.8682). It is the only CNN model where classification accuracy for the Bologna Lens
challenge has been reported (Davies et al. 2019). Our results show that all of our encoder
models have surpassed the LensCNN in total accuracy. Furthermore, the LensCNN model
has also reported an AUROC of 0.96 on the challenge data, which is exceeded by most of
our encoder models. In this context, it is worth mentioning that the LensCNN had approx-
imately 10 ×106 parameters. Lens Detectors outperformed the LensCNN with just 3 ×106

of the parameters.
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FIGURE 3.15: Four examples of false negatives found by the encoder mod-
els. The channels shown are u (top left), g (top right), r (bottom left), and i
(bottom right). Image ID from the test data is given below each set of im-

ages.

3.5.4 Performance on real data

Since all our models have been trained on the simulated dataset provided by the Bologna
Lens Challenge, it is critical to check if the trained model can identify strong lenses from
real data. Ideally, we expect the encoder models to learn the general features of the strong
lenses from the simulated data and to retrieve the potential lens candidates from the real
data. Recently, Petrillo et al. (2019) have trained a three-band CNN (g, r, and i bands) and
a single-band CNN (r band) on the data simulated using the real images from the KiDS
survey and applied it to the KiDS DR4 data to identify potential strong lens candidates.
To obtain a reasonable number of true positives and so as not to contaminate the sample
with a large number of false positives, they chose 0.8 as the threshold for identifying a
candidate as a strong lens for each CNN. Using these criteria, they shortlisted 3500 cases as
potential strong lenses, and Petrillo et al. (2019) conducted a visual inspection to validate
these candidates.

The potential candidates were classified into three classes, and each class was assigned
a numerical score: Sure lens, 10 points; Maybe lens, 4 points; No lens, 0 points. As a result,
the highest score that any candidate can obtain is 70, when all human classifiers think it
is undoubtedly a lens. Using these criteria, Petrillo et al. (2019) shortlisted 1983 potential
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FIGURE 3.16: Confusion matrix of Lens Detector 15 with 0.8 as the threshold
plotted for small Einstein radius (0.3011 – 0.873 arcsec), medium Einstein ra-
dius (0.873 – 3.547 arcsec) and high Einstein radius (3.547 – 10.08 arcsec). In
the confusion matrix, the lower right represents TP, the lower left represents

FN, the upper left represents TN, and the upper right represents FP.

strong lens candidates from the data selected by the two CNNs. The FITS files, probability
scores of the CNNs reported in Petrillo et al. (2019), and numerical scores of visual in-
spection for each candidate are available publicly 3, and we chose this dataset to study the
performance of the encoder model on real data.

Since the 1983 lens candidates were found together using a single-band CNN and a
three-band CNN, some of the candidates found by the single-band CNN were not detected
by the three-band CNN. Specifically, 946 candidates were missed by the three-band CNN
(which means they were assigned a probability of less than 0.8) in the final sample of 1983
candidates. Similarly, 526 candidates identified by the three-band CNN were missed by the
single-band CNN. To analyse the performance of the encoder model, we used the 3-band
Lens Detector and tested it on the lens candidates found by Petrillo et al. (2019). After
evaluating the model on real data, we created three classes using the visual inspection
score as the reference. Class 0 sources have a low probability of being a lens (score less
than 20 out of 70, and predictive value less than 0.8). Class 1 sources have an intermediate
probability of being a lens (score between 20 and 50, and predictive value between 0.8 and
0.95). We are highly confident that Class 2 sources are strong lenses (score greater than
50, and a predictive value greater than 0.95). Using the probability scores predicted by
the three-band CNN and using the visual scores, we plotted the confusion matrix for the
three-band CNN along with the 3-band Lens Detector, which is given in Fig. 3.18.

Looking at the confusion matrix in Fig. 3.18, we can see that the encoder model can
classify low (Class 0) and high (Class 2) probability cases similarly to a human expert.
However, for class 1, which represents the cases with an intermediate probability of being
a strong lens, the 3-band Lens Detector performs poorly. This is to be expected since the
3-band Lens Detector is trained as a binary classifier, and from Fig. 3.10 it is clear that the
Lens Detector tends to assign very high or very low probability scores. Since there are three
classes and the number of samples in each class is different, in order to compare the three-
band CNN and the 3-band Lens Detector, we can calculate the weighted f1 score by taking
the mean of all per class f1 scores while considering each class’s support. Here, support
refers to the number of actual occurrences of the class in the dataset. Using the visual scores
as a reference, the weighted f1 score of the three-band CNN is 0.601, and the weighted f1
score of the 3-band Lens Detector is 0.822, which indicates that the 3-band Lens Detector is
performing similarly to a human visual expert on the shortlisted SL candidates. Here we

3https://www.astro.rug.nl/lensesinkids/
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FIGURE 3.17: Distribution of false negatives as a function of the ratio of flux
in the lensed pixels to the total flux.

have assumed that the output probabilities assigned by the three-band CNN and the team
of visual experts are independent.

With these results, we cannot claim that the 3-band Lens Detector is better than the
three-band CNN presented in Petrillo et al. (2019) or vice versa since we are testing the
model on the already shortlisted candidates by the three-band CNN. However, we can
claim that self-attention-based encoder models can detect strong lenses from real data in
competition with CNNs. Another factor to be noted here is that the 3-band Lens Detector
was trained on a complete data distribution compared to the training set of the three-band
CNN, which was derived from the actual KiDS DR4 data. As mentioned earlier, the data
in the Bologna Lens Challenge used KiDS as a reference, and they did not strictly resemble
the data from KiDS. Thus, the data used in the Bologna Lens Challenge have a different
data distribution compared to the KiDS DR4 data. Hence, if we were to directly apply
our model to the data from KiDS DR4 without any fine-tuning, we are expected to find a
lot of false positives. However, we show that the encoder models can adapt to different
data distributions and improve their performance if we retrain, even with a small sample
set from the new data distribution. Thus, the performance of the encoder model can be
significantly improved if one retrains the 3-band Lens Detector with the data derived from
the KiDS DR4 data. The fie-tuned models presented here in this work are used to find SGLs
from KiDS DR4 by Grespan et al. (2024) as a followup of this analysis.

3.6 Conclusions

We have presented a novel machine learning approach known as the self-attention-based
encoders to detect strong gravitational lenses. We have explored this new architecture’s
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FIGURE 3.18: Confusion matrix of the 3-band Lens Detector and three-band
CNN for the classification of the 1983 KiDS DR4 lens candidates (Petrillo
et al. 2019). The candidates are classified into three categories based on the
visual inspection scores by Petrillo et al. (2019), which is treated as the cor-
rect classification. The candidates are also classified into three categories
based on the probability values generated by the 3-band Lens Detector in-
troduced in this work and three-band CNN from Petrillo et al. (2019). The

overlap between these classifications is shown in the confusion matrices.

possibilities to understand better how to apply the transformer models for image analysis
using the data from the Bologna Lens challenge. Currently, most of the automated tech-
niques employed to find strong lenses are based on CNNs. However, as noted by Metcalf
et al. (2019), CNNs are prone to overfitting the training set. Here we showed that the
self-attention-based architectures provide better stability and are less likely to overfit than
CNNs. Another advantage of a self-attention-based encoder over a CNN is that it performs
better with a fewer number of trainable parameters. Hence, self-attention-based encoder
models can be considered a better alternative to CNNs and other automated methods.

Here we have described the 21 encoder models we created to study the application of
self-attention-based models for SL detection using the data from the Bologna Lens Chal-
lenge. We have presented the three best encoder models, which provide more reliable per-
formance than those participating in the Bologna Lens Challenge. Lens Detector 21 scored
an AUROC of 0.9809, which is equivalent to the top AUROC achieved in the challenge.
Similarly, Lens Detector 16 scored a TPR0 0.225 higher than any model that participated
in the challenge, and surpassed the top TPR0 (0.09) achieved by the CNNs by a high mar-
gin. We consider Lens Detector 15 to be the best encoder model as it scored 0.14 and 0.48
respectively for TPR0 and TPR10, outperforming the CNN models to a greater extent and
also scoring an AUROC of 0.9783, which is very close to the top AUROC.

From our analysis, we were able to point out that the encoder models have more stabil-
ity than CNNs, which minimises the need for human interaction or monitoring. Similarly,
the encoder models were better than the CNN models in classifying lenses and non-lenses
by assigning high probability scores for the lens (p ≈ 1) and non-lens (p ≈ 0) systems.
In addition, the architecture we proposed here is very simple and robust and has a high
resistance to overfitting. We could train models as deep as 25 layers and for 2000 epochs
without any sign of overfitting. With a simple 8-layer deep CNN, we were able to surpass
the performance of a 46-layer deep RNN and surpass all the other models to a great extent.

We tested our model on the 1983 potential strong lens candidates from the KiDS DR4
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data found in Petrillo et al. (2019). We were able to closely mimic a human visual expert in
identifying the strong lenses. Even though we cannot claim to outperform the CNN model
presented in Petrillo et al. (2019), we confirm that the encoder models can perform well on
the real data. Since we have tested the network on a different data distribution than it was
trained on, we expect to improve the performance of the encoder model if the training and
testing data distribution are similar. In the future, we are planning to train the encoder
models on more complex data derived from real data and test them on real data to find
more potential lens candidates. Even though we have glimpsed at the adaptability of the
encoder models to different data distributions, further studies are needed to establish the
full scope of this architecture.

In the upcoming era of big data in astronomy, automated methods are expected to
play a crucial role. Better and alternative automated methods have to be consistently in-
vestigated to advance the scientific study in this scenario. From our study it is clear that
the search for strong lenses in the current and upcoming wide-field surveys such as KiDS
(Kuijken et al. 2019), HSC (Aihara et al. 2019), LSST (Ivezić et al. 2019; Verma et al. 2019),
Euclid (Euclid Collaboration et al. 2022b), and WFIRST (Koekemoer 2019) can be achieved
using self-attention-based encoder models with better performance compared to CNNs.
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4
Shedding light on
low-surface-brightness galaxies in
dark energy surveys with transformer
models

This chapter originally appeared as ‘Shedding light on low-surface-brightness galaxies in
dark energy surveys with transformer models’ by Thuruthipilly, H. et al. 2024, Astronomy
& Astrophysics, (Thuruthipilly et al. 2024b).

4.1 Introduction

Low-surface-brightness galaxies (LSBGs) are most often defined as galaxies with a central
surface brightness fainter than the night sky or galaxies with B-band central surface bright-
ness µ0(B) below a certain threshold value. In literature, the threshold values of µ0(B) for
classifying a galaxy as LSBG vary among different works, ranging from µ0(B) ≥ 23.0 mag
arcsec−2 (Bothun et al. 1997) to µ0(B) ≥ 22.0 mag arcsec−2 (Burkholder et al. 2001).

It is estimated that the LSBGs only contribute a few percentages (< 10%) to the local lu-
minosity and stellar mass density of the observable universe (Bernstein et al. 1995; Driver
1999; Hayward et al. 2005; Martin et al. 2019). However, LSBGs are considered to account
for a significant fraction (30% ∼ 60%) of the total number density of galaxies (McGaugh
1996; Bothun et al. 1997; O’Neil & Bothun 2000; Haberzettl et al. 2007; Martin et al. 2019),
and as much as 15% of the dynamical mass content of the universe (Driver 1999; Minchin
et al. 2004). These numbers imply that LSBGs can contribute significantly to our under-
standing of the physics of galaxy evolution and cosmological models. However, as their
name indicates, LSBGs are very faint systems, and due to the observational challenges in
detecting them, LSBGs remain mostly an unexplored realm.

In recent years, despite the observational challenges, advances in digital imaging have
improved our ability to detect LSBGs. The first known and the largest LSBG to be iden-
tified and verified is Malin 1, serendipitously discovered by Bothun et al. (1987) during
a survey of galaxies of low surface brightness in the Virgo cluster. Notably, Malin 1 is
the largest spiral galaxy known until today (e.g., Impey et al. 1988; Junais et al. 2020; Galaz
et al. 2022). Current searches for LSBGs have shown that they exhibit a wide range of phys-
ical sizes (E Greene et al. 2022) and can be found in various types of environments, ranging
from satellites of local nearby galaxies (Danieli et al. 2017; Cohen et al. 2018), ultra-faint
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satellites of the Milky Way (McConnachie 2012; Simon 2019), galaxies found in the field
(Leisman et al. 2017; Prole et al. 2021), to members of massive galaxy clusters like Virgo
(Mihos et al. 2015, 2017; Junais et al. 2022) and Coma (van Dokkum et al. 2015a; Koda et al.
2015).

LSBGs also consist of several sub-classes based on their physical size, surface bright-
ness and gas content. Ultra-diffuse galaxies (UDGs) represent a subclass of LSBGs char-
acterized by their considerable size, comparable to that of Milky Way-like galaxies, yet
exhibiting very faint luminosities akin to dwarf galaxies. Although the term ‘UDG’ was
coined by van Dokkum et al. (2015a), such galaxies were identified in several earlier stud-
ies in the literature (Sandage & Binggeli 1984; McGaugh & Bothun 1994; Dalcanton et al.
1997; Conselice et al. 2003a). Similarly, giant LSBGs (GLSBGs) form another sub-class of
LSBGs that are extremely gas-rich (MHI > 1010 M⊙), faint and extended (Sprayberry et al.
1995; Saburova et al. 2023). The formation and evolution of extreme classes like UDGs and
GLSBGs are still debated (Amorisco & Loeb 2016a; Di Cintio et al. 2017; Saburova et al.
2021; Benavides et al. 2023; Laudato & Salzano 2023).

To comprehend the formation of various types LSBGs in different environments,studying
them extensively across different environments (galaxy clusters vs field) over a large area
of the sky is crucial. Recently, Greco et al. (2018) detected 781 LSBGs in the Hyper Suprime-
Cam Subaru Strategic Program (HSC SSP) in a blind search covering around 200 deg2 of
the sky from the Wide layer of the HSC SSP. Similarly, in a recent study, Tanoglidis et al.
(2021b) utilised a support vector machine (SVM) and visual inspection to analyse the first
three years of data from the Dark Energy Survey (DES). They identified more than 20 000
LSBGs, which is currently the largest LSBG catalogue available.

A common feature observed in both of these untargeted searches for LSBGs was the
significant presence of low-surface brightness artefacts. As pointed out in Tanoglidis et al.
(2021b), these artefacts predominantly consist of diffuse light from nearby bright objects,
galactic cirrus, star-forming tails of spiral arms and tidal streams. These artefacts typically
pass the simple selection cuts based on photometric measurements and often make up the
majority of the LSBG candidate sample. These contaminants need to be removed, which
is often accomplished using semi-automated methods with a low success rate and visual
inspection, which is more precise but time-consuming.

For example, in HSC SSP, Greco et al. (2018) applied selection cuts on the photometric
measurements from SourceExtractor (Bertin & Arnouts 1996). This led to the selection of
20 838 LSBG candidates. Using a galaxy modelling pipeline based on imfit (Erwin 2015),
the sample size was subsequently reduced to 1 521. However, after the visual inspection,
only 781 candidates were considered confident LSBGs, which is around 4% of the pre-
liminary candidate sample and 50% of the sample selected by the pipeline. Similarly, in
DES, Tanoglidis et al. (2021b) shortlisted 419 895 LSBG candidates using the selection cuts
on SourceExtractor photometric measurements. After applying a feature-based machine
learning (ML) classification (SVM) on the photometric measurements, the candidate sam-
ple was further reduced to 44 979 objects. However, a significant number of false positives
still remained, and only 23 790 were later classified as confident LSBGs. Therefore, these
numbers indicate that the occurrence of LSBGs in these methods is roughly 5% for the
initial selection and 50% for the subsequent selection.

The upcoming large-scale surveys, such as Legacy Survey of Space and Time (LSST;
Ivezić et al. 2019) and Euclid (Euclid Collaboration et al. 2022b), are expected to observe
billions of astronomical objects. In this scenario, relying solely on photometric selection
cuts or semi-automated methods such as galaxy model fitting would not be practical to
identify LSBGs confidently. Furthermore, the accuracy of the classification methodology
between LSBGs and artefacts must be improved to achieve meaningful results. Hence, this
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situation demands more effective and efficient automation methodologies for the searches
of LSBGs.

Recently, the advancements in deep learning have opened up a plethora of opportuni-
ties and have been widely applied in astronomy. Particularly for analysing astronomical
images, convolutional neural networks (CNNs) have emerged as a state-of-the-art tech-
nique. For example, the CNNs have been used for galaxy classification (Pérez-Carrasco
et al. 2019), galaxy merger identification (Pearson et al. 2022), supernova classification
(Cabrera-Vives et al. 2017) and finding strong gravitational lenses (Schaefer et al. 2018;
Davies et al. 2019; Rojas et al. 2022). One of the fascinating features of CNNs is their ability
to directly process the image as input and learn the image features, making them one of
the most popular and robust architectures in use today. Generally, the learning capacity of
a neural network increases with the number of layers in the network. The first layers of
the network learn the low-level features, and the last layers learn more complex features
(Russakovsky et al. 2015; Simonyan & Zisserman 2015).

One of the main requirements for creating a trained CNN is a sufficiently large train-
ing dataset that can generalise the features of the data we are trying to analyse. Recently,
Tanoglidis et al. (2021a) utilised a catalogue of over 20 000 LSBGs from DES to classify LS-
BGs from artefacts using a CNN for the first time and achieved an accuracy of 92% and a
true positive rate of 94%.

While CNNs have been the dominant choice for analysing image data in astronomy,
the current state-of-the-art models for computer vision are transformers. Transformers
were initially introduced in natural language processing (NLP) as an attention-based model
(Vaswani et al. 2017). The fundamental concept behind the transformer architecture is
the attention mechanism, which has also found a broad range of applications in machine
learning (Zhang et al. 2019; Fu et al. 2019; Parmar et al. 2019; Zhao et al. 2020; Tan et al.
2021). In the case of NLP, attention calculates the correlation of different positions of a sin-
gle sequence to calculate a representation of the sequence. Later the idea was adapted to
computer vision and has been used to produce state-of-the-art models for various image
processing tasks like image classification (Wortsman et al. 2022), and image segmentation
(Chen et al. 2023).

Generally, two categories of transformers are present in the literature. The first type
integrates both CNNs and attention to perform the analysis. An example of this type is the
Detection Transformer (DETR) proposed for end-to-end object detection by Carion et al.
(2020). The key idea behind using CNNs and Transformers together is to leverage the
strengths of both architectures. CNNs excel at local feature extraction, capturing low-level
details, and spatial hierarchies, while attention layers excel at modelling global context
and long-range dependencies. The second class of transformers is the models that do not
use a CNN and operate entirely based on self-attention mechanisms. An example of this
type is the Vision transformer (ViT) proposed for object classification by Dosovitskiy et al.
(2021). ViTs have demonstrated remarkable performance in image classification tasks and
have surpassed the accuracy of CNN-based models on various benchmark datasets (Doso-
vitskiy et al. 2021; Yu et al. 2022; Wortsman et al. 2022).

Even though transformers have been introduced very recently in astronomy, they have
already found a wide variety of applications. For example, the transformer models have
been used to detect and analyse strong gravitational lensing systems (Thuruthipilly et al.
2022, 2024a; Huang et al. 2023; Jia et al. 2023), representing light curves which can be used
further for classification or regression (Allam & McEwen 2021), and classifying multi-band
light curves of different supernovae (SN) types (Pimentel et al. 2023).

In this paper, we explore the possibilities of transformers in classifying LSBGs from
artefacts in DES and compare the performance of transformers with the CNNs presented
in Tanoglidis et al. (2021a). We also use the transformer models to look for new LSBGs that
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the previous searches may have missed. For comparison purposes, throughout this work,
we follow the LSBG definition from Tanoglidis et al. (2021b), based on the g-band mean
surface brightness (µ̄e f f ) and the half-light radii (r1/2). We consider LSBGs as galaxies with
µ̄e f f > 24.2mag arcsec−2 and r1/2 > 2.5”.

The paper is organised as follows. Sect. 4.2 discusses the data we used to train our
models and look for new LSBGs. Sect. 4.3 provides a brief overview of the methodology
used in our study, including the models’ architecture, information on how the models
were trained, and the details about the visual inspection. The results of our analysis are
presented in Sect. 4.4. A detailed discussion of our results and the properties of the newly
identified LSBGs are analysed in Sect. 4.5 and Sect. 4.6 respectively. Further analysis of the
clustering of LSBGs is presented in Sect. 4.7 and a detailed discussion on the UDGs, which
are identified as a subsample of LSBGs, is presented in Sect. 4.8. Sect. 4.9 concludes our
analysis by highlighting the significance of LSBGs, the impact of methodology in finding
LSBGs, and the future prospect with LSST.

4.2 Data

4.2.1 Dark Energy Survey

The Dark Energy Survey (DES; Abbott et al. 2018a, 2021) is a six-year observing program
(2013-2019) covering ∼ 5000 deg2 of the southern Galactic cap in the optical and near-
infrared regime using the Dark Energy Camera (DECam) on the 4-m Blanco Telescope at
the Cerro Tololo Inter-American Observatory (CTIO). The DECam focal plane comprises
62 2k × 4k charge-coupled devices (CCDs) dedicated to science imaging and 12 2k × 2k
CCDs for guiding, focus, and alignment. The DECam field-of-view covers 3 deg2 with
a central pixel scale of 0.263 arcsec pixel−1 (Flaugher et al. 2015). To address the gaps
between CCDs, DES utilises a dithered exposure pattern (Neilsen et al. 2019) and combines
the resulting individual exposures to form coadded images, which have dimensions of 0.73
× 0.73 degrees (Morganson et al. 2018). The DES has observed the sky in grizY photometric
bands with approximately 10 overlapping dithered exposures in each filter (90 sec in griz-
bands and 45 sec in Y-band).

4.2.2 DES DR1 and the gold catalogue

In this work, we use the image data from the dark energy survey data release 1 (DES DR1;
Abbott et al. 2018a) and the DES Y3 gold coadd object catalogue (DES Y3_gold_2_2.1)
obtained from the first three years of the DES observations (Sevilla-Noarbe et al. 2021).
The DES DR1 comprises optical and near-infrared imaging captured over 345 different
nights between August 2013 and February 2016. The median 3σ surface brightness limits
of the g, r, and i-bands of DES DR1 are 28.26, 27.86, and 27.37 mag arcsec−2, respectively
(Tanoglidis et al. 2021b). It is worth mentioning that the DES source detection pipeline
has not been optimised for detecting large, low surface-brightness objects (Morganson
et al. 2018). Thus, the above-mentioned surface brightness values can be considered as the
limits for detecting faint objects in each band. The gold catalogue shares the same single
image processing, image coaddition, and object detection as the DES DR1. The objects
in the gold catalogue were detected using SourceExtractor (Bertin & Arnouts 1996) and
have undergone selection cuts on minimal image depth and quality, additional calibration,
and deblending. The median coadd magnitude limit of the DES Y3 gold object catalogue
at a signal-to-noise ratio (S/N) = 10 is g = 24.3 mag, r = 24.0 mag, and i = 23.3 mag
(Sevilla-Noarbe et al. 2021). The gold catalogue contains around 319 million astronomical
objects, which we used for searching LSBGs in DES. For a detailed review and discussion
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on the data from the DES, please refer to Abbott et al. (2018a) and Sevilla-Noarbe et al.
(2021).

We reduced the number of objects processed in our study using preselections similar to
Greco et al. (2018) and Tanoglidis et al. (2021b). We first removed objects classified as point-
like objects in the gold catalogue, based on the i-band SourceExtractor SPREAD_MODEL
parameter and EXTENDED_CLASS_COADD as described in Tanoglidis et al. (2021b). In addi-
tion, we constrained the g-band half-light radius (FLUX_RADIUS_G) and surface brightness
(MUE_MEAN_MODEL_G) within the range of 2.5” < r1/2 < 20” and 24.2 < µ̄e f f < 28.8 mag
arcsec−2, respectively. Furthermore, we also limited our sample to objects with colors (us-
ing the MAG_AUTO magnitudes) in the range:

−0.1 < g − i < 1.4, (4.1)
(g − r) > 0.7 × (g − i)− 0.4, (4.2)
(g − r) < 0.7 × (g − i) + 0.4. (4.3)

These color cuts are based on Greco et al. (2018) and Tanoglidis et al. (2021b). As mentioned
by Greco et al. (2018), these color requirements will remove the spurious detections due to
optical artefacts detected in all bands and blends of high-redshift galaxies. Finally, we also
restricted the axis ratio (B_IMAGE/A_IMAGE) of each object to be greater than 0.3 to remove
the artefacts like the highly elliptical diffraction spikes. Our complete selection criteria
were based on the selection criteria presented in Appendix B of Tanoglidis et al. (2021b).
After the preliminary selections using the SourceExtractor parameters from the DES Y3
gold catalogue, our sample contains 419 784 objects.

4.2.3 Training data

All of the trained, validated, and tested models in this study used the labelled dataset of
LSBGs and artefacts identified from DES by Tanoglidis et al. (2021b). Below, we briefly
summarise the primary steps taken by Tanoglidis et al. (2021b) in constructing the LSBG
catalogue.

• The SourceExtractor parameters from the DES Y3 gold coadd object catalogue pre-
sented by Sevilla-Noarbe et al. (2021) were used to create the initial selection cuts, as
discussed in Sect. 4.2.2.

• The candidate sample was further reduced using an SVM to classify artefacts and
LSBGs. The SVM was trained with a manually labelled set of ∼ 8 000 objects (640
LSBGs) and using the SourceExtractor parameters as features for learning.

• From the candidate sample generated through SVM, over 20 000 artefacts were ex-
cluded upon visual inspection. Most of the rejected objects that had passed SVM’s
feature-based selection were found to be astronomical artefacts (such as galactic cir-
rus, star-forming extensions of spiral arms, and tidal streams) rather than instrumen-
tal artefacts (such as scattered light emitted by nearby bright objects) during visual
inspection.

• Objects that passed the visual inspection were subjected to Sérsic model fitting and
Galactic extinction correction. Following this, new selection cuts were applied to the
updated parameters, and the final LSBG catalogue containing 23 790 LSBGs was cre-
ated.

For training our classification models, we selected LSBGs from the LSBG catalogue as
the positive class (label - 1) and the objects rejected in the third step (visual inspection) by
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Tanoglidis et al. (2021b) as the negative class (label - 0). The catalogues for the positive and
negative classes are publicly available, and we used these catalogues to create our training
dataset1. The selection of the artefacts and LSBGs for training was random, and after selec-
tion, we had 18 474 artefacts and 23 103 LSBGs. However, when we further inspected these
LSBGs and artefacts, we found that there were 797 objects belonging to both classes. After
conducting a thorough visual examination, we identified that these are, in fact, LSBGs that
had been mistakenly categorized as artefacts in the publicly accessible artefact catalogue.
However, we avoided these 797 objects from our training set to avoid contamination and
ambiguity among classes during training. We generated multi-band cutouts for each ob-
ject in the flexible image transport system (FITS) format using the cutout service provided
in the DES public data archive. Each cutout corresponds to a 67.32” × 67.32” (256 × 256
pixels) region of the sky and is centred at the coordinates of the object (LSBG or artefact).
We resized the cutouts from their initial size to 64 × 64 pixels to reduce the computational
cost. The cutouts of g, r and z-bands were stacked together to create the dataset for train-
ing the models. Examples of LSBGs and artefacts used for training the model are shown in
Fig. 4.1. Our training catalogue contains 39 983 objects, out of which 22 306 are LSBGs and
17 677 are artefacts. Before training, we randomly split the full sample into a training set, a
validation set and a test set, each consisting of 35 000, 2 500, and 2 483 objects, respectively.

(A) (B)

FIGURE 4.1: Four examples of LSBGs (4.1a) and artefacts (4.1b) used in the
training data. Each image of the LSBG and artefact corresponds to a 67.32”×
67.32” region of the sky. Images were generated by combining the g, r and z

bands using APLpy package (Robitaille & Bressert 2012).

4.3 Methodology

4.3.1 LSBG Detection Transformer (LSBG DETR)

We implemented four transformer models that use a CNN backbone and self-attention lay-
ers to classify the labels, which we call LSBG DETR (LSBG detection transformers) models
in general. Each individual LSBG DETR model is followed by a number indicating their

1https://github.com/dtanoglidis/DeepShadows/blob/main/Datasets

https://github.com/dtanoglidis/DeepShadows/blob/main/Datasets
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chronological order of creation. The LSBG DETR models have an 8-layer CNN backbone
to extract feature maps from the input image. The general architecture of the LSBG DETR
models used here are presented in Sec. 2.5.2.

4.3.2 LSBG Vision

We have created four transformer models similar to the Vision Transformer (ViT) intro-
duced by Google Brain (Dosovitskiy et al. 2021), which we call LSBG vision transformers
(LSBG ViT) in general. Similar to LSBG DETR models, each individual model is followed
by a number indicating their chronological order of creation. For a detailed discussion on
ViT models, please refer to Dosovitskiy et al. (2021). The general architecture of the LSBG
ViT models used here are presented in Sec. 2.5.3.

4.3.3 Training

All of the LSBG DETR and LSBG ViT models were trained with an initial learning rate of
α = 10−4. We used the exponential linear unit (ELU) function as the activation function for
all the layers in these models (Clevert et al. 2016). We initialise the weights of our model
with the Xavier uniform initialiser (Glorot & Bengio 2010b), and all layers are trained from
scratch by the ADAM optimiser with the default exponential decay rates (Kingma & Ba
2015). We have used the early stopping callback from Keras 2 to monitor the validation
loss of the model and stop training once the loss was converged. The models LSBG DETR
1 and 4 had 8 heads and were trained for 150 and 93 epochs, respectively. Similarly, the
LSBG DETR 2 and 3 had 12 heads and were trained for 134 and 105 epochs, respectively.
Coming to the LSBGS ViT models, the hyperparameters we varied were the size of the
image patches, the number of heads and the number of transformer encoder layers. The
hyperparameters for the all the LSBG DETR models were customized based on the results
from Thuruthipilly et al. (2022), which extensively investigated the hyperparameter con-
figurations of DETR models. When it comes to the LSBG vision transformer models, we
maintained the hyperparameters from the LSBG DETR models such as learning rate, and
batch size, except for adjustments in image patch size, the count of attention heads, and
the number of transformer encoder layers. We varied these parameters and the four best
models are presented in Table 4.1. In the spirit of reproducible research, our code for LSBG
DETR and LSBG ViT is publicly available 3.

TABLE 4.1: Table showing the name of the model, size of the image patches
(s), number of heads (h), number of transformer encoder layers (T) and the
number of epochs taken to train (e) the four vision models in chronological

order of creation.

Model Name s h T e
LSBG VISION 1 4 12 4 55
LSBG VISION 2 4 12 8 55
LSBG VISION 3 6 12 4 67
LSBG VISION 4 6 16 8 67

2https://keras.io/api/callbacks
3https://github.com/hareesht23/

https://keras.io/api/callbacks
https://github.com/hareesht23/
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4.3.4 Ensemble Models

We had two classes of transformers (LSBG DETR and LSBG ViT) with four models in each
class, and we used an ensemble model of these four models for each class to look for new
LSBGs from DES DR1. Ensemble models in deep learning refer to combining multiple
models to create a single model that performs better than the individual models. The idea
behind ensemble models is to reduce the generalisation error and increase the stability of
the system by taking into account multiple sources of information. Various kinds of en-
semble learning exist in the literature, and they have been found helpful in a broad range
of machine learning problems (Wang et al. 2022). For a detailed review of ensemble meth-
ods, please refer to Domingos & Hulten (1999) and Dietterich (2000). One of the easiest and
most common ensemble methods is model averaging. In model averaging, multiple mod-
els are trained independently on the same training data, and the outputs of the models are
averaged to make the final prediction. One of the main advantages of model averaging
is that it is computationally efficient and does not require any additional training time.
It also allows the use of different types of model architectures and can take advantage of
their strengths and weaknesses and improve overall performance. Here we use averaging
to create the ensemble models for LSBG DETR and LSBG ViT.

4.3.5 Sérsic fitting

The candidates identified independently by both LSBG DETR and LSBT ViT ensemble
models were subjected to a single component Sérsic fitting using Galfit (Peng et al. 2002).
This was done to re-estimate the µ̄e f f and r1/2 values of our LSBG candidates that we
initially used for our sample selection. We employed a single-component Sérsic fitting
method to align with the LSBG search methodology of Tanoglidis et al. (2021b), who also
utilized a similar approach. However, we also note that Sérsic fitting does not always cap-
ture the full light from a galaxy.

We used the magnitude (MAG_AUTO) and radius (FLUX_RADIUS) values from the gold cat-
alogue as an initial guess for the Galfit procedure. Moreover, the Sérsic index (n) and axis
ratio (q) were initialised to be at a fixed value of 1 and were allowed to vary only within
the range of 0.2 < n < 4.0 and 0.3 < q ≤ 1.0, respectively. A similar fitting procedure was
done for both the g-band and i-band images of our sample. After the fitting, we excluded
all the sources with poor/failed fits with either a reduced χ2 > 3 or if their Galfit magni-
tude estimates diverge from their initial MAG_AUTO values by more than one mag. We have
also excluded the cases where the estimated n and q values do not converge and are on the
edge of the range specified above. For the remaining galaxies, we re-applied our g-band
sample selection criteria of µ̄e f f > 24.2 mag arcsec−2 and r1/2 > 2.5”, following Tanoglidis
et al. (2021b). The µ̄e f f values were calculated using the relation given by Eq. 4.4:

µ̄e f f = m + 2.5 × log10(2πr2
1/2), (4.4)

where µ̄e f f is the mean surface brightness within the effective radius, m is the total mag-
nitude and r1/2 is the half-light radius in a specific band estimated from Galfit. For all
our measurements, we also applied a foreground Galactic extinction correction using the
Schlegel et al. (1998) maps normalised by Schlafly & Finkbeiner (2011) and a Fitzpatrick
(1999) dust extinction law.
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4.3.6 Visual Inspection

Only the candidates identified independently by LSBG DETR and LSBT ViT ensemble
models and passed the selection criteria for being an LSBG with the updated parame-
ters from the Galfit were considered for visual inspection. This refined sample was sub-
jected to visual inspection by two authors independently. Candidates identified as LSBG
by both authors were treated as confident LSBGs, and candidates identified as LSBG by
only one author were reinspected together to make a decision. Since visual inspection is
time-consuming, we only resorted to it at the last step and tried as much to reduce the
number of candidates shortlisted for visual inspection.

To aid in visual inspection, we used two images for every candidate. We generated
images enhancing the low surface brightness features using the APLpy package (Robitaille
& Bressert 2012) and images downloaded from the DESI Legacy Imaging Surveys Sky
Viewer (Dey et al. 2019). Furthermore, the g-band Sérsic models from Galfit were also
used to visually inspect the quality of the model fitting. Each candidate was then cate-
gorised into three classes based on the Galfit model fit and the images: LSBG, non-LSBG
(Artifacts), or misfitted LSBGs. If the model of the galaxy was fitted correctly and the can-
didate showed LSBG features, it was classified as an LSBG. If the candidate shows LSBG
features but does not fit correctly, we classify it as a misfitted LSBG. Finally, if the candidate
does not have features of an LSBG, we classify it as an artefact or non-LSBG.

4.3.7 Metrics for comparing models

The metrics used to compare the models are accuracy, AUROC, TPR and FPR which are
described in Sect. 2.7. I refer the reader to Sect. 2.7 for a detailed discussion of these metrics.

4.4 Results

4.4.1 Model performance on the testing set

We have created four models of each transformer, namely LSBG DETR and LSBG ViT, with
different hyperparameters to generalise our results for both transformers. Each model was
implemented as a regression model to predict the probability of an input being an LSBG,
and we set 0.5 as the threshold probability for classifying an input as LSBG. Further, we
use an ensemble of the four models as the final model for LSBG DETR and LSBG ViT.
Table 4.2 describes the architecture, accuracy and AUROC of all the models, including the
ensemble models on the test dataset, as mentioned in section 4.2.3.

As mentioned earlier, the more insightful metrics are the true positives (TPR) and the
false positives (FRP) rather than overall accuracy. These metrics can be visualised using a
confusion matrix, which is shown in Fig. 4.2, for the ensemble models using a threshold
of 0.5. The LSBG DETR ensemble had a TPR of 0.96 and an FPR of 0.07, indicating that the
LSBG DETR ensemble model can accurately identify 96% of all LSBGs in the DES data,
with an estimated 7% contamination rate in the predicted sample. Similarly, the LSBG ViT
Ensemble model can identify 97% of all the LSBGs in DES but with 11% contamination.

The receiver operator characteristic (ROC) curve of the LSBG DETR and LSBG ViT en-
semble models are shown in Fig. 4.3. In terms of accuracy and AUROC, the LSBG DETR
models performed slightly better than the LSBG ViT models. It is clear from Fig. 4.3 that
both the ensemble models have a TPR ∼ 0.75 even for a high threshold such as 0.9. In-
dicating that both the ensemble models can confidently identify around ∼ 75% of all the
LSBGs in DES and assign these candidates with a probability greater than 0.9.
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TABLE 4.2: Table comprising the architecture, accuracy, true positive rate
(TPR), false positive rate (FPR) and AUROC of all the models in chronolog-

ical order of creation.

Model name Accuracy (%) TPR FPR AUROC
LSBG VISION 1 93.55 0.97 0.12 0.980
LSBG VISION 2 93.79 0.97 0.11 0.980
LSBG VISION 3 93.47 0.97 0.11 0.981
LSBG VISION 4 93.51 0.97 0.11 0.980

LSBG VISION Ensemble 93.75 0.97 0.11 0.983
LSBG DETR 1 94.36 0.97 0.09 0.982
LSBG DETR 2 94.28 0.96 0.08 0.980
LSBG DETR 3 94.36 0.96 0.08 0.982
LSBG DETR 4 94.24 0.95 0.07 0.982

LSBG DETR Ensemble 94.60 0.96 0.07 0.984

FIGURE 4.2: Confusion matrix of LSBG DETR and LSBG ViT models plotted
for a threshold = 0.5. Class 0 represents the artefacts, and Class 1 represents

the low surface brightness galaxies.

4.4.2 Search for LSBGs in the full coverage of DES

Since the LSBG DETR model and the LSBG ViT model have different architectures and fea-
ture extraction principles, we regard the ensemble models of these two as separate inde-
pendent transformer classifiers. In order to search for new LSBGs from DES, we employed
the transformer ensemble model on the 419 782 objects that satisfied the selection criteria
defined in section 4.2.2. The candidates scoring above the threshold probability of 0.5 were
catalogued as potential LSBG candidates. The LSBG DETR ensemble classified 27 977 ob-
jects as LSBGs, among which 21 005 were already identified by Tanoglidis et al. (2021b).
Similarly, the LSBG ViT ensemble classified 30 508 objects as LSBGs, among which had
21 396 LSBGs common with the sample identified by Tanoglidis et al. (2021b). So finally,
6 972 and 9 112 new candidates were classified as potential LSBGs by the LSBG DETR and
LSBG ViT ensembles, respectively. However, only the 6 560 candidates identified by both
the ensemble models independently were considered for further analysis to reduce the
false positives. Since there is a possibility that there might be duplicates of the same candi-
dates existing in the selected sample, we ran an automated spatial crossmatch to remove
duplicate objects separated by < 5". The origin of these duplicates can be traced back to the
fragmentation of larger galaxies into smaller parts by SourceExtractor. After removing
the duplicates, the number of potential LSBG candidates reduced from 6 560 to 6 445. As
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FIGURE 4.3: Receiver operating characteristic (ROC) curve of the ensemble
models. The red and blue lines represent the variation of FPR and TPR as
a function of the threshold for LSBG DETR and LSBG Vision ensembles,
respectively. The red and blue points mark the TPR and FPR for a threshold

= 0.9.

discussed in Sect. 4.3.5, these candidates were subjected to single component Sérsic model
fitting using Galfit.

During the Galfit modelling, 999 candidates had failed fits and were consequently
removed from the sample since our objective is to produce a high-purity sample with
accurate Sérsic parameters. We visually inspected these unsuccessful fits and found that
in most cases the presence of a very bright object near the candidate was the cause of the
poor Sérsic fit. Of the remaining 5 446 candidates, 4 879 passed the µ̄e f f and r1/2 selection
criteria outlined in Sect. 4.2.2 with the updated parameters. These 4 879 candidates were
inspected visually to identify the genuine LSBGs. After independent visual inspections by
the authors, 4 190 candidates were classified as LSBGs and 242 candidates were found to
be non-LSBGs. During visual inspection, 447 candidates were found to be possible LSBGs
with unreliable measurements from Galfit. These candidates are excluded from our final
sample, and here we only report on the most confident candidates that were identified
as LSBGs during visual inspection. After correcting for the Galactic extinction correction,
our final sample was reduced to 4 083 new LSBGs from DES DR1. The schematic diagram
showing the sequential selection steps used to find the new LSBG sample is shown in Fig.
4.4. A sample catalogue comprising the properties of the newly identified LSBGs is shown
in table 4.3, and some examples of the new LSBGs that we have found are plotted in Fig.
4.5.

The distribution of the r1/2, µ̄e f f , Sérsic index (n), and axis ratio (q) of the new sample of
LSBGs is plotted in Fig. 4.6. The majority of the LSBGs in this new sample have r1/2 < 7”,
and µ̄e f f < 26mag arcsec−2. The Sérsic index of the new LSBG sample predominantly
lies between 0.5 and 1.5 and has a median value of 0.85. This pattern is similar to the
trend identified by Poulain et al. (2021) in the case of dwarf ellipticals, suggesting that a
significant portion of the LSBGs sample could be comprised of such sources. In the case of
the axis ratio, the new LSBG sample has a median axis ratio of 0.72 and has a distribution
lying in the range of 0.3 to 1. The median value of 0.72 suggests that most galaxies in this
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sample have a slightly flattened or elongated shape. A detailed discussion of the properties
of the new LSBGs identified in this work and their comparison with LSBGs identified by
Tanoglidis et al. (2021b) is presented in Sect. 4.5.

FIGURE 4.4: Schematic diagram showing the sequential selection steps used
to find the new LSBG sample.

4.5 Discussion

4.5.1 Transformers as LSBG Detectors

In this study, we introduce the use of transformers as a classifier model for finding the
undiscovered LSBGs in DES. Currently, in the literature, one of the reported deep-learning-
based models for classifying LSBGs and artefacts is a CNN model named DeepShadows
created by Tanoglidis et al. (2021a). They used the catalogue of LSBGs and artefacts iden-
tified from DES reported in Tanoglidis et al. (2021b) to generate the training data. The
DeepShadows model achieved an accuracy of 92% in classifying LSBGs from artefacts and
had a true positive rate of 94% with a threshold of 0.5. Moreover, the DeepShadows model
also achieved an AUROC score of 0.974 on this training dataset. However, the DeepShad-
ows was not applied to the complete DES data and checked how it would perform. Nev-
ertheless, DeepShadows was the first deep-learning model to classify LSBGs and artefacts.
In addition, Tanoglidis et al. (2021a) also showed that the DeepShaodws was a better clas-
sifier than the support vector machine or random forest models. However, in our work, all
of our transformer models were able to surpass the DeepShadows model in every metric
individually, which can be seen from Table 4.2. Namely, in their respective classes, LSBG
DETR 1 and LSBG ViT 2 had the highest accuracies (94.36% and 93.79%), respectively.

Earlier searches for LSBGs have used semi-automated methods such as pipelines based
on imfit by Greco et al. (2018) or simple machine-learning models such as SVMs by Tanog-
lidis et al. (2021b). However, the success rate of these methods was very low, and the final
candidate sample produced by these methods had around 50% false positives, which had
to be removed by visual inspection. Here we explore the possibilities of transformer archi-
tectures in separating LSBGs from artefacts. We used two independent ensemble models
of LSBG DETR and LSBG ViT models and single component Sérsic model fitting to filter
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(A) Coadd Object Id - 295747204 (B) Coadd Object Id - 62646182 (C) Coadd Object Id - 64560481

(D) Coadd Object Id - 67813078 (E) Coadd Object Id - 69253856 (F) Coadd Object Id - 70739980

FIGURE 4.5: Cutouts of 6 confirmed new LSBGs after visual inspection. The
unique identification number (co object id) for each galaxy in DES DR1 is
given below each image. The images were generated by combining the g, r
and z bands using APLpy package (Robitaille & Bressert 2012), and each im-
age corresponds to a 67.32” × 67.32” region of the sky with the LSBG at its

centre.

the LSBG candidates. Our final sample contained only ∼ 5% as non-LSBGs, which is a
significant improvement compared to the previous methods in the literature. Following
the definition of an LSBG as described in Tanoglidis et al. (2021b), we identified 4 083 new
LSBGs from DES DR1, increasing the number of identified LSBGs in DES by 17%. Our
results highlight the significant advantage of using deep-learning techniques to search for
LSBGs in the upcoming large-scale surveys.

To have more insights into the fraction of false positives from our method, we checked
the performance of these models during training. We encountered around 7% and 11%
of artefacts from the LSBG DETR ensemble and LSBG ViT sample, respectively, during
training on the test dataset. However, using a combination of these models, we reduced
the artefact fraction to less than 5% during visual inspection. Most of the non-LSBGs we
encountered during the visual inspection were faint compact objects that blended in the
diffuse light from nearby bright objects. We use the term ’non-LSBG’ instead of artefacts
here because, during the visual inspection, we classified some potential LSBGs as non-
LSBG; these are objects for which the g-band images had instrumental artefacts or lack
of sufficient signal in the g-band. Since the machine learning model intakes three bands
as input (g, r and z), this suggests that the model was able to study and generalise the
nature of LSBGs in each band and was able to predict if it is an LSBG or not based on
the signal from the other bands. However, since we define LSBGs based on their g-band
surface brightness and radius in this work, we classified the galaxies without reliable g-
band data as non-LSBGs. Some non-LSBGs we encountered during the visual inspection
are shown in Fig. 4.7 and Fig. 4.8. With the upcoming surveys of deeper imaging, these
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FIGURE 4.6: Normalised distribution of half-light radius (top left panel),
mean surface brightness (top right panel), Sérsic index (bottom left panel)
and axis ratio (bottom right panel) of the new sample of LSBGs. The dashed

line shows the median of the distribution
.

galaxies might be classified as LSBGs which might further reduce the non-LSBGs in our
candidate sample.

One another fact to notice when discussing the non-LSBGs from the candidate sample
is that some of the candidates identified as LSBGs by the ensemble models (567 out of
5 446) did not meet the selection criteria of being an LSBG after being fitted with Galfit.
These galaxies had r1/2 ranging from 2" to 20", with a median of 3.85", which is similar
to the new LSBG sample we found. However, the majority of these galaxies have a mean
surface brightness between 24.0 − 24.2mag arcsec−2, with a median of 24.16mag arcsec−2.
This suggests that the machine learning model understood the criteria for angular size for
LSBGs during its training, but it did not learn the strict conditions about the surface bright-
ness. This situation is similar to a human expert analysing a galaxy image to determine
whether it is an LSBG or not. Features such as the size of the galaxy are easily identifiable
to the human eye. However, determining the surface brightness accurately with only the
human eye would be challenging, and there may be possible errors near the threshold re-
gion, similar to our machine learning model. So one could say that the machine learning
model is behaving approximately like a human visual expert.

Judging from the performance of our model on the training data, we cannot assert that
we have discovered all the possible existing LSBGs from the DES DR1. As we can see from
Fig. 4.2, the TP rate for the individual ensemble models were 0.96 and 0.97, respectively.
This means that the model has not found all the possible LSBGs and a minor fraction of
LSBGs is yet to be found in DES DR1. Moreover, to reduce the FPR and the burden during
the visual inspection, we have only visually inspected the candidates identified commonly
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(A) (B) (C) (D)

FIGURE 4.7: Examples of candidates (Coadd object id - 149796289 and
374192591) classified as non-LSBGs during visual inspection because of
glitches in the g-band near the galaxy. The panels (a) and (c) show the RGB
image created using the g, r and z bands with APLpy package (Robitaille &
Bressert 2012). The panels (b) and (d) show the image in the g band. Each
image corresponds to a 67.32” × 67.32” region of the sky with the candidate

at its centre.

(A) Coadd object id - 251235955 (left) and 99585243
(right)

(B) Coadd object id - 125313682 (left) and 113818243
(right)

FIGURE 4.8: Examples of candidates classified as non-LSBG during visual
inspection because of lack of sufficient signal in the g-band (a) are shown in
the top panel. Candidates classified as non-LSBG during visual inspection
because of being artefacts are shown in the lower panel (b). The RGB im-
ages are created using the g, r and z bands with APLpy package (Robitaille
& Bressert 2012). Each image corresponds to a 67.32” × 67.32” region of the

sky with the candidate at its centre.

by both the ensemble models and passed the criteria for correctly fitting by Galfit.
One of the notable things about the models in this work is that we are using two differ-

ent ensemble models, each having four models in the ensemble. As we mentioned earlier,
each ML model can be considered equivalent to a human inspector, and the ensemble
models help balance out the disadvantages of the other models in the ensemble. A closer
look at the individual probability distribution of these modes shows that there are 310 can-
didates among the 4 083 confirmed LSBG candidates, which had a probability of less than
0.5 for at least one model among the individual models. However, since we used an aver-
age ensemble model, we were able to identify these LSBG by balancing out the probability,
which shows the advantages of using an ensemble model over a single model.

Here, we use the visual inspection as the final step to confirm the authenticity of an
LSBG detected by the models. However, it is essential to acknowledge the potential for
human bias during the visual inspection, which can impact the accuracy and reliability
of the results. For example, during the visual inspection, the visual inspectors disagreed
on labelling approximately 10% of the candidate sample. Most of these galaxies had a
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mean surface brightness greater than 25.0mag arcsec−2, which suggests that even for hu-
man experts, it is challenging to characterise extremely faint LSBGs. However, with better
imaging, this might change, but we must acknowledge that there will always be some hu-
man bias and error associated with human inspection. Also, we must consider that in the
upcoming surveys, such as LSST or Euclid, the data size will be too large to inspect visu-
ally. In this scenario, relying solely on improved automated methods to purify the sample
and accepting a small fraction of false positives could be a feasible solution.

4.6 The new sample of DES DR1 LSBGs

4.6.1 The newly identified LSBG sample

The optical color of a galaxy can give insights into its stellar population. Conventionally,
based on their color, the galaxies are divided into red and blue galaxies, and it has been
known that color is strongly correlated to the morphology of a galaxy (Strateva et al. 2001).
Blue color galaxies are usually found to be highly active star-forming spiral or irregular
systems. In contrast, red color galaxies are mostly found to be spheroidal or elliptical. In
addition, the red galaxies have also been found to tend to cluster together compared to the
blue galaxies (Bamford et al. 2009).

The LSBGs found by Tanoglidis et al. (2021b) have found a clear bimodality in the g − i
color distribution similar to the LSBGs found by Greco et al. (2018). The g − i color distri-
bution of the 4 083 new LSBGs and the 23,790 LSBGs found by Tanoglidis et al. (2021b) is
shown in In Fig. 4.9. We follow the criteria defined by Tanoglidis et al. (2021b) to define
red galaxies as galaxies having g − i > 0.6 and blue galaxies as galaxies having g − i < 0.6
where g and i represent the magnitude in each band. The color as a function of mean
surface brightness in g-band for the new sample identified in this work and the LSBGs
identified by Tanoglidis et al. (2021b) is shown in Fig. 4.10. There are 1112 red LSBGs and
2,944 blue LSBGs in the new LSBG sample. 4 From Fig, 4.9, we can see that we have iden-
tified a relatively large fraction of blue LSBGs compared to Tanoglidis et al. (2021b) and a
considerable fraction of new red LSBGs with g − i ≥ 0.80 and a mean surface brightness
less than 25.0mag arcsec−2. The bias against blue LSBGs and highly red LSBGs in the sam-
ple created by Tanoglidis et al. (2021b) may have been caused by the bias in the training
set used to create the SVM, which preselected the LSBG candidates. This bias could have
occurred because a large fraction of their training set consisted of LSBGs near the Fornax
cluster, which are mainly red LSBGs.

Looking at the distribution of µ̄e f f values of the new sample, both the red and blue
LSBGs have a similar mean surface brightness range, with a median µ̄e f f of 24.75 and
24.68mag arcsec−2, respectively. Both populations of red LSBGs and blue LSBGs from the
new sample have sizes ranging from 2.5" - 20". However, as mentioned earlier, most of
these LSBGs have radii less than 7", with a median of 4.01" for blue LSBGs and 3.59" for
red LSBGs. In comparison, blue LSBGs tend to have larger angular radii compared to red
LSBGs. The Sérsic index distribution of the red and blue LSBGs in the new sample has
similar distribution and almost equal median values (0.847 and 0.845 for red and blue LS-
BGs, respectively). A median Sérsic index of around 0.84 indicates that the majority of the
galaxies are closer to a disk-shaped geometry, irrespective of their color. The distribution
of the axis ratio of the red and blue LSBGs from the new sample shows a clear difference,
as shown in Fig. 4.11. The median of the axis ratio distribution of the blue and red LSBGs
is 0.7 and 0.8, respectively. This indicates that, in general, the red LSBGs are rounder than
the blue LSBGs.

427 LSBGs failed the modelling using Galfit for i-band, and they are not included in this color analysis.
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FIGURE 4.9: Normalised distribution of color of the LSBGs from the new
sample identified in this work and the LSBGs identified by Tanoglidis et al.

(2021b).

24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0

eff (mag arcsec 2)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
i

LSBGs identified in
Tanoglidis et al. (2021b)
LSBGs identified in
this work
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by Tanoglidis et al. (2021b). The dashed line shows the separation between

red and blue LSBGS.



4.6. The new sample of DES DR1 LSBGs 79

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Axis ratio 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

is
ed

 g
al

ax
y 

co
un

t

Axis ratio distribution

Median = 0.783
Median = 0.700
Red LSBGs
blue LSBGs

FIGURE 4.11: Normalised distribution of axis ratio (left panel) of red and
blue LSBGs from the new sample. The vertical lines show the median for

each class.

4.6.2 Why are there additional LSBGs?

One of the other things to investigate at this moment will be how different the new LSBG
sample is compared to the LSBGs identified by Tanoglidis et al. (2021b). Or, more precisely,
one could wonder why these many LSBGs have been missed previously and whether it
is somehow related to the nature of these galaxies. Apart from the Sérsic index, all other
Sérsic parameters of the new and the old sample have an almost similar distribution. The
distribution of the Sérsic index for the new sample identified in this work and the LSBG
sample identified by Tanoglidis et al. (2021b) is shown in Fig. 4.12. The new LSBG sample
has a Sérsic index predominantly in the range n < 1, which is comparatively lower than
the Sérsic index distribution of LSBGs identified by Tanoglidis et al. (2021b). However, this
does not point to any reason why these LSBGs were missed in the previous search, and
moreover, Tanoglidis et al. (2021b) have also commented on the under-representation of
red LSBGs with small Sérsic index in their sample.

To answer the aforementioned question, a close inspection of the methodology of Tanog-
lidis et al. (2021b) shows that most of the new LSBGs (82%) we identified here were missed
by the SVM in their first pre-selection step. This shows the importance of methodology in
preselecting the samples. Since the methodology used by Tanoglidis et al. (2021b) and
Greco et al. (2018) have considerable similarities (e.g., usage of SVM), this indicates that
Greco et al. (2018) might have also missed some LSBGs from the HSC-SSP survey and the
fraction should be greater in comparison to Tanoglidis et al. (2021b). It should be noted
that there is a slight overlap in the regions of observation by Greco et al. (2018) and DES,
as shown in Fig. 4.13. There are 198 LSBGs identified by Greco et al. (2018) from HSC-SSP
in the field of view of DES and detected in the DES Y3 gold catalogue. Among these 198
LSBGs, Tanoglidis et al. (2021b) has recovered 183 LSBGs, and we recovered 10 more ad-
ditional LSBGs from this field, making the total number of recovered LSBGs to 193. We
would also like to point out that there are additional LSBGs (∼ 200) in our total sample
in the same region, but missed by Greco et al. (2018), even though the HSC-SSP data used
by Greco et al. (2018) is about 2 orders of magnitude deeper than the DES DR1. How-
ever, we have also missed some LSBGs (∼ 150) that have been identified by Greco et al.
(2018). These LSBGs were not detected in the DES Y3 gold catalogue and subsequently
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FIGURE 4.12: Normalised distribution of the Sérsic index of the LSBGs iden-
tified in this work and by Tanoglidis et al. (2021b). The vertical lines show

the median for each class
.

were missed by the searches by Tanoglidis et al. (2021b) and ours. With the DES data re-
lease 2 (DES DR 2) having an improved depth (∼ 0.5 mag; Abbott et al. 2021), we should
expect an increase in the number of LSBGs from DES. Therefore, there is a potential for
using transfer learning with transformers in the future search for LSBGs from DES DR 2
(Abbott et al. 2021) and HSC-SSP data release 3 (Aihara et al. 2022).
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FIGURE 4.13: Sky distribution of the LSBGs identified from DES (black dots)
by Tanoglidis et al. (2021b) + this work and the LSBGs identified from HSC-

SSP (blue dots) by Greco et al. (2018).
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With the addition of the new 4 083 LSBGs, the number of LSBGs in the DES increased to
27,873, effectively increasing the average number density of LSBGs in DES to ∼ 5.5 deg−2.
In addition, it should also be noted that there are still around ∼ 3000 candidates identi-
fied by the ensemble models, which have not undergone further analysis to be verified as
LSBGs. Potentially indicating that the number of LSBGs in DES might increase further in
future. Hence the average number density of 5.5 deg−2 reported here can only be taken
as a lower limit. Earlier, Greco et al. (2018) estimated that the average number density of
LSBGs in HSC-SSP is ∼ 3.9 deg−2. However, this estimate was based on LSBG samples
with µ̄e f f > 24.3mag arcsec−2, unlike the µ̄e f f > 24.2mag arcsec−2 selection we adopted in
this work. For a similar selection on mue > 24.2mag arcsec−2 in the combined sample pre-
sented here (LSBGs identified in this work + LSBGs identified by Tanoglidis et al. (2021b)),
we obtain a higher number density of 4.9 deg−2, compared to the previous estimates (3.9
deg−2 from Greco et al. (2018) and 4.5 deg−2 from Tanoglidis et al. (2021b)).

As discussed above, the number density of the LSBGs will be influenced by the method-
ology used to search for the LSBGs. Similarly, one other intrinsic factor that can influence
the number density is the completeness of the survey. Improved imaging techniques can
reveal fainter objects, leading to an increase in the number density. The completeness of a
survey can be determined by plotting the galaxy number count, and one could also have
a rough idea about the redshift distribution of the objects of interest by comparing it with
the Euclidean number count. Fig. 4.14 shows the number count of LSBGs identified in
DES (this work and Tanoglidis et al. (2021b)) and HSC (Greco et al. 2018). As expected,
HSC has better completeness than DES. However, HSC still has a smaller number density
than DES, which is evident from comparing the peaks of both number counts. The slope
of the number counts near 0.6 (representing Euclidean geometry) for both HSC and DES
suggest that most identified LSBGs are local (Yasuda et al. 2001). Furthermore, E Greene
et al. (2022) has analysed the LSBG sample from HSC and estimated that the 781 LSBGs
identified by Greco et al. (2018) have a redshift less than 0.15.
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apparent magnitude. The red line with the blue error bars represents the
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the data from DES.

With the increasing number of LSBGs identified from different surveys, one of the
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other questions that need to be addressed at this moment is the definition of an LSBG
itself. One could define a different definition for an LSBG, consequently leading to finding
a completely different sample of LSBGs from the same dataset, which in turn can affect the
conclusions of the study. One of the primary factors contributing to these discrepancies is
the current reliance on surface brightness-based definitions for LSBGs, which are contin-
gent upon the observation band in use. Different observation bands may involve distinct
threshold values. Depending on the band we use, the LSBG definition will likely vary. In
this scenario, one potential solution is to define an LSBG based on the stellar mass den-
sity of the galaxy. Current definitions based on the stellar mass density define an LSBG as a
galaxy with a stellar mass density, Σstar ≲ 107 M⊙ kpc−2 (e.g., Carleton et al. 2023). Follow-
ing Eq. 1 of Chamba et al. (2022), we made an estimate of the stellar mass surface density
using our observed i-band surface brightness µ̄e f f and the stellar mass-to-light ratio ob-
tained from the g − i color (Du et al. 2020). The stellar mass surface density distribution of
the LSBGs from DES and HSC-SSP is shown in Fig. 4.15. Here we can see that most of the
LSBGs satisfy this condition, and only a small percentage stay above the threshold of 107

M⊙ kpc−2. On average, the LSBGs from DES have a higher stellar mass surface density
than those from HSC-SSP, which could be attributed to the higher depth in the data used
by Greco et al. (2018). However, as argued by Chamba et al. (2022), accurate estimation
of the stellar mass density requires deep photometry in multiple bands. In our case, we
employed a single color, and as a result, the constraints we derived on the stellar mass
density may be limited in accuracy.
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FIGURE 4.15: Normalised distribution of stellar mass surface density of LS-
BGs identified in HSC (red line) and DES (black line).

4.7 Clustering of LSBGs in DES

The on-sky distribution of the red and blue LSBGs identified in this work, along with those
identified by Tanoglidis et al. (2021b), is shown in Fig. 4.16 and Fig. 4.17. In the local uni-
verse, "normal" high surface brightness red galaxies tend to cluster together, while blue
galaxies are much more dispersed in the field (Zehavi et al. 2005). Such a trend is also
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FIGURE 4.16: Sky distribution of red LSBGs identified in this work (red dots)
and the LSBGs identified (black dots) by Tanoglidis et al. (2021b).

clearly visible for the LSBG sample. As seen in Fig. 4.16, red LSBGs tend to form concen-
trated nodes. In contrast, the blue LSBGs are distributed much more homogeneously in
the sky, as seen in Fig. 4.17.

A two-point auto-correlation function is a statistical tool commonly used to quantify
the galaxy clustering (Peebles 1980). Here we use the angular two-point auto-correlation
function, ω(θ), computed using the Landy & Szalay (1993) estimator defined as

ω =
D̂D(θ)− 2D̂R(θ) + R̂R(θ)

R̂R(θ)
, (4.5)

where

D̂D =
DD(θ)

nd(nd − 1)/2
, (4.6)

D̂R =
DR(θ)
ndnr

, (4.7)

R̂R =
DD(θ)

nr(nr − 1)/2
. (4.8)

Here DD(θ) is the number of pairs in the real sample with angular separation θ, RR(θ) is
the number of pairs within a random sample, DR(θ) is the number of cross pairs between
the real and random samples, nd is the total number of real data points, and nr is the total
number of random points.

We use a random sample of 4 491 746 points generated from the DES footprint mask.
To compute ω(θ) we employ treecorr (Jarvis 2015). Errors are estimated using jackknife
resampling where the sky is divided into 100 equal-sized batches for resampling (Efron &
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FIGURE 4.17: Sky distribution of blue LSBGs identified from the new sample
(blue dots) and the LSBGs identified (black dots) by Tanoglidis et al. (2021b).

Gong 1983). For high surface brightness galaxy samples, the angular correlation function
very often can be well fitted by a single power-law (Peebles & Hauser 1974; Peebles 1980;
Hewett 1982; Koo & Szalay 1984; Neuschaefer et al. 1991)

ω(θ) = Aθ1−γ (4.9)

where A is the amplitude which represents the strength of the clustering, and γ represents
the rate at which the strength of the clustering reduces as we go to large angular scales.
This power-law behaviour is usually observed in a wide range of angular scales; how-
ever, it is not universal, especially on the smallest scales. Full modelling of the shape of
the correlation function requires taking into account different processes governing galaxy
clustering on small scales (corresponding to galaxies located in the same dark matter halo)
and at larger scales (corresponding to clustering of different haloes). This modelling is usu-
ally done using the halo occupation distribution models (HOD) (Ma & Fry 2000; Peacock
& Smith 2000; Zheng et al. 2005; Kobayashi et al. 2022). In this work, however, we perform
only a preliminary analysis and base interpretation of our data on the power-law fitting
only.

To compare the clustering of the LSBGs with the clustering of the high surface bright-
ness galaxies (HSBGs), we constructed a control sample of HSBGs from the DES data. For
this purpose, we selected galaxies in the surface brightness range 20.0 < µ̄e f f < 23mag
arcsec−2 and in the magnitude range 17 < g < 23 mag (which is the same magnitude
range as our LSBG sample). Additionally, we applied a photometric redshift z < 0.1
cut in order to keep the HSBGs sample consistent with the LSBGs, which are also ex-
pected to be mostly local (E Greene et al. 2022). For this purpose, we used the photo-
metric redshifts from the DES Y3 gold catalogue calculated using the Directional Neigh-
bourhood Fitting (DNF) algorithm (Sevilla-Noarbe et al. 2021; De Vicente et al. 2016). In
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addition, we also applied the selection cuts on the parameters from SourceExtractor such
as SPREAD_MODEL,EXTENDED_CLASS_COADD and on colors (using the MAG_AUTO magnitudes)
as described in Sect. 4.2.2.

Initially, we computed the angular two-point auto-correlation function for the samples
of LSBGs and HSBGs. Then we split the samples into red and blue galaxies to measure
their clustering properties separately. For LSBGs, we followed the criterion defined in Sect.
4.6, i.e. a color cut of g − i = 0.6 mag to separate blue and red sources. As seen from the
color histogram presented in Fig. 4.18, the HSBGs show a bi-modality around g − i = 1.0
mag, which can be most likely attributed to their different stellar masses. Consequently,
we use the boundary g − i = 1.0 mag to divide our HSBG sample into red and blue sub-
samples. The properties of all the samples used for the measurement of the galaxy clus-
tering, together with the best-fit power-law parameters, are listed in Table 4.5. The 2-point
auto-correlation functions for all the samples described above are shown in Fig. 4.19.
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FIGURE 4.18: Color distribution of the HSBGs from the DES DR1. The verti-
cal line at g − i = 1.0 shows the color separation of the HSBGs into red and

blue galaxies.

As it is clear from Fig. 4.19, the angular two-point auto-correlation function of the red
LSBGs does not follow a power law at small angular scales. Therefore, the power-law fits
were only performed in the range of 0.15 deg to 7 deg to avoid them being affected by the
one-halo effects. In part well fitted by the power law, for the red LSBGs, ω(θ) is signifi-
cantly steeper than for the blue LSBGs. However, it flattens at smaller scales, i.e. between
0.01 deg and 0.3 deg; this behaviour is also transmitted to the full sample of LSBGs. In con-
trast, the blue LSBGs follow a power law behaviour, with a lower clustering amplitude
and a much less steep slope, in almost all the angular scales. This behaviour of the angular
correlation function might be explained by the observations by van der Burg et al. (2016)
and Wittmann et al. (2017) that the number of LSBGs close to the cores of galaxy clusters
decreases. Such suppression may reduce the clustering power on small scales, leading to
a flattening in the auto-correlation function, which is seen for the red LSBGs, which are
mostly associated with clusters.

Comparison of clustering of the LSBGs and the HSBGs also shows notable differences.
Not surprisingly, red samples, both of HSBGs and LSBGs, are more clustered than their
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TABLE 4.5: Best-fitting power law parameters for the angular two-point
auto-correlation function for HSBG and LSBGs along with the information
on the number of galaxies, median g-band magnitude, and the mean surface

brightness for each sample.

Sample
Number of

galaxies

Median
g

(mag)

Median
µ̄e f f

(mag arcsec−2)

A γ

All
HSBGs

451,310 18.84 21.66
0.091
±0.004

1.651
±0.021

Red
HSBGs

103,900 17.96 21.21
0.245
±0.004

1.848
±0.012

Blue
HSBGs

347,410 19.21 21.81
0.0648
±0.004

1.631
±0.036

All
LSBGs

27,840 20.11 24.66
0.138
±0.013

1.941
±0.048

Red
LSBGs

18,924 20.23 24.89
0.671
±0.079

2.090
±0.071

Blue
LSBGs

8,916 20.07 24.59
0.051
±0.001

1.620
±0.025

blue counterparts. At the same time, the red LSBG sample has a significantly higher clus-
tering amplitude than the reference red HSBG sample. Red LSBGs also display a steeper
slope of ω(θ) at angular scales larger than 0.15 deg, but at smaller scales, their ω(θ) flat-
tens, unlike in the case of red HSBGs for which we can even observe a hint of an upturn
which can be associated with a one-halo term. This picture is consistent with a scenario
in which red LSBGs are mostly associated with dense structures like clusters but do not
populate their centres but rather the outskirts. In contrast, red HSBGs display the usual be-
haviour of red passive galaxies, appearing in a variety of environments, with a tendency
to cluster and gather most strongly in the cluster centres.

Blue LSBGs have a significantly lower clustering amplitude than their HSBG counter-
parts. At the same time, the slope of their ω(θ) at scales larger than 0.15 deg remains very
similar. The blue HSBGs and LSBGs follow the usual distribution of blue star-forming
galaxies, dispersed in the field and avoiding clusters. These results are consistent with the
results obtained by Tanoglidis et al. (2021b) for their sample of DES LSBGs. They compared
the clustering of LSBGs with very bright galaxies in the magnitude range of 14 < g < 18.5
mag from the 2MPZ catalogue (Bilicki et al. 2014). They found that LSBGs had higher
clustering amplitude in the range of 0.1 to 2 degrees, which is similar to our observations.

However, our results contradict the early estimates from Bothun et al. (1993) and Mo
et al. (1994), who infer that the LSBGs tend to cluster weakly spatially. However, their
analyses were limited by a small data sample (∼400 LSBGs), a small area of the sky, and
most likely selection biases. Given the low accuracy of photometric redshifts for LSBGs in
our sample, we do not attempt to reconstruct their spatial clustering in this work. Further
analysis is planned as a follow-up to this study.
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FIGURE 4.19: Angular autocorrelation function for the full sample of LS-
BGs (grey line with open circles) and the sample of HSBGs (black line with
crosses) is shown in the left panel. The angular autocorrelation function of
the red LSBGs (red line), blue LSBGs (blue line), red HSBGs (orange line)
and blue HSBGs (purple line) is shown in the right panel. The vertical green
shaded region represents the region fitted for a power law (ω = Aθ1−γ),

and the corresponding γ values are shown in the legend.

4.8 Identification of ultra-diffuse galaxies

As discussed in Sect. 4.1, UDGs are a subclass of LSBGs that have extended half-light
radii r1/2 ≥ 1.5 kpc and a central surface brightness µ0 > 24mag arcsec−2 in g-band (van
Dokkum et al. 2015a). Significant population of UDGs have been discovered in the Coma
cluster by van Dokkum et al. (2015a) and other investigations have revealed a large num-
ber of UDGs in other galaxy clusters (Koda et al. 2015; Mihos et al. 2015; Lim et al. 2020; La
Marca et al. 2022b,a). Later on, studies have shown that thousands of UDGs can be found
in single individual clusters and that the abundance of UDGs scales close to linearly with
host halo mass (van der Burg et al. 2016; Mancera Piña et al. 2018).

In order to investigate if there are any cluster UDGs in the sample of LSBGs we identi-
fied in DES, we crossmatched our total LSBG sample (23, 790 LSBGs from Tanoglidis et al.
2021b and the 4 083 new LSBGs we identified) with the X-ray-selected galaxy cluster cat-
alogue from the ROSAT All-Sky Survey (RXGCC; Xu et al. 2022). All the LSBGs at the
angular distance from the centre of the cluster lower than R200

5 virial radius of the cluster
were associated with that cluster. Here, R200 is the radius at which the average density of
a galaxy cluster is 200 times the critical density of the universe at that redshift. We found
that 1 310 LSBGs from the combined catalogue and 123 LSBGs from our new sample were
associated with 130 and 53 clusters, respectively. Using the redshift of the cluster provided
in Xu et al. (2022), and assuming that the associated LSBG is at the same redshift as the
cluster, we estimated the half-light radius of the LSBG and its projected comoving distance
from the cluster centre. It should be noted that since we perform our crossmatching with
only projected distances, some of the LSBGs associated with clusters could be non-cluster
members that are projected along the field. However, it is unlikely to be the case for all,
and since we do not have any other distance estimate for the LSBGs, we chose to adopt
this method. However, it should be also noted that UDGs are not exclusively located in
clusters; they can also be observed in groups (Cohen et al. 2018; Marleau et al. 2021) and

5We used the R500 values and the redshifts provided by Xu et al. (2022) to obtain the R200 crossmatching
radius. Following Ettori & Balestra (2009), we assume R200 ≈ R500/0.65 where R500 is the radius at which the
average density of a galaxy cluster is 500 times the critical density of the universe at that redshift.
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even in field environments (Prole et al. 2019). In this section, we are only focusing on the
LSBGs and UDGs associated with the clusters.

Among the 1,310 cluster LSBGs, we further classify 317 cluster UDG candidates based
on their half-light radius (r1/2 ≥ 1.5 kpc) and the central surface brightness (µ0 > 24.0mag
arcsec−2) in the g-band. Since we have not confirmed the physical distances to these galax-
ies and hence their physical sizes, they can only be regarded as UDG candidates. From
here onward, when referring to UDGs in the paper, it is important to note that we are
addressing UDG candidates and not confirmed UDGs. These 317 UDGs are distributed
within 80 clusters making it the largest sample of clusters in which UDGs are studied. It
should also be noted that Tanoglidis et al. (2021b) also identified 41 UDGs from their LSBG
sample in DES by associating the 9 most overdense regions of LSBGs with known clusters.
However, they did not study the properties of those 41 UDGs in detail, and the 276 UDGs
among the 317 UDGs reported here are completely new. The UDGs presented here have a
median r1/2 of 2.75 kpc and µ0 of 24.51mag arcsec−2. Six of the newly identified UDGs are
shown in Fig. 4.20.
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FIGURE 4.20: Cutouts of 6 confirmed new UDGs. The unique identification
number (co object id) for each galaxy in DES DR1 is given below each im-
age. The images were generated by combining the g, r and z bands using
APLpy package (Robitaille & Bressert 2012), and each image corresponds to

a 33.66” × 33.66” region of the sky with the UDG at its centre.

As seen from Fig. 4.21, the majority of the cluster UDGs (253 out of 317) are red in
color (g − i > 0.6 mag), which is similar to the trend of cluster LSBGs (909 out of 1310).
This is consistent with theoretical predictions for cluster UDGs (Benavides et al. 2023).
Mancera Piña et al. (2019) have also found similar distribution for the g − r color of 442
UDGs observed in 8 galaxy clusters. The joint distribution of the red and blues UDGs in
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the space of r1/2 and µ0 is shown in Fig. 4.22. The red UDGs presented here have a median
r1/2 of 2.75 kpc and µ0 of 24.52mag arcsec−2. Similarly, the blue UDGs have a median r1/2
of 2.78 kpc and µ0 of 24.41mag arcsec−2. Most of the red and blue UDGs have a half-light
radius in the range 1.5 < r1/2 < 6 kpc. However, there is a small fraction of UDGs (6 out of
317) with r1/2 > 10 kpc, which is all red and have µ0 < 25.0mag arcsec−2 which might be
good potential candidates for the follow-up studies.
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FIGURE 4.21: Color distribution of the 1,310 cluster LSBGs and 317 cluster
UDGs from the DES DR1.

For all the cluster LSBGs, we can see a gradient in color as shown in Fig. 4.23, where
LSBGs towards the outskirts of clusters tend to be bluer than those in the centre. This is
similar to the behaviour found in Virgo cluster LSBGs from Junais et al. (2022). However,
for the cluster UDGs presented in this study, the color gradient appears much weaker,
almost showing a flat distribution in comparison to the LSBGs. A similar weak trend,
where more blue UDGs are found towards the cluster centre, was also noted by Mancera
Piña et al. (2019). On the other hand, Román & Trujillo (2017b) and Alabi et al. (2020)
reported a more pronounced color trend as a function of cluster-centric distance, while La
Marca et al. (2022a) did not find any significant trend. However, when directly comparing
the trends in the color of UDGs in the cluster, one should keep in mind that these trends
will be affected by several factors like the used bands for the color, sample size and the
studied cluster, as we can see from the results in the literature, For example, our sample
size (>300) is similar to the sample size of Mancera Piña et al. (2019) and have similar
results whereas it is different from the findings of Román & Trujillo (2017b); Alabi et al.
(2020) and La Marca et al. (2022a) which have a smaller sample size (<40).

The trend observed in the half-light radius (Fig. 4.23) for both the cluster LSBGs and
UDGs is quite evident. As we move towards the outer regions of the cluster centre, both
LSBGs and UDGs show an increase in size. This behaviour is in agreement with the find-
ings of Román & Trujillo (2017b). The gradients we observe in color and size with respect
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FIGURE 4.22: Joint distribution of the red (red dots) and blue (blue cross)
UDGs in the space of r1/2 and µ0 in the g-band. The vertical lines in the

histogram on the x-axis and y-axis show the median for each class.

to the cluster-centric distance are consistent with the proposed UDG formation scenar-
ios such as the galaxy harassment (Conselice 2018), tidal interactions Mancera Piña et al.
(2019), and ram-pressure stripping (Conselice et al. 2003b; Buyle et al. 2005). Such trends
are also similar to what is observed for dwarf galaxies in the literature (Venhola et al.
2019a), providing further support for the argument that UDGs can be considered as a sub-
set of dwarf galaxies (Conselice 2018; Benavides et al. 2023).

The sample of UDG candidates presented here will be the subject of the follow-up anal-
ysis. Additionally, it should be noted that all the UDGs reported here are cluster UDGs.
The actual number of UDGs in the LSBG catalogue (including low-density environments)
might be more than this, and thus the reported number is only a lower limit on the total
number of UDGs.

4.9 Conclusions

In this paper, we explore the possibilities of using transformers in distinguishing LSBGs
from artefacts in optical imaging data. We implemented four transformer models that
combined the use of CNN backbone and self-attention layers to classify the labels; we
call them LSBG DETR (LSBG detection transformers) models. Similarly, we have created
four transformer models that directly apply attention to the patches of the images without
any convolutions and these models we call LSBG vision transformers. We compared the
performance of these two different architectures to the LSBG identification CNN model
called DeepShadows presented in Tanoglidis et al. (2021a). We found that the transformer
models performed better than the DeepShadows, and later we used the ensemble of our
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FIGURE 4.23: g − i colour of the cluster LSBGs (black points) and r1/2 as a
function of the projected distance from their cluster centre (in units of the
cluster radius R200) is shown in the left and right panel respectively. The
UDGs are marked as red hollow circles. The green line and the grey-shaded
region are the linear best fit and the 1σ scatter for the cluster LSBGs, respec-

tively. The blue dashed line is the linear best fit for the cluster UDGs.

transformer models to look for new LSBGs in the DES DR1 data that the previous searches
may have missed. We follow the definition of an LSBG used by Tanoglidis et al. (2021b),
i.e. we define LSBGs as galaxies having a g-band mean surface brightness µ̄e f f > 24.2 mag
arcsec−2 and half-light radii r1/2 > 2.5”. Following this definition, we identified 4 083 new
LSBGs from the DES DR1, increasing the number of identified LSBGs in DES by 17%.

Our sample selection and LSBG identification pipeline consist of the following steps:

• We preselect the objects from the DES Y3 Gold catalog based on the selection criteria
described in Tanoglidis et al. (2021b) using the SourceExtractor parameters.

• We applied the ensemble of transformer models to this sample of preselected objects.
We chose the objects identified independently by both the LSBG DETR ensemble and
the LSBG ViT ensemble for a further follow-up to be inspected for being an LSBG.

• We performed a Sérsic fitting using Galfit and re-applied the selection cuts to fur-
ther reduce the number of false positives. After this step, 4879 LSBG candidates re-
mained to be visually inspected.

• After the visual inspection, we report the presence of 4083 new LSBGs identified by
the transformer ensemble models.

Following Tanoglidis et al. (2021b), we divided the total LSBG sample into two subsam-
ples according to their g − i color. Among the 4083 new LSBGs presented here, 72% were
identified as blue LSBGs, which is higher than the 67% observed in the sample presented
by Tanoglidis et al. (2021b). Additionally, we also found that we have a more fraction of
red LSBGs with color, g − i > 0.8, compared to the sample of LSBGs presented by Tanog-
lidis et al. (2021b). We speculate that the bias might have originated from the training set
used by Tanoglidis et al. (2021b) to train the SVM model to preselect the LSBG candidate
sample.

By combining the previously identified 23,790 LSBGs from Tanoglidis et al. (2021b)
with the LSBGs newly identified in our work, the total number of known LSBGs in the
DES is increased to 27,873. This increases the number density of LSBGs in the DES from
4.13 to 4.91 deg−2 for LSBGs with µ̄e f f >24.3mag arcsec−2 and from 4.75 to 5.57 deg−2 for
LSBGs with µ̄e f f >24.2mag arcsec−2. It should be stressed that this is a lower limit to the
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number density, and it would increase in the future with better imaging quality and better
methodology for the surveys like LSST and Euclid.

We also made an analysis of the clustering of LSBGs in DES. We found that the LSBGs
tend to cluster strongly in comparison to the HSBGs from DES, which is similar to the find-
ings by Tanoglidis et al. (2021b). Upon further examination, we observed that the strong
clustering tendency observed among low surface brightness galaxies (LSBGs) primarily
stems from the red LSBGs, while the behaviour of blue LSBGs resembles that of blue high
surface brightness galaxies (HSBGs) with weaker clustering tendencies. Additionally, we
noted a decrease in the number of red LSBGs near the centre of the galaxy cluster, result-
ing in a flattening of the auto-correlation function on smaller scales which is similar to the
conclusions of Wittmann et al. (2017).

Additionally, we crossmatched the LSBGs with the X-ray-selected galaxy cluster cata-
logue from the ROSAT All-Sky Survey (RXGCC; Xu et al. 2022) to find LSBGs associated
with the clusters. Using the redshift information of the clusters, we identify 317 UDGs,
among which 276 are reported for the first time. We also observed a color gradient among
the cluster LSBGs, where LSBGs located towards the outskirts of clusters exhibit a bluer
color compared to those at the centre, similar to findings by Junais et al. (2022) in the Virgo
cluster LSBGs. However, this trend is relatively weak for the cluster UDGs in our study,
unlike the LSBGs. A clear trend in the half-light radius of the cluster LSBGs and UDGs as
a function of the cluster-centric distance is also visible. The LSBGs and UDGs grow in size
as going from the cluster centre to the outskirts. The coherent trends in the color and size
are in agreement with the proposed UDG formation mechanisms such as the galaxy ha-
rassment (Conselice 2018), tidal interactions Mancera Piña et al. (2019), and ram-pressure
stripping (Conselice et al. 2003b; Buyle et al. 2005), giving more support to the argument
that the UDGs are a subset of dwarf galaxies (Conselice 2018; Benavides et al. 2023).

The upcoming large-scale surveys such as LSST and Euclid are expected to cover
around 18 000 and 14 5000 deg2 of the sky, respectively (Ivezić et al. 2019; Euclid Collab-
oration et al. 2022b). Extrapolating our results on the number density of LSBGs, we are
expected to find more than 100 000 and 80 000 LSBGs from LSST and Euclid, respectively.
In this scenario, an improved and efficient methodology will be highly significant, and we
propose that transformer models could overcome this difficulty. With the aid of transfer
learning, we are planning to extend our study to HSC SSP DR3 and thus pave a pathway
for the LSBG detection in LSST and Euclid.
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5
DES to HSC: Detecting low surface
brightness galaxies in the Abell 194
cluster using transfer learning on
deep data

This chapter will be submitted to Astronomy & Astrophysics as ‘DES to HSC: Detecting
low surface brightness galaxies in the Abell 194 cluster using transfer learning on deep
data’ by Thuruthipilly H. et al. in the coming weeks. This work is done with the dedicated
HSC observations of the Abell 194 cluster obtained by Jin Koda, Masafumi Yagi, Yutaka
Komiyama, Yamanoi Hitomi and in collaboration with Samuel Boissier.

5.1 Introduction

Our statistical understanding of how the universe evolves is strongly biased by the objects
and structures that are brighter than the surface-brightness limits of wide-area surveys.
For instance, the galaxy completeness of the Sloan Digital Sky Survey (SDSS; Abazajian
et al. 2009) decreases rapidly for surface brightness fainter than 24.5 mag arcsec−2 (e.g.
Kniazev et al. 2004; Driver et al. 2005) indicating that the low surface brightness (LSB)
regime is underrepresented in our catalogues. One of the key components of the LSB uni-
verse is the low surface brightness galaxies (LSBGs) characterised by their central surface
brightness which is fainter than the night sky (Bothun et al. 1997). Both simulations (e.g.
Martin et al. 2019) and observations (e.g. Dalcanton et al. 1997; O’Neil & Bothun 2000) indi-
cate that the bulk of the galaxy population resides in the LSB regime. In literature, galaxies
with B-band central surface brightness µ0(B) greater than a certain threshold value are
classified as LSBGs and this threshold value varies among different works, ranging from
µ0(B) ≥ 23.0 mag arcsec−2 (Bothun et al. 1997) to µ0(B) ≥ 22.0 mag arcsec−2 (Burkholder
et al. 2001).

LSBGs constitute the dominant population of the faint end of the galaxy luminosity
function (Blanton et al. 2005; Martin et al. 2019) and it is estimated that the LSBGs account
for a significant fraction (30% ∼ 60%) of the total number density of galaxies (McGaugh
1996; Bothun et al. 1997; O’Neil & Bothun 2000; Haberzettl et al. 2007; Martin et al. 2019).
In addition, LSBGs have been found to contribute as much as 15% of the dynamical mass
content of the Universe (Driver 1999; Minchin et al. 2004). Hence, LSBGs are capable of
contributing significantly to our understanding of galaxy evolution (Bullock et al. 2001; de
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Blok et al. 2001; Sales et al. 2020) and provide important observational constraints for cos-
mological models (Moore et al. 1999; Bullock & Boylan-Kolchin 2017b; Laudato & Salzano
2023).

LSBGs could be classified into several sub-classes based on their physical size, surface
brightness and gas content. For instance, ultra-diffuse galaxies (UDGs) are extended LS-
BGs with effective radii r1/2 > 1.5 kpc and central surface brightness µ(g, 0) > 24 mag
arcsec−2. Although the term ‘UDG’ was coined by van Dokkum et al. (2015a) very re-
cently, such galaxies had been already identified in several earlier studies (Sandage &
Binggeli 1984; McGaugh & Bothun 1994; Dalcanton et al. 1997; Conselice et al. 2003a). Sim-
ilarly, giant LSBGs (GLSBGs) form another sub-class of LSBGs that are extremely gas-rich
(MHI > 1010 M⊙ ), faint and extended (Sprayberry et al. 1995; Saburova et al. 2023; Junais
et al. 2024). Another sub-class of LSBGs is the almost dark galaxies (ADGs) (Janowiecki
et al. 2015; Leisman et al. 2017; Xu et al. 2023; Montes et al. 2024). These galaxies are typ-
ically characterized by their gas-rich nature but extremely faint optical emission making
them difficult to detect in wide-field surveys such as the SDSS. The formation and evolu-
tion of these extreme sub-classes of LSBGs like UDGs, GLSBGs and ADGs are still debated
and they give a robust platform to test our models of galaxy evolution and cosmology
(Amorisco & Loeb 2016a; Di Cintio et al. 2017; Saburova et al. 2021; Benavides et al. 2023;
Laudato & Salzano 2023; Montes et al. 2024).

A major fraction of the LSBGs had remained undetected up to the last decade and the
recent advancements in digital imaging combined with deep, large sky surveys have re-
ignited an interest in LSBGs and their detection (e.g., van Dokkum et al. 2015b; Mihos et al.
2015; Koda et al. 2015; Yagi et al. 2016; Román & Trujillo 2017a; Greco et al. 2018; Tanoglidis
et al. 2021b; Bautista et al. 2023; Thuruthipilly et al. 2024b). These efforts have started
to give us a glimpse of the LSBG regime and it is speculated that the LSBG population
inhabits all regions of the observable universe ranging from clusters (Adami et al. 2006) to
fields (Prole et al. 2019).

The new era of large-scale surveys which are both deep and wide such as the Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP; Aihara et al. 2018), Euclid (Laureijs
et al. 2011), and Rubin Observatory’s Legacy Survey of Space and Time (LSST; Ivezić et al.
2019) is expected to uncover more LSBGs. These surveys will revolutionise our under-
standing of LSBGs and our knowledge of the evolution of the Universe in general.

One of the major obstacles to overcome in detecting LSBGs in the aforementioned
large-scale surveys is the separation of artefacts from LSBGs. As noted by Tanoglidis et al.
(2021b), these artefacts primarily consist of diffuse light from nearby bright objects, galac-
tic cirrus, star-forming tails of spiral arms, and tidal streams. These artefacts often pass
simple selection cuts to separate LSBGs from artefacts and constitute the majority of the
LSBG candidate sample. Removing these contaminants is necessary, a task often achieved
using semi-automated methods with a low success rate, and visual inspection, which is
more precise but time-consuming.

For instance, in HSC-SSP, Greco et al. (2018) applied selection cuts on the photometric
measurements from SourceExtractor (Bertin & Arnouts 1996) and used a galaxy mod-
elling pipeline (based on imfit; Erwin (2015)) to create an LSBG candidate sample. Simi-
larly, in dark energy survey (DES), Tanoglidis et al. (2021b) also used a pipeline that em-
ploys SourceExtractor, an ML algorithm and Galfit (Peng et al. 2002) in the respective
order to create a candidate sample. However, upon visual inspection in both cases, it was
found that around 50% of the shortlisted candidates were artefacts. For large-scale surveys
such as HSC-SSP, LSST and Euclid these results show that the semi-automated methods
would not be effective as the sheer amount of data generated will be very large and we
will need pipelines with better classification accuracy to achieve meaningful results.



5.1. Introduction 95

Recently, the advancements in deep learning (DL) have opened up many opportunities
and have been widely applied in astronomy. Particularly, convolutional neural networks
(CNNs) and transformers have been found to be effective in analysing astronomical data.
For example, the CNNs have been used for galaxy classification (Pérez-Carrasco et al.
2019), galaxy merger identification (Pearson et al. 2022), supernova classification (Cabrera-
Vives et al. 2017), classification of LSBGs (Tanoglidis et al. 2021a; Su et al. 2024) and find-
ing strong gravitational lenses (Schaefer et al. 2018; Davies et al. 2019; Rojas et al. 2022).
Similarly, transformer models have been used to detect and analyse strong gravitational
lensing systems (Thuruthipilly et al. 2022; Huang et al. 2023; Jia et al. 2023; Thuruthip-
illy et al. 2024a), estimating cosmological parameters (Hwang et al. 2023), identification
of LSBGs (Thuruthipilly et al. 2024b), representing light curves (Allam & McEwen 2021),
and classifying multi-band light curves of different supernovae (SN) types (Pimentel et al.
2023).

One of the crucial requirements for creating a trained DL model is a sufficiently large
training dataset that can be used to generalise the features of the data that we are trying to
analyse. The recent searches for LSBGs in large-scale surveys such as SDSS (Zhong et al.
2008), HSC-SSP (Greco et al. 2018) and DES (Tanoglidis et al. 2021b; Thuruthipilly et al.
2024b) have resulted in a sufficient number of LSBGs and artefacts which could be used
as training sets for creating DL models efficient in the detection of LSBGs (Tanoglidis et al.
2021a; Yi et al. 2022; Xing et al. 2023; Thuruthipilly et al. 2024b; Su et al. 2024). However, in
all the previous attempts with DL models for the identification of LSBGs, the models were
trained and employed for the detection of LSBGs on the same survey. In this context, a key
question arises: to what extent can the knowledge acquired by a DL model trained on one
survey be transferred to another survey? Specifically, can a DL model trained on the data
from a survey such as DES could be effectively used to detect LSBGs in deeper data from
HSC, LSST, and Euclid?

Generally, the above-mentioned questions come under the regime of transfer learning
where a model trained for one task is adapted to a different task, typically by fine-tuning
the model with a smaller training set (Yosinski et al. 2014). Previous efforts to transfer the
knowledge of CNN models from one survey to another for tasks like galaxy morphological
classification (Domínguez Sánchez et al. 2019) and classification of LSBGs (Tanoglidis et al.
2021a) have shown promise. However, the performance of the CNN drops significantly
when transitioning from one survey to another necessitating fine-tuning the models to
achieve satisfactory results.

To address the above-mentioned questions, here we explore the possibility of apply-
ing transfer learning to identify LSBGs in the Abell 194 cluster with the deep data we
obtained from the dedicated observation with HSC. We use two different ensemble trans-
former models trained on the data from DES data release 1 (DES DR 1) and use the en-
semble models to identify LSBGs from the HSC data which is deeper than DES DR 1 by
two orders of magnitude. For consistency and comparison, we use the same transformer
models used in Thuruthipilly et al. (2024b) in this work and compare the performance of
the models in this work with Thuruthipilly et al. (2024b). We selected Abell 194 for our
analysis since it has been covered by DES, and the small size of the cluster makes it easy to
investigate the number of LSBGs that might be missed by the ensemble model. With the fi-
nal sample of LSBGs and UDGs identified from this work, we also investigate the effect of
the cluster environment on the morphological properties of these galaxies. Furthermore,
we also investigate the presence of recent star formation in these LSBGs and UDGs with
the data from the Galaxy Evolution Explorer (GALEX; Martin et al. 2005).

Throughout this paper, we adopt the following notations: the apparent magnitude is m
(mag), half-light radius is r1/2 (arcsecond), central surface brightness is µ0, mean surface
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brightness within the r1/2 is µ̄e f f (mag arcsec−2), Sérsic index (n), axis ratio (b/a), and po-
sition angle (PA) in degrees. When specifying a particular band, we will use a subscript,
such as re f f ,g or re f f ,r for the g and r-bands, respectively. In this paper, we adopt the cosmo-
logical parameters of (h0, ΩM, Ωλ) = (0.697, 0.282,0.718) following Hinshaw et al. (2013b)
which corresponds to a luminosity distance of 77.7 Mpc and an angular diameter distance
of 75.0 Mpc to the Abell 194 which is at redshift, z = 0.01781 (Girardi et al. 1998; Rines et al.
2003). In addition, an angular separation of 1 arcsecond corresponds to a distance of 0.364
kpc at the redshift of Abell 194. (Rines et al. 2003) has estimated the Abell 194 cluster to
have a virial radius (R200) radius of 0.9824 Mpc and a virial mass (M200) of 7.6 × 1013M⊙
(M200) where R200 is defined as the radius at which the average density of a galaxy cluster
is 200 times the critical density of the universe at that redshift.

For comparison purposes, throughout this work, we follow the LSBG definition from
Tanoglidis et al. (2021b), based on the g-band mean surface brightness (µ̄e f f ,g) and the
half-light radii (re f f ,g). We consider LSBGs as galaxies with µ̄e f f ,g > 24.2 mag arcsec−2 and
re f f > 2.5”. Similarly, for defining UDGs, we follow the definition on the g-band central
surface brightness (µ0,g) and the half-light radii (re f f ,g) such that all the galaxies which
have µ0,g and re f f ,g greater than 24.0 mag arcsec−2 and 1.5 kpc, respectively are considered
as UDGs (van Dokkum et al. 2015a; Román & Trujillo 2017a).

The paper is organised as follows: Sect. 5.2 discusses the data we used to train our
models and look for new LSBGs. Section 5.3 provides a brief overview of the methodol-
ogy used in our study, including the models’ architecture, information on how the models
were trained, and the details about the visual inspection. The results of our analysis are
presented in Sect. 5.4. A detailed discussion of our results and the properties of the newly
identified LSBGs are analysed in Sect. 5.5. Section 5.6 concludes our analysis by highlight-
ing the significance of LSBGs, the impact of our methodology in finding LSBGs, and the
prospects with upcoming large sky surveys.

5.2 Data

5.2.1 DES

The Dark Energy Survey (DES; Abbott et al. 2018a, 2021) is a six-year observing program
(2013-2019) covering ∼ 5000 deg2 of the southern Galactic cap in the optical and near-
infrared regime using the Dark Energy Camera (DECam) on the 4-m Blanco Telescope at
the Cerro Tololo Inter-American Observatory (CTIO). The DES has observed the sky in
grizY photometric bands with approximately 10 overlapping dithered exposures in each
filter (90 sec in griz-bands and 45 sec in Y-band). The median surface brightness depth at
3σ for a 10” × 10” region for g-band is 28.26+0.09

−0.13 and for r-band is 27.86+0.10
−0.15 where the

upper and lower bounds represent the 16th and 84th percentiles of the distribution over
DES tiles (Tanoglidis et al. 2021b).

Training data

All of the trained, validated, and tested models in this study used the labelled dataset of
LSBGs and artefacts identified from DES by Tanoglidis et al. (2021b) and extended by Thu-
ruthipilly et al. (2024b). From the extended sample of 27 873 LSBGs (23 790 from Tanoglidis
et al. (2021b) and 4 083 from Thuruthipilly et al. (2024b)), we randomly selected 18 532 LS-
BGs which was assigned a label 1. The catalogue for the artefacts was created based on the
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publicly available dataset of artefacts 1 which consists of 20 000 artefacts. However, Thu-
ruthipilly et al. (2024b) have shown that some of the artefacts listed in the catalogue are
not artefacts and are LSBGs. After removing these artefacts from the catalogue by cross-
matching them with the LSBG catalogue, we had 18 468 artefacts remaining in the list
which were assigned a label 0.

We generated multi-band cutouts for each object in the flexible image transport system
(FITS) format from the DES DR 1 image data in g-band and r-band. Each cutout corre-
sponds to a 40” × 40” (152 × 152 pixel2) region of the sky and is centred at the coordinates
of the object (LSBG or artefact). To reduce the computational cost, we resized the cutouts
from their initial size to 64× 64 pixel2. The cutouts of g, and r-bands were stacked together
to create the dataset for training the models. Our training catalogue contains 38 500 objects,
out of which 18 532 are LSBGs and 18 468 are artefacts. Before training, we randomly split
the full sample into a training set, a validation set and a test set, each consisting of 32 000,
2 000, and 4 500 objects, respectively. Examples of LSBGs and artefacts used in the training
set are given in Fig. 5.1.

(A) (B)

FIGURE 5.1: g- band cutouts of four examples of LSBGs (5.1a) and artefacts
(5.1b) used in the training data. Each cutout of the LSBG and artefact cor-
responds to a 40” × 40” (152 × 152 pixel2) region of the sky centred around

the LSBG or artefact.

5.2.2 HSC

The Hyper Suprime-Cam (HSC) is an imaging camera covering an area of 1.77 degree2

situated at the prime focus of the Subaru telescope (Bosch et al. 2018a). It comprises a total
of 116 CCDs, featuring 104 science sensors, 4 guide sensors, and 8 focus sensors. Each CCD
has dimensions of 2k × 4k pixels and a pixel scale of 0.168” per pixel (Bosch et al. 2018a;
Furusawa et al. 2018; Kawanomoto et al. 2018; Miyazaki et al. 2018; Komiyama et al. 2018).
The Abell 194 cluster was observed in g- and r-bands using HSC in a single pointing with
dithered exposures. The integration time was approximately 48 minutes for the r-band
and 73.5 minutes for the g-band. The dithering pattern was optimized to ensure that gaps
between CCDs did not overlap. Each dithered integration (referred to as a “visit”) began

1https://github.com/dtanoglidis/DeepShadows/blob/main/Datasets

https://github.com/dtanoglidis/DeepShadows/blob/main/Datasets
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with the rotator angle set to 0 degrees to maintain consistent flat patterns near the edge of
the field of view. The typical seeing during the observing runs was about 1”. For easier data
handling, the tract was divided into square patches of 12 arcminutes on a side (4200× 4200
pixels), with a 17” (100 pixels) overlap between adjacent patches, resulting in a total of 94
patches. The coverage of the Abell 194 cluster is given in Fig. 5.2.

FIGURE 5.2: Coverage of the Abell 194 Cluster by HSC. The red circle marks
the boundary of the virial radius of the cluster which is ∼1 Mpc (0.75 de-
gree). The observed data covers up to 1.2 Mpc (∼ 0.8 degree) from the clus-

ter centre.

The data were reduced using the HSC pipeline, hscPipe version 4.0.1 (Bosch et al.
2018b), which is based on software developed for the LSST project (Ivezic et al. 2008; Ju-
rić et al. 2017), along with an additional sky-subtraction package provided by the HSC
Helpdesk. Astrometric and photometric calibrations were performed using the SDSS-III
DR9 catalogue (Ahn et al. 2012), which is included with the HSC pipeline and recalibrated
by the HSC software team for photometric zero points against the Panoramic Survey Tele-
scope & Rapid Response System 1 (Tonry et al. 2012; Schlafly et al. 2012; Magnier et al.
2013). The background sky was subtracted using a 512-pixel grid (approximately 87”).
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We utilized fully reduced, photometrically and astrometrically calibrated, sky-subtracted
images from each visit to create median-stacked images with imcio2 (Yagi et al. 2002),
minimizing bright artefacts from single exposures.

To estimate the median surface brightness depth at 3σ for a 10” × 10” region for the
HSC data, we followed the procedure described in Román et al. (2020). We randomly took
1000 patches of the sky with each covering 10”× 10” region of the sky from each tile for 94
tiles (total 94 000 random patches) and fitted the counts in each path for a Gaussian profile.
The σ values from each patch were used to estimate the surface brightness depth at 3σ for
a 10” × 10” region using the relation (Román et al. 2020):

µlim(3σ10×10) = −2.5 × log
(

3σ

pix × 10

)
+ ZP (5.1)

Here, pix is the pixel scale (0.168 arcsec/pix) of the HSC data and ZP is the zero point
of the HSC data which is 27.0 mag. Using the 3σ surface brightness detection of all the
patches in both g and r bands we estimated the median surface brightness depth at 3σ
for a 10” × 10” region of the sky 30.48 ± 0.24 mag arcsec−2 in g-band and 29.70 ± 0.15 for
r-band. Here the error corresponds to the median absolute deviation.

5.2.3 GALEX

GALEX is a NASA small explorer mission, imaging the sky in far-ultraviolet (FUV; 1344-
1786 ) and near-ultraviolet (NUV; 1771–2831 ) bands simultaneously with a 50 cm diameter
ultraviolet telescope (Morrissey et al. 2007). The telescope has a 1.25-degree field-of-view
and has a full-width half maximum (FWHM) of 4.2” and 5.3” for the FUV and NUV bands
respectively (Morrissey et al. 2007). Each pixel in the intensity map from the GALEX cor-
responds to 1.5” in the angular scale.

For our analysis, we use the intensity maps of all the available GALEX data within a 2-
degree search radius of the Abell 194 cluster from the MAST database2. The intensity maps
were coadded using their corresponding exposure maps with reproject python package.
The final co-added image has a variable exposure along the field of the Abell 194 cluster
with a median exposure time of 4274± 1232 seconds in the NUV and 3943± 1393 seconds
in the FUV band where the error denotes the median absolute deviation.

5.3 Methodology

5.3.1 Transformer models

Here we use two types of transformer models which we call LSBG detection transformers
(LSBG DETR) and LSBG Vision transformers (LSBG ViT). Both architectures have been
used for the identification of LSBGs from DES DR 1 by Thuruthipilly et al. (2024b) and
we use the same models for the identification of LSBGs in Abell 194 with HSC data for
comparing the results from this work to the results from Thuruthipilly et al. (2024b).

LSBG detection transformer (LSBG DETR)

We have created four LSBG DETR models similar to the architecture described in Sec. 2.5.2.
The hyperparameters of the LSB DETR models are presented in Table 5.1.

2https://archive.stsci.edu/

https://archive.stsci.edu/
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LSBG vision transformer (LSBG ViT)

We have created four LSBG ViT models similar to the architecture described in Sec. 2.5.3.
The hyperparameters of the LSB ViT models are presented in Table 5.1.

TABLE 5.1: Table showing the name of the model, size of the image patches
(s), number of heads (h), number of transformer encoder layers (T) and the
number of epochs taken to train (e) the models in chronological order of

creation.

Model Name s h T e
LSBG DETR 1 - 8 4 110
LSBG DETR 2 - 12 4 87
LSBG DETR 3 - 12 4 128
LSBG DETR 4 - 8 4 168

LSBG ViT 1 4 12 4 82
LSBG ViT 2 4 12 8 57
LSBG ViT 3 6 12 4 87
LSBG ViT 4 6 16 8 58

5.3.2 Training

All of the LSBG DETR and LSBG ViT models were trained with an initial learning rate of
α = 10−4. We used the exponential linear unit (ELU) function as the activation function for
all the layers in these models (Clevert et al. 2016). We initialise the weights of our model
with the Xavier uniform initialiser (Glorot & Bengio 2010b), and all layers are trained from
scratch by the ADAM optimiser with the default exponential decay rates (Kingma & Ba
2015). We have used the early stopping callback from Keras 3 to monitor the validation
loss of the model and stop training once the loss was converged. The models LSBG DETR
1, 2, 3 and 4 were trained for 110, 87, 128 and 168 epochs, respectively. Similarly, the LSBG
ViT 1, 2, 3, and 4 were trained for 82, 57, 87 and 58 epochs, respectively. In the spirit of
reproducible research, our code for LSBG DETR and LSBG ViT is publicly available 4.

5.3.3 Transfer learning

Transfer learning has been found to be very useful and successful in training large natural
language models and computer vision models. Given the need for better machine learning
models and techniques in the era of big data, the astronomy community has also delved
into the potential of transfer learning. For instance, Ackermann et al. (2018) used a CNN
model that has been trained on pictures of everyday objects (i.e. ImageNet data set, Deng
et al. (2009)) to be retrained for the detection of galaxy mergers. Similarly, Wei et al. (2020)
and Hannon et al. (2023) have used DL models pre-trained on the ImageNet data set for
the classification of star clusters.

One fact that should be considered when applying transfer learning from one survey
to another is the difference in the instruments used in these surveys. For example, two
surveys with different zero points and pixel scales will have different pixel values for the
same astronomical object in counts/second units. Hence, a model trained on one survey
could not be directly used on another survey and needs some standardisation. One of the
common trends is to re-scale the input image within a specific range (i.e. 0 to 1 or -1 to 1).

3https://keras.io/api/callbacks
4https://github.com/hareesht23/

https://keras.io/api/callbacks
https://github.com/hareesht23/
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This also ensures that the input values are not very small which would compromise the
performance of the DL model (de Amorim et al. 2023).

An alternative way is to convert the pixel values of the images from counts/seconds
to their surface brightness units. Hence, the average pixel values over a region remain the
same for different surveys and could standardise the image data of the same wavelength
for two different surveys. In this work, before training and testing our transformer models,
we convert each pixel value to its surface brightness (µJy arcsec−2) for DES DR 1 and HSC
data, respectively. Here, during the conversion, the brightness of each pixel is divided by
its pixel area to remove the dependence on the different pixel scales of each instrument.
However, it is important to note that this standardization of data does not address the
difference in point spread function (PSF) values between different surveys. It should be
noted that only for the application of the ML models do we apply this conversion, and all
the measurements and analysis are done on the original data.

5.3.4 Metrics for comparing models

The metrics used to compare the models are accuracy, AUROC, TPR and FPR which are
described in Sect. 2.7. I refer the reader to Sect. 2.7 for a detailed discussion of these metrics.

5.3.5 Object detection and preselection of LSBG candidates in Abell 194

Due to the inherent low surface brightness, the LSBGs are generally underrepresented in
galaxy catalogues. Conventionally, to create a complete catalogue of all the LSBGs from
a dataset, the initial step is to create a catalogue of all the objects in the data and subse-
quently apply selection criteria to refine the candidate sample. To detect the objects, we use
SourceExtractor (Bertin & Arnouts 1996) on the image patches. As mentioned in Sect. 5.1,
here we consider all the galaxies that have a µ̄e f f > 24.2 mag arcsec−2 and r1/2 > 2.5” as
LSBGs. Hence, we apply some preselections with parameters estimated from Sextractor
which are described below to create a preliminary sample of LSBGs.

As the first step, we use the r-band images for the detection and estimate the mor-
phological parameters of the detected objects in the g band for the subsequent selection
of LSBG candidates. We set the DETECT_THRESH as 1.5σ and DETECT_MINAREA as 49 pixels
to detect all the objects that have a signal-to-noise ratio greater than or equal to 1.5 and
span over at least 49 pixels (∼ 1.4 arcsec2). For comparison, it should be noted that we
are looking for LSBGs which have an r1/2 > 2.5”, corresponding to an area greater than 6
arcsec2.

We further apply selection cuts on the output catalogue based on the r1/2, µ̄e f f and
the q as measured by the Sextractor to reduce the LSBG candidate sample. Since we are
looking for LSBGs that are extended, we removed the bright and point objects from the
full catalogue. For removing the bright objects we apply selection criteria that the LSBG
candidate should have a µ̄e f f in the g-band within the range 24.0 to 31 mag arcsec−2. The
upper limit to µ̄e f f is 0.2 magnitudes brighter than the LSBG definition we adopted in
this work to ensure that our conditions are conservative and we do not miss any faint
sources that satisfy our LSBG definition. The lower limit to µ̄e f f is equivalent to the 3σ the
surface brightness detection limit of the HSC data. Additionally, the measured r1/2 in the
g-band was restricted to be in the range 2” <r1/2< 20”. A relaxed lower limit for r1/2 was
chosen to maximise the number of extended LSBGs that will remain after the size selection.
Finally, we restricted the axis ratio b/a (B_IMAGE/A_IMAGE) in the range of 0.3 < b/a ≤ 1.0
in order to remove artefacts such as the highly elliptical diffraction spikes.

It should be noted that the selection applied above is necessary to reduce the number of
FPs. For instance, consider a classifier model with a TPR of 100% and an FPR of 0.1%. When
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testing this model on an imbalanced dataset, such as all objects from DES DR1 containing
approximately 3× 108 objects, of which only around 3× 105 are LSBGs, there is a statistical
expectation that the model will correctly identify all 3 × 105 LSBGs (since TPR = 100%).
However, based on the FPR (0.1%), it is also anticipated that the model will misclassify
an artefact as LSBG for every 10, 000 artefact. Hence, if the test dataset is extremely biased
such as all the LSBGs and non-LSBGs in DES, it would result in too many false positives.
(Petrillo et al. 2019; Petrillo et al. 2019; Rojas et al. 2022; Li et al. 2020; Thuruthipilly et al.
2024a; Grespan et al. 2024). Hence selection cuts are necessary for the reliable performance
of any ML model on large datasets before applying.

Furthermore, we also crossmatch the shortlisted LSBG candidates with SDSS data re-
lease 16 (SDSS DR16 Ahumada et al. 2020) to find if any of the detected sources are fore-
ground or background sources with respect to the Abell 194 cluster. We remove these
samples from our analyses so not to be contaminated by these sources.

For each object that remained in the catalogue, we generated multi-band cutouts in g
and r-bands in the flexible image transport system (FITS) format. Each cutout corresponds
to a 40” × 40” (238 × 238 pixels) region of the sky and is centred at the coordinates of the
object as similar to the training data from DES. Since some of the objects might be located
near the edge of the patches, for these objects we co-added the regions from nearby patches
which were overlapping with a 40” × 40” (476 × 476 pixels) centred around the object to
ensure that no light from the object is missed in the cutout. However, it should be noted
that since the pixel scale of the DES was different 80”× 80” region in DES corresponded to
152× 152 pixels. We resized the cutouts from their initial size to 64× 64 pixels to match the
input size of the ensemble models. The cutouts of g, and r-bands were stacked together
respectively to be tested with the ensemble models.

5.3.6 Masks

When compact objects are on top of an LSBG, it will affect the Sérsic profile fitting (dis-
cussed in Sect. 5.3.7) and the creation of accurate masks that only preserve the light from
the LSBG is necessary. Using the fact that the LSBGs we have defined here are faint and
extended, we mask all the objects that are brighter or smaller in the cutouts. For the mask-
ing procedure, we followed the procedure described Bautista et al. (2023). We run the
SourceExtractor on each cutout three times by adjusting the control parameters to detect
different types of contaminants such as the bright sources, faint sources lying outside the
LSBG, and faint sources lying on top of the LSBG. The CHECKIMAGE image that contains
only the detected objects is used to create the masks for each kind and all three masks are
combined to create the final mask.

The first step is to remove the bright objects from the cutouts. In SourceExtractor, the
bright objects can be removed by setting a higher detection threshold without any limits
on the size. For removing the bright objects we set DETECT_THRESH as 23.0 mag arcsec−2

and masked all the bright pixels. The second step is to remove the faint small objects that
are far from the central LSBG. The smaller objects in isolation can be detected by setting
a maximum area threshold (DETECT_MAXAREA) of 200 pixels at a detection threshold of 27.5
mag arcsec−2.

To find the smaller objects on top of LSBGs, we use the unsharp masking technique.
For this, we smooth the original g-band image by convolving it with a Gaussian kernel and
subtracting the smoothed image from the original. After the subtraction, the features with
sizes on the order of, or smaller than, the smoothing kernel will remain in the subtracted
images. Running the SourceExtractor on the subtracted image could detect all the small
objects that are even on top of the LSBGs and could be removed. Hence, by choosing an
appropriate value for the FWHM, the small objects on top of the LSBGs could be removed.
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However, it should be noted that, in this step depending on the size of the LSBGs
and also the size of the foreground objects, the FWHM of the Gaussian kernel and the
DETECT_MAXAREA (maximum area threshold for a source to be detected) needed to detect
the foreground objects would be different. The majority of the masks were created with
FWHM = 2.0” and DETECT_MAXAREA = 200. However, setting a universal value for these
parameters could result in bad masks for some LSBGs. By trial and error, we found out the
combinations of FWHM = [2.0”, 1.25”, 2.50”] and DETECT_MAXAREA = [200, 100] were used
to create the accurate masks for ∼ 40% of LSBGs. The created mask could successfully
mask the contaminants that are on top of the LSBG and preserve the light from the LSBG.

5.3.7 Sérsic fitting

All the astronomical objects from Abell 194 data classified as LSBGs by either LSBG DETR
or LSBT ViT ensemble models were subjected to a single component Sérsic fitting with
Galfit (Peng et al. 2002). This was done to re-evaluate the µ̄e f f and r1/2 values of our
LSBG candidates. We opted for a single-component Sérsic fitting approach to align with
the LSBG search methodology of Tanoglidis et al. (2021b) and Thuruthipilly et al. (2024b).
However, it should be noted that Sérsic fitting may not always capture the complete light
profile of a galaxy.

We used the magnitude (MAG_AUTO) and radius (FLUX_RADIUS) values we obtained from
running the SourceExtractor as an initial guess for running Galfit. We also used A_IMAGE
and B_IMAGE estimated from the SourceExtractor to calculate the initial guess for the axis
ratio b/a (B_IMAGE/A_IMAGE) and was allowed to vary in the range of 0.3 < q ≤ 1.0.
The Sérsic index (n) was initialised at 1 and was allowed to vary only within the range
of 0.2 < n < 5.0. The position angle was initialised at 90 deg and was allowed to vary
without any restrictions to find the optimum angle. As each cutout is centre around the
LSBG candidate, we initialised the X and Y positions as the centre of the cutout which is at X
= 119 pixels and Y = 119 pixels. Furthermore, we allowed the centre of the LSBG candidate
to be varied ±5 pixels for both X and Y.

Prior to the Sérsic fitting, we subtract the local sky from each cut-out since an error in
the sky determination will greatly affect the Sérsic parameters estimated for faint sources
(Bautista et al. 2023). The local sky is estimated as 2.5× median - 1.5× mean of the flux
from the cutout of each LSBG candidate if the median is less than the mean. If the median
is greater than the mean, then the mean is treated as the local sky background (Da Costa
1992). When calculating the total flux from each cutout, a circular region of 10” with an
LSBG candidate at the centre is excluded to avoid the light from the LSBG. An example of
an LSBG fitted with Galfit is shown in Fig. 5.3.

LSBG Masked LSBG Galfit Model Residiual

FIGURE 5.3: Image of an LSBG (RA = 21.82879, DEC=-1.81381) as observed
in HSC in the g-band, the image with all the objects other than LSBG
masked, corresponding Sérsic model fitted by Galfit and the residual are

shown respectively from the left to the right.
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A similar fitting procedure was done for both the g-band and r-band images of our
sample. After the fitting, we excluded all the sources with poor/failed fits with a reduced
χ2 > 3. We have also excluded the cases where the estimated n, q, X and Y values do not
converge and are on the edge of the range specified above. For the remaining galaxies, we
re-applied our g-band sample selection criteria of µ̄e f f > 24.2 mag arcsec−2 and re f f >
2.5”. The µ̄e f f and µ0 values were calculated using the relations (Graham & Driver 2005):

µ̄e f f = m + 2.5log10(2πqr2
1/2), (5.2)

and

µ0 = µ̄e f f + 2.5log10

(
n

b2n Γ(2n)
)

. (5.3)

where µ̄e f f is the mean surface brightness within the effective radius, m is the total mag-
nitude, q is the axis ratio, re f f is the half-light radius in a specific band estimated from
Galfit, µ0 is the central surface brightness, n is the Sérsic index and Γ is the complete
gamma function. For all our measurements, we also applied a foreground galactic extinc-
tion correction using the Schlegel et al. (1998) maps normalised by Schlafly & Finkbeiner
(2011) and a Fitzpatrick (1999) dust extinction law. All the reported values from here on-
wards have been corrected for corrected for the Galactic extinction.

5.3.8 Visual inspection

Only the candidates identified independently by LSBG DETR and LSBT ViT ensemble
models and passed the selection criteria for being an LSBG with the updated parame-
ters from the Galfit were considered for visual inspection. This refined sample was sub-
jected to visual inspection by two authors independently. Candidates identified as LSBG
by both authors were treated as confident LSBGs, and candidates identified as LSBG by
only one author were reinspected together to make a decision. Since visual inspection is
time-consuming, we only resorted to it at the last step to reduce the number of candidates
shortlisted for visual inspection.

To aid in visual inspection, we used the colour images of the LSBG candidate down-
loaded from the DESI Legacy Imaging Surveys Sky Viewer (Dey et al. 2019) as well as the
g-band images from the HSC. Furthermore, the g-band Sérsic models from Galfit were
also inspected visually to ensure the quality of the fits. Each candidate was then cate-
gorised into three classes based on the Galfit model fit and the image: LSBG, non-LSBG
(Artifacts), or misfitted LSBGs. If the model of the galaxy was fitted correctly and the can-
didate showed LSBG features, it was classified as an LSBG. If the candidate shows LSBG
features but does not fit correctly, we classify it as a misfitted LSBG and was fitted again
with different initial parameters or with better masks. Finally, if the candidate does not
have features of an LSBG, we classify it as an artefact or non-LSBG.

5.3.9 Aperture photometry

As mentioned above, Sérsic fitting cannot always capture the complete light profile of a
galaxy and the magnitude estimated from a Sérsic profile may not exactly represent the
correct apparent magnitude of the galaxy. Hence we also perform aperture photometry
using photutils5 for all the LSBGs to estimate the apparent magnitude inside an aperture
of size 8”(∼ 2.9 kpc) centre around the LSBGs. The aperture photometry is performed for
g and r-bands and also for NUV and FUV bands from the GALEX.

5https://photutils.readthedocs.io/en/stable/

https://photutils.readthedocs.io/en/stable/
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The masks used during Sérsic fit are also used for the aperture photometry. However,
since the NUV and FUV data has a resolution of 5” which is larger than the size of most
LSBGs, we unmasked the point objects that were masked on top of the LSBGs to not un-
necessarily mask the data. These masks were created using the g−band images and were
resized to match the pixel scale of the GALEX data. For NUV and FUV photometry the
error from the sky background is estimated by choosing an annulus with an inner radius
of 10” and an outer radius of 20” and estimating the sky background from this region.
Only sources with S/N > 3σ were considered as a confident detection and for the cases
with S/N < 3σ the 3σ value was used to report the upper limit for the NUV and FUV
magnitude. The aperture magnitudes were corrected for foreground Galactic extinction
similarly as discussed in Sect. 5.3.7.

5.4 Results

5.4.1 Model performance on the testing set

As mentioned in the section 5.3.1, we have developed four of each transformer models,
LSBG DETR and LSBG ViT, each with different hyperparameters. Each model is a regres-
sion model, predicting the probability of an input being an LSBG. To improve the com-
bined performance of the transformer models, we create an ensemble for LSBG DETR and
LSBG ViT. Such that the outputs from the 4 models are averaged to predict the probability
of an input being an LSBG. We set the classification threshold at 0.5, meaning inputs with a
predicted probability greater than or equal to 0.5 are classified as LSBGs. The performance
of all the modes is listed in Table 5.2 where the architecture, accuracy and AUROC of all
the models on the test dataset from DES.

TABLE 5.2: Table comprising the architecture, accuracy, true positive rate
(TPR), false positive rate (FPR) and AUROC of all the models in chronolog-

ical order of creation.

Model name Accuracy (%) TPR FPR AUROC
LSBG ViT 1 95.58 0.96 0.05 0.9908
LSBG ViT 2 95.48 0.96 0.05 0.9906
LSBG ViT 3 95.58 0.97 0.06 0.9906
LSBG ViT 4 95.14 0.96 0.05 0.9895

LSBG ViT Ensemble 95.62 0.96 0.05 0.9911
LSBG DETR 1 95.68 0.96 0.04 0.9893
LSBG DETR 2 95.36 0.95 0.04 0.9887
LSBG DETR 3 95.48 0.96 0.05 0.9891
LSBG DETR 4 95.54 0.97 0.06 0.9904

LSBG DETR Ensemble 95.62 0.96 0.05 0.9903

On the test dataset created from the DES, both LSBG DETR and LSBG VIT models
were able to achieve almost the same accuracy (95.62%), TPR (0.96), FPR (0.05) and AU-
ROC (0.99) scores. However, it should be noted that the same metrics do not mean that
the models are identical and give the same prediction probability. For instance, Fig. 5.4
shows the probability predictions of LSBG DETR and LSBG ViT ensemble models. Here,
the LSBG DETR models assign a high probability value to an LSBG and a lower probability
value to an artefact compared to LSBG ViT models.

The TPR and FPR reported in Table 5.2 are computed using a threshold of 0.5 to dis-
tinguish between LSBGs and artefacts. The variation of TPR and FPR as a function of the
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threshold is shown in Fig. 5.5, representing the receiver operating characteristic (ROC)
curve of the model. Fig. 5.5 indicates that both ensemble models can detect more than 90%
of LSBGs even when with a relatively high threshold, such as 0.75.
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FIGURE 5.4: The probability distribution of LSBG DETR and LSBG ViT en-
semble classifier models

5.4.2 Search for LSBGs with HSC in Abell 194 cluster

As mentioned in Sect. 5.3.5, we use SourceExtractor to identify all the objects in the
dataset. By running the SourceExtractor patch by patch with the parameters specified
in Sect. 5.3.5, we identified 170 328 sources. It should be noted that not all the detected
sources are astronomical objects, and a large fraction of these sources might be instrumen-
tal or physical artefacts. To reduce the sample size of the object catalogue, we apply the
selection criteria as mentioned in Sect. 5.3.5. After applying the selection cuts to r1/2, µ̄e f f ,
and q, we have 991 sources detected from the Abell 194, which could be a potential LSBG.
It should be noted that some of the LSBGs might be missed because of the preselection,
and a more relaxed preselection compared to the definition of the LSBG is preferred to
retain as many LSBGs as possible.

After applying the preselection as described in section 5.3.5, we have a crude candi-
date catalogue of LSBGs. Further, we cross-matched the crude catalogue with SDSS DR
16 catalogue Ahumada et al. (2020) to remove the foreground and background galaxies
compared to the Abell 194 cluster. We found 14 galaxies with known redshift and they
were removed, successively reducing the size of the crude catalogue to 977 objects. The
remaining objects in this catalogue could be an LSBG, an artefact, or a non-LSBG (a faint
galaxy but not faint enough to be classified as an LSBG as per the definition that we use in
this work).

To separate faint galaxies from artefacts, we apply our LSBG DETR and LSBG ViT
models separately to all the objects that passed the selection criteria. LSBG DETR models
identified 258 LSBG candidates, and LSBG ViT models identified 261 LSBG candidates
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FIGURE 5.5: The receiver operating characteristic (ROC) curve of the LSBG
DETR and LSBG ViT models.The red and blue lines represent the variation
of FPR and TPR as a function of the threshold for LSBG DETR and LSBG
ViT ensembles, respectively. The red and blue points mark the TPR and FPR

for a threshold = 0.75.

independently and only 234 objects were classified as LSBG candidates by both models.
To maximise the number of LSBGs, an input classified as an LSBG by either one of the
models is treated as an LSBG candidate and passed for the subsequent analysis.

There were 272 sources classified by either one of the ensemble models as LSBG can-
didates and all of them underwent single-component Sérsic profile fitting using Galfit.
Following the Sérsic profile fitting, we reapplied the selection criteria to screen the LSBG
candidates. We applied selection cuts to the n, q, and centre positions X and Y of the fitter
parameters as described in Sect. 5.3.7. These criteria were used to eliminate any poor fits
and artefacts, if present. Two of the authors independently visually inspected the masks
and fitted galaxy profiles to ensure the quality of the fit. After the Galfit and visual in-
spection, there were 159 LSBGs in the data.

To estimate the number of the LSBGs missed by our model, we also repeated the
Galfit and visual inspection of all the 705 objects rejected by the ensemble models. This
was done to have an estimate of the number of false negatives (FN) predicted by the model
and to minimize FN occurrences during transfer learning in the future. We found that our
model missed 12 LSBGs making the total number of LSBGs in around the Abell 194 as 171.
Thus our model was able to achieve ∼ 93% TPR on the HSC dataset which is comparable
to the TPR achieved by the ensemble models on the test data set from DES. The schematic
diagram showing the sequential selection steps used to create LSBGs and UDGs in Abell
194 is shown in Fig. 5.6. A sample catalogue comprising the properties of the identified
LSBGs in this work is shown in Table 5.3. Six examples of LSBGs and UDGs identified
from our study are shown in Fig. 5.7.

Girardi et al. (1998) and Rines et al. (2003) have estimated the comoving radius of Abell
194 as 0.69 h−1 Mpc. Plugging in the cosmological parameters, we get h(0.01781) = 0.7023
and we find that the virial radius, r200 of Abell 194 is 0.9824 Mpc. We find that 12 of the 171
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FIGURE 5.6: Schematic diagram showing the sequential selection steps used
to find the LSBGs and UDGs in Abell 194.

LSBGs are located at distances slightly greater than the virial radius of the cluster where
the most distant LSBG is located 1.15 Mpc away from the cluster centre. However, these 12
galaxies are likely to be part of the Abell 194 cluster and here we treat all these 171 LSBGs
as part of the Abell 194 cluster. Utilizing the redshift of Abell 194, we determine that 28
LSBGs have a half-light radius greater than 1.5 kpc and a central surface brightness greater
than 24.0 mag arcsec−2, thereby classifying them as UDGs. It should be noted that the 28
UDGs are a subset of the 171 LSBs identified in this work.

The distribution of the g-band magnitude of LSBGs and UDGs are plotted in Fig. 5.8a.
The UDGs have a median g-band magnitude of 20.73 mag which is brighter than the me-
dian value of the LSBGs which is 20.23 mag, indicating that our sample has very faint
LSBGs but are not large enough to be considered as UDGs. The distribution of the Sérsic
index (n) of LSBGs and UDGs are plotted in Fig. 5.8b. The Sérsic index of the LSBGs pre-
dominantly lies between 0.5 and 1.5 and has a median value of 0.86. However, the UDGs
have a Sérsic index distribution with a median of 0.76, which is comparatively lower than
the LSBGs indicating that the light distribution of UDGs is more concentrated than that of
the LSBGs. A detailed discussion of the properties of the LSBGs and UDGs identified in
this work is presented in Sect. 5.5.

As mentioned, in Sect. 5.3.9, a more reliable estimate of the apartment magnitude of
the galaxies could be measured from the aperture photometry. We estimated the appar-
ent magnitude in the g,r, NUV and FUV bands along with correcting for galactic extinc-
tion as described in Sect. 5.3.9. 20 LSBGs in our sample had confident detections in NUV
(S/N > 3σ), whereas only 15 LSBGs had confident detection in the FUV. For the rest of
the sample, we estimated the upper limits of the NUV and FUV magnitude based on their
3σ values within the aperture. The magnitudes measured from the apertures were cor-
rected for Galactic extinction and were used to g − r, NUV − r and FUV − NUV colours.
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(A) Six examples of LSBGs identified from Abell 194.

(B) Six examples of UDGs identified from Abell 194.

FIGURE 5.7: The top panel (5.7a) shows six examples of LSBGs identified
from our study are shown in this work. The bottom panel (5.7b) shows six
examples of UDGs identified from our study are shown in this work. Each
cutout of the LSBG and UDG corresponds to a 40” × 40” (152 × 152 pixel2)

region of the sky centred around the LSBG or the UDG in the g-band.
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FIGURE 5.8: The normalised distribution of the g-band magnitude and Sér-
sic index for the LSBGs and UDGs presented in this work are shown in the
left (5.8a) and right (5.8b) panel respectively. The black arrow shows the me-
dian of the LSBG distribution and the blue arrow shows the median of the

UDG distribution in both plots.

In addition, the aperture magnitude of the r-band was used to estimate the absolute mag-
nitude (Mr) in the r-band. Following the stellar mass-to-light ratio vs color relation for LS-
BGs from Du et al. 2020, we used the g-r color of our sample to estimate the stellar masses
(M⋆) of the LSBGs. Similarly, the stellar mass surface density (Σstar) of the LSBG sample
was calculated using the stellar mass-to-light ratio and the surface brightness in r-band
following Eq. 1 of Chamba et al. (2022). A detailed discussion on the physical properties
of the LSBGs and UDGs found in this work is presented in Sect. 5.5.

5.5 Discussion

5.5.1 Transformers as LSBG Detectors

In this study, we investigate the effectiveness of transfer learning for the identification of
LSBGs from datasets deeper than those the model was initially trained on. We have created
two different types of transformer ensembles: the LSBG ViT and LSBG DETR ensembles,
each comprising four transformer models. These ensembles have been trained on the sam-
ple of LSBGS and artefacts identified by Tanoglidis et al. (2021b) and which was further
refined by Thuruthipilly et al. (2024b).

On the test datasets from the DES DR1, the ensemble modes achieved an accuracy of
95.62% and a TPR of 96%. In terms of performance, even though there are slight variations
in the metrics reported by individual transformer models, both LSBG DETR and LSBG
ViT ensemble have almost the same accuracy, TPR, FPR and slightly different AUROC
as shown in Table 5.2. Even though both ensemble models have the almost same perfor-
mance metrics, the distribution of the prediction probabilities of the transformer ensemble
is different as seen from Fig. 5.4. In addition, the total number of LSBGs identified by the
LSBG DETR and LSBG ViT ensembles independently is also different. For instance, among
171 LSBGs identified in this study, 11 LSBGs were mislabelled as an artefact by either one
of the ensemble models.

Another pressing question that demands our attention is why the transformer ensem-
ble models fall short in identifying 12 LSBGs. Even though this accounts for a small frac-
tion of the total number of LSBGs in the data (∼ 8%), we need to have a closer look at
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these 12 missed LSBGs to improve the model performance in the future. The magnitude
distribution of the LSBGs that has been used to train the ensemble models, LSBGs iden-
tified in this work and the LSBGs missed by the model are presented in Fig. 5.9. Here, it
should be noted that the magnitude distribution of the training sample used to create the
ensemble models and the LSBGs identified by the ensemble models have the same lower
limit in magnitude (g ∼ 22.5) and the number of LSBGs with 21.5 < g < 22.5 is very low
(∼ 1.7%). Consequently, 9 out of the 12 missed LSBGs had magnitudes greater than 21.5
indicating a lack of representation of such faint LSBGs in the training dataset. As a result,
the performance of the ensemble models in identifying LSBGs with g ≥ 21 is suboptimal.
Nevertheless, potentially one could refine the ensemble models by retraining them with
very faint LSBGs (g > 22) from simulations or small-scale deep surveys, thereby extending
the models’ performance to a fainter regime.
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FIGURE 5.9: Normalized distribution of g-band magnitudes for the LSBGs
used to train the ensemble models, LSBGs identified by the ensemble mod-
els in the HSC data of the Abell 194 cluster, and LSBGs missed by the en-

semble models in the HSC data of the Abell 194 cluster.

Similarly, analysing the 3 LSBGs missed by the ensemble model which had (g < 21),
it was found these galaxies were very close to a bright galaxy which caused the model to
classify it as a non-LSBG. Examples of the LSBGs missed by the model are shown in Fig.
5.10. The presence of very bright objects introduces a bias in the prediction probabilities
of the ensemble models and it was also found that the effect is more if the bright object is
close to the center of the cutout.

Looking at the FPR predicted by the model, even though 101 objects selected as LSBGs
by the model were classified as non-LSBGs after galfit and visual inspection, calculating
the FPR based on these numbers might be misleading. The rejected sample majorly con-
sisted of three types of objects; galaxies that do not satisfy our LSBG definition but are still
faint with µ̄e f f ∈ 24.0-24.2 mag arcsec−2 (around ∼ 60), very faint blended objects which
are artefacts (around ∼ 10) and instrumental artefacts which the model did not have seen
during training ((around ∼ 30). Simple selection cuts on the morphological parameters
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(A) (B)

FIGURE 5.10: Example g-band images of LSBGs missed by the ensemble
models. The left panel shows an LSBG which is fainter than the training

sample and the right panel shows an LSBG very near to bright galaxies.

can remove the first class. Similarly, the third class of objects could be removed by having
a representative sample of these types of instrumental artefacts in the training set or ap-
plying selection cuts on the goodness of a Sérsic fit since most of the instrumental artefacts
will not converge to give a good Sérsic fit. The second class of contaminants are generally
very faint and are hard to remove and need a visual inspection, but their numbers are very
low compared to the total number of LSBGs. It should be noted that even human inspec-
tors will have trouble finding very faint sources. For instance, 17 sources for which the two
authors disagreed during visual inspection had 14 sources with µ̄e f f > 26.0 mag arcsec−2.

One additional point to be considered from the perspective of LSST or Euclid is the
load of fine-tuning the masks for LSBGs. We are expected to find more than 100 000 LSBGs
in these surveys and ensuring the quality of the masks used for Sérsic profile fitting with
visual inspection would be a time-consuming task. In this scenario, one possible solution
is the development of DL-based segmentation models that could efficiently mask the con-
taminants and surroundings of a galaxy. Similarly, citizen science projects could be used
to confirm the predictions of a DL model for large-scale surveys.

5.5.2 Previous catalogues of LSBGs and UDGs in Abell 194

In total, Tanoglidis et al. (2021b) and Thuruthipilly et al. (2024b) identified 96 LSBGs in
Abell 194, which we call ’LSBGs in DES’ for simplicity from here onwards. Among the
LSBGs in DES, there were 19 LSBGs which could be classified as UDGs based on their
physical size and central surface brightness in the g-band. Similarly, Zaritsky et al. (2022)
have identified 14 UDGs in Abell 194 among which 9 have been included in the ’LSBGs in
DES’ sample.

In our final sample, 13 of the UDGs from Zaritsky et al. (2022) were identified by the
ensemble model and one UDG was later identified when searching through the rejected
samples. Similarly, 95 of 96 LSBGs from the DES sample have been re-identified by the
ensemble model and one LSBG classified as non-LSBG by the model was later found dur-
ing visual inspection. However, in our final catalogue, there are only 84 LSBGs from the
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LSBGs in the DES sample, the remaining 12 have been classified as non-LSBGs since 11
galaxies were found to be slightly brighter (24.0 <µ̄e f f g < 24.2) than our definition and
one LSBG was found to be at a higher redshift (z=0.15) when crossmatched with the SDSS
DR 16 sample. Similarly, 7 LSBGs classified as UDGs based on the measurements from
DES were also rejected as non-UDGs because 6 of them had a physical radius of less than
1.5 kpc and one of them had µ0,g less than 24.0 mag arcsec−2.

One of the main reasons for the rejection of some LSBGs and UDGs from the previous
catalogues is because of the improved masking strategy that we used in this work that
removed small contaminants on top of the galaxies as shown in Fig. 5.3. In shallow data,
these contaminants might not be clearly visible, but with deeper data, these contaminants
are clearly visible and significantly affect the estimation of the morphological parameters
such as Sérsic index and half-light radius during a Sérsic fit. A comparison of the Sérsic
index measurement of the 84 LSBGs identified commonly from LSBGs in DES and from
this work with HSC is shown in Fig. 5.11. The measurements from DES were performed
without masking the contaminants that may reside on top of the LSBGs. As these contam-
inants are very compact objects, the presence of these contaminants tends to increase the
Sérsic index of the LSBG during fitting which is clear from Fig. 5.11. Similarly, because
of the additional light from these contaminants the r1/2 of these galaxies also tends to be
over-estimated. However, the presence of these contaminants does not significantly affect
the magnitude of the galaxy. These trends were also observed for the parameter estimation
of the UDGs in the Coma cluster by Bautista et al. (2023) who also used similar masks to
ours.
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FIGURE 5.11: Comparison of Sérsic index measurement from DES and HSC.
The y-axis shows the Sérsic index of LSBGs estimated without masking the
contaminants reported in Tanoglidis et al. (2021b) and Thuruthipilly et al.
(2024b) from the DES data. The x-axis shows the Sérsic index of the same

LSBGs estimated by masking the contaminants in this work.

Furthermore, an additional factor contributing to the deviation in the Sérsic parame-
ters between this study and those reported by DES is the local sky subtraction. Previous
searches for LSBGs in DES by Tanoglidis et al. (2021b) and Thuruthipilly et al. (2024b) did
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not correctly consider the local sky subtraction. The publicly available DES data have es-
timated the sky background with regions of size ∼ 1′ (Morganson et al. 2018; Bernstein
et al. 2018) which is considerably larger than the size of the LSBGs we investigate in this
work. Sky subtraction over a large area tends to over-subtract the sky influenced by the
presence of bright objects in the data. Which sometimes results in the LSBGs appearing
fainter than their true surface brightness. Failing to correct for local sky subtraction can
lead to inaccurate Sérsic fits, as also highlighted by Bautista et al. (2023).

Despite the exclusion of some LSBGs from the previous DES sample, the number of
LSBGs in the Abell 194 cluster has doubled from 84 to 171. This significant increase is
partly attributed to the deeper sensitivity of the HSC data, exceeding that of the DES data
by an order of magnitude. However, a close inspection of the LSBG sample shows that
the increase in numbers is not solely due to increased depth. The preselection criteria ap-
plied by Sextractor also contribute substantially. For instance, the ratio of r1/2 estimated
with Sextractor and Galfit for LSBGs presented in this work has a median value of 0.8
suggesting that r1/2 estimated by Sextractor yields a slightly smaller radius than from
Galfit. A similar value (∼ 0.8) for the ratio of r1/2 estimated with Sextractor and Galfit
is found for the LSBG sample presented by Tanoglidis et al. (2021b). Hence, our preselec-
tion criteria were relaxed to FLUX_RADIUS_G > 2.0” to account for the selection bias from
the Sextractor in comparison to the preselection condition of FLUX_RADIUS_G> 2.5” used
by Tanoglidis et al. (2021b) and Thuruthipilly et al. (2024b). Consequently, 62 out of the
87 newly identified LSBGs have FLUX_RADIUS_G > 2.0”. With the same preselections as
in Tanoglidis et al. (2021b) or Thuruthipilly et al. (2024b), there are only 25 new LSBGs
which is an increment of ∼ 30%. In the case of the number of UDGs, the preselection
does not significantly have an impact as only 3 UDGs out of 28 have FLUX_RADIUS_G in
the range 2 − 2.5” since 1.5 kpc corresponds to 4.12” at the redshift of Abell 194 cluster.
However, if the cluster was situated slightly further away (z ≳ 0.025) compared to Abell
194 (z = 0.017), then the effects of preselection become significant as the angular size of a
UDG will be comparable to 2.5”.

The radar plot comparing the properties of the LSBGs identified from DES and LSBGs
identified with HSC in Abell 194 is shown in Fig. 5.12. In terms of color (g − r), q and
n, both samples have the same median indicating that both samples are similar in these
properties. As mentioned earlier, the new sample of LSBGs has many small LSBGs in size
which is evident from the median values of the LSBGs detected from DES (1.43 kpc) and
not detected in DES (1.13 kpc). Similarly, as expected the new sample of LSBGs is fainter
than the LSBGs detected in DES which is seen from the high median values of µ̄r, µ0,g,
logΣ⋆, logM⋆ and raperture of LSBGs detected in DES compared to the LSBGs not detected
in DES.
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FIGURE 5.12: Comparison of morphological and physical properties of LS-
BGs identified from DES and the LSBGs not identified from DES. The me-
dian of g − r, q, n, re f f ,g (kpc), µ̄r (mag arcsec−2),µ0,g (mag arcsec−2), logΣ⋆

(M⊙), logM⋆ (M⊙ kpc−2) and raperture are shown in the cyclic order.

5.5.3 LSBG and UDG population of Abell 194 cluster

The catalogue of the LSBGs identified in Abell 194 along with its estimated properties are
given in Table. 5.3. Combining transformers along with visual inspection, in total we find
171 LSBGs. As mentioned in Sect. 5.1, UDGs are a subclass within LSBGs, characterized by
their extended half-light radii (re ≥ 1.5 kpc) and high central surface brightness (µ0 > 24
mag/arcsec2) in the g-band (van Dokkum et al. 2015a). Assuming all the LSBGs found
in this work share the same redshift as Abell 194, we estimate that our sample has 28
UDGs and 143 non-UDGs. It should be noted some of these galaxies may be foreground or
background galaxies and the individual redshifts of these galaxies are needed to confirm
the status of being a UDG.

Since van Dokkum et al. (2015a) found a substantial population of UDGs within the
Coma cluster, the subsequent studies by Koda et al. (2015); Yagi et al. (2016); Mihos et al.
(2015); Lim et al. (2020); La Marca et al. (2022b); Bautista et al. (2023) have identified nu-
merous UDGs in various galaxy clusters. Further investigations have demonstrated that
not only cluster, groups are also abundant with UDGs (Merritt et al. 2016; Román & Trujillo
2017a; Müller et al. 2018; Somalwar et al. 2020; Forbes et al. 2020) and their abundance has
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a near-linear correlation with the mass of the dark matter halo of the cluster (van der Burg
et al. 2017; Mancera Piña et al. 2018; Karunakaran & Zaritsky 2023). The number of UDGs
as a function of host halo mass including the Abell 194 is shown in Fig. 5.13. Karunakaran
& Zaritsky (2023) estimated that the number of UDGs scale as a function of the halo mass
following the relation N = (38 ± 5)(M200

1014 )
0.89±0.04. For the Abell 194 cluster which has a

halo mass of 7.6 × 1013M⊙, this relation predicts 30 ± 4 UDGs.
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FIGURE 5.13: Number of UDGs as a function of halo mass. The cluster UDGs
are from van der Burg et al. (2016); Janssens et al. (2019); Mancera Piña et al.
(2019); Venhola et al. (2022); La Marca et al. (2022a); Bautista et al. (2023)
and are represented by and group UDGs are from van der Burg et al. (2016),

Román & Trujillo (2017a), Forbes et al. (2020)

However, since the UDG definition in the literature is not unique, the sample used by
Karunakaran & Zaritsky (2023) is brighter (µ̄g > 24.0 mag arcsec−2) than our UDG sample
which has µ0,g > 24.0 mag arcsec−2. Using the same definition as used by Karunakaran
& Zaritsky (2023) we have 45 LSBGs satisfying the criteria to be a UDG. This is greater
than the value predicted by Karunakaran & Zaritsky (2023) and shown in Fig. 5.13. As our
primary objective does not involve constraining the relationship between halo mass and
the number of UDGs, we have refrained from recalibrating this relation and have reserved
it for potential future extensions of this study.

As the UDGs are considered a subclass of LSBGs, one might be curious about the dif-
ference in the properties of UDGs and non-UDGs (LSBGs that did not satisfy the condition
to be a UDG). The radar plot comparing the median of the distribution of all the properties
estimated in this work for the UDGs and non-UDGs is shown in Fig. 5.14. On comparing
the median value of g − r color, we can see that both UDGs and non-UDGs have similar
color distribution. The median color of the UDGs reported here is 0.53 which is similar to
the median color of the UDG sample presented in Venhola et al. (2022); Mancera Piña et al.
(2019) and Bautista et al. (2023). Similarly, in terms of axis ratio also both the UDGs and
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non-UDGs have similar distribution and have a median value of ∼ 0.75 indicating that
LSBGs in this sample have a slightly elongated shape.
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Coming to the Sérsic index, the non-UDGs (n ∼ 0.88) have slightly higher median
value compared to UDGs (n ∼ 0.72). These values are consistent with the values reported
for the UDGs in Venhola et al. (2022); Mancera Piña et al. (2019) and Bautista et al. (2023).
In addition, it should be pointed out that the Sérsic index distribution of non-UDGs and
UDGs are similar to the case of dwarf ellipticals as observed by Poulain et al. (2021), sug-
gesting that a significant portion of the sample could be comprised of such sources.

The median value of half-light radius in the g-band of UDGs (1.83 kpc) is higher than
non-UDGs (1.22 kpc) is an effect of UDG being defined as extended sources. Similarly,
The median values of central surface brightness in the g-band (UDG: 24.62 mag arcsec−2,
non-UDG: 23.98 mag arcsec−2), mean surface brightness in the r− band (UDG: 25.05 mag
arcsec−2, non-UDG: 24.29 mag arcsec−2) and stellar mass surface density (UDG: 106.8 M⊙
kpc−2, non-UDG: 106.49 M⊙ kpc−2) are higher for UDGs by the effect of the definition of
UDGs. However, it should be noted that the median of the total stellar mass and appar-
ent magnitude in the r-band of UDGs are greater than non-UDGs. This indicates that the
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UDGs being extended sources have more stellar mass and produce more light in compar-
ison to the non-UDGs.

5.5.4 Cluster-centric properties of LSBGs and UDGs

The spatial distribution of LSBGs and UDGs in the Abell 194 along with the spatial density
of the LSBG is presented in Fig. 5.15. The Abell 194 has a tail of bright galaxies from the
cluster centre to the direction of NGC 519 which are found to be falling towards the cluster
centre (Tempel et al. 2016). The spatial density of the LSBGs at the cluster centre is aligned
with the bright galaxies in the direction of NGC 519 potentially, pointing that the LSBGs
follow the bright galaxies to the cluster centre and the LSBGs might be the satellite galaxies
of the bright galaxies.

The projected distance is often used as a proxy for density within clusters and can be
used to analyse how the environment affects the structural properties of an LSBG or UDG.
The structural and physical properties of the LSBGs and UDGs as a function of the cluster-
centric distance are shown in Fig. 5.16. To facilitate comparison, we assign the area within
a radius of less than 0.4 Mpc around the cluster centre as the inner region of the cluster,
while the region beyond a radius of 0.8 Mpc is considered the outer skirts of the cluster.
The region in between is considered the middle region of the cluster.

The median value of the Sérsic index exhibits a small increment (∼ 0.1) for LSBGs and
UDGs in the inner regions of the cluster compared to its outskirts. However, overall, there
is no significant trend observed in the Sérsic index of both LSBGs and UDGs as a function
of the cluster-centric distance. Meanwhile, the median of the axis ratio of the LSBGs tends
to be higher near the cluster centre (b/a ∼ 0.8) compared to the outskirts of the cluster
(b/a ∼ 0.7). Similarly, the median values of UDGs tend to be ∼ b/a ∼ 0.7 near the inner
region of the cluster and decrease to b/a ∼ 0.6 in the outer region of the cluster (>0.8
Mpc). For both LSBGs and UDGs, we notice a slight bump at a distance of 0.8 Mpc from
the cluster centre. Our observations on the trends in the Sérsic index and axis ratio, align
well with observation with Mancera Piña et al. (2019) and are in good agreement with
expectations from models of dwarf galaxies that have undergone harassment and tidal
interaction processes (Moore et al. 1996; Aguerri & González-García 2009)

The surface brightness distribution presented in Fig. 5.16 shows that LSBGs and UDGs
in the inner regions of the cluster and they are brighter in comparison to the middle region
of the cluster. The lack of faint LSBGs and UDGs in the inner regions might be because of
the destruction of low-mass galaxies by the highly massive galaxies in the cluster centre.
Another possible reason for this could be the non-detection of the faint sources due to the
contamination from the bright sources and the intra-cluster light. However, it should be
also noted that the outer region of the cluster shows a lack of very faint LSBGs. A detailed
follow-up study with improved methodology is necessary to confirm if this is a statistical
bias or corresponds to any physical phenomena.

Recently, Román & Trujillo (2017a) reported a decrease in the effective radius of UDGs
as they lie closer to the cluster centre. In contrast, we have some large UDGs in the inner
regions of the cluster centre. This discrepancy might be due to a projection effect. Alterna-
tively, it could be also due to that the Abell 194 cluster has a different trend compared to
the clusters studied by Román & Trujillo (2017a). As for LSBGs, we do not see any clear
trends and the running median is relatively flat. The trend in the stellar mass distribution
of our sample and the trend reported by Román & Trujillo (2017a) are also not in agree-
ment with each other. Román & Trujillo (2017a) reported a decrease in the stellar mass
as we go towards the cluster centre whereas for our sample we find that the stellar mass
in the inner region of the cluster is relatively high in comparison to the stellar mass of
galaxies in the outskirts.
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FIGURE 5.15: Spatial distribution of the LSBGs and UDGs identified in this
work along with the known LSBGs and UDGs around the Abell 194. The
spatial density of the LSBGs in Abell 194 is presented as contours. The LS-
BGs and UDGs identified in this work are shown in magenta dots and red
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Recently, Venhola et al. (2019b) found that the early type dwarf galaxy population in
the Fornax cluster becomes slightly redder as we go towards the cluster centre in the u −
X where (X ∈ g, r, i) color. UDGs also have shown a similar trend in becoming bluer
as going towards the outskirts of the cluster centre (Román & Trujillo 2017a; Mancera
Piña et al. 2019; Junais et al. 2022). The colours FUV − NUV, NUV − r and g − r as a
function of the cluster centric distance are shown in Fig. 5.17. Similar to the observations
of Venhola et al. (2019b) and Junais et al. (2022) we can see that galaxies become redder in
FUV − NUV and NUV − r colours as we go towards the the cluster centre. These colors
(FUV − NUV and NUV − r) are more sensitive towards the recent star formation rate.
Hence, the visible trend in these colours indicates that the LSBGs in the outskirts have
more recent star formation than those LSBGs near the cluster centre. On the other hand,
our sample of LSBGs does not show any trend in g − r as a function of the cluster-centric
distance up to 0.8 Mpc. However, the LSBGs in the outer parts of the cluster become bluer
in comparison to the LSBGs in the inner and middle regions of the cluster. Similarly, the
LSBGs that have NUV detection in the inner region of the cluster are redder in the g − r
color compared to the LSBGs in the middle and outer regions of the cluster.

The similarities in the trends of cluster-centric properties and morphological proper-
ties for LSBGs and dwarf galaxies indicate that the majority of our LSBG population is
composed of dwarf galaxies. Recently, Lazar et al. (2024) have found that the red to blue
fraction of the dwarf galaxies have similar ratios as LSBGs supporting the argument that
the majority of LSBGs are indeed dwarf galaxies. Hence, these results align perfectly with
the argument in the literature that the UDGs are a subset of dwarf galaxies (Conselice 2018;
Benavides et al. 2023).

5.5.5 Distribution in Color–Magnitude Space

Ultraviolet (UV) observations offer valuable insights into the formation of UDGs and LS-
BGs. As mentioned earlier, UV observations are sensitive to recent star formation, provid-
ing clues to the assembly process of galaxies. Recently, Singh et al. (2019) studied the UV
properties of UDGs in the Coma cluster using the GALEX data and concluded that UDGs
in the cluster are mostly quiescent without any recent star formation. However, a subse-
quent analysis by Lee et al. (2020) showed that in some UDGs near the cluster centre, there
could be recent star formation in the cluster UDGs which is consistent with our findings.

The color-magnitude space can be used to separate the galaxy sample into quiescent
red galaxies and blue star-forming galaxies. In Fig, 5.18, we compare the distribution of the
LSBGs and UDGs from our sample and the UDGs from the Coma cluster from Singh et al.
(2019) and Lee et al. (2020) in the color-magnitude space (NUV − r vs Mr). In our sample,
we have only one UDG with NUV detection which belongs to the blue population. Similar
to the population of Coma UDGs from Lee et al. (2020), we have two LSBGs belonging to
the red population with NUV detection. It should be also noted that the population of
LSBGs and UDGs in our sample are much fainter than the population of UDGs presented
in Singh et al. (2019) and Lee et al. (2020). Our detections are consistent with the extension
of red and blue luminous galaxies from SDSS.
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5.6 Conclusion

In this paper, we explore the possibilities of identifying LSBGs from the dedicated observa-
tion data of cluster Abell 194 with transfer learning using the transformer ensemble mod-
els presented in Thuruthipilly et al. (2024b). We trained the transformer ensemble models
on the LSBG and artefacts from DES DR 1 which is presented in Tanoglidis et al. (2021b)
and Tanoglidis et al. (2021a) and updated by Thuruthipilly et al. (2024b). Subsequently, the
trained transformer models were tested on the data of the Abell 194 cluster images with
HSC which is deeper than the DES DR 1 by two orders of magnitude. Since the instru-
ment used to image in DES DR 1 is different from the HSC, we standardise the data from
both instruments by converting their units into surface brightness units (µJy arcsec−2). On
the standardised DES DR 1 data the transformer ensemble models achieved an accuracy
of 95% which is comparable to the ∼ 94% accuracy of the ensemble models presented in
Thuruthipilly et al. (2024b).
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From the HSC data of the cluster Abell 194, we identified 171 LSBGs and 28 UDGs
which are a subset of the LSBG population. Applying aperture photometry to the avail-
able GALEX data of Abell 194, we discovered that 15 LSBGs in our sample emit radiation
in both NUV and FUV wavelengths, while 5 LSBGs emit radiation only in the NUV wave-
length, indicating recent star formation in these galaxies.

The trained ensemble models achieved a recovery rate of 93% and correctly identified
159 LSBGs and missed 12 LSBGs. We found that among the 12 LSBGs missed by the en-
semble models, 9 LSBGs are fainter than the training sample (g < 21.5 mag) and do not
have a representative sample in the training set. The rest 3 LSBGs missed have bright ob-
jects near the centre of the LSBGs. The reported metrics of the transformer models without
fine-tuning confirm the success of transfer learning and these models could be potentially
applied to deeper datasets.

In this work, we also found that the improved masks and local sky subtraction can
strongly influence the parameters estimated with Sérsic fit which was also noted by Bautista
et al. (2023). Among the affected parameters it was found that the Sérsic index of the LS-
BGs is found to be mostly affected where as the magnitude is the least affected. As a result,
we reject 11 LSBGs found in DES DR 1, as the µ̄e f f estimated with HSC using improved
masks is slightly brighter (24.0 <24.2 mag arcsec−2) than the surface brightness threshold
(24.2 mag arcsec−2).

The newly estimated number of UDGs in Abell 194 with the data from the HSC in
this work support the argument in the literature that the number of UDGs in a cluster is
linearly correlated with the cluster mass (van der Burg et al. 2017; Mancera Piña et al. 2018;
Karunakaran & Zaritsky 2023). However, we also note that the number of UDGs found in
Abell 194 is greater than the predicted number based on the relation from Karunakaran
& Zaritsky (2023). Since we did not have enough new data points to correct the relation
statistically, we left the subsequent analysis in this direction for the future. The S’ersic
index distribution of the UDGs reported in this work is comparable to the values reported
in the literature (Koda et al. 2015; Yagi et al. 2016; Román & Trujillo 2017a; van der Burg
et al. 2017; Venhola et al. 2022; Bautista et al. 2023; Thuruthipilly et al. 2024b). In addition,
it should be noted that the S’ersic index distribution of the UDGs is also comparable to
that of dwarf elliptical galaxies, suggesting that UDGs might be the tail end of the dwarf
galaxy population.

Analyzing the cluster-centric properties of the LSBGs and UDGs in the Abell 194 clus-
ter revealed that those near the cluster centre tend to have higher S’ersic indices than those
in the outer regions of the cluster which is consistent with the observations reported in
Mancera Piña et al. (2019). The brighter LSBGs and UDGs are also found closer to the clus-
ter centre, however, we also note the underrepresentation of faint LSBGs in the outer parts
of the cluster which needs further investigation. A noticeable trend was observed in the
FUV − NUV and NUV − r colors as a function of cluster-centric distance, showing that
the colors tend to become redder towards the center of the cluster. This trend is consistent
with the observations of Venhola et al. (2019b) and Junais et al. (2022). Examining the rela-
tion between NUV − r color and the absolute magnitude in the r band, we found that the
majority of the NUV-emitting LSBGs are in the blue cloud, with only two LSBGs being red
in color, both of which are massive galaxies.
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6
Conclusion and Future Perspectives

Currently, the known best description of the universe is the ΛCDM model. This model
describes a spatially flat universe with dark energy characterized by a constant energy
density, and dark matter consisting of particles with a mass greater than 1 keV. Despite its
success in accurately predicting many observations, such as the anisotropies in the cosmic
microwave background (CMB) radiation (Planck Collaboration et al. 2016) and the forma-
tion of large-scale structures (Davis et al. 1985), the ΛCDM model falls short in addressing
some other challenging questions. These include the nature of dark energy and issues on
the galaxy scale, collectively referred to as small-scale crises. To test the boundaries of the
ΛCDM model and refine our understanding of the universe, we need interesting galaxy
systems that can be used to challenge the predictions of our theoretical models.

Strong gravitational lenses and low-surface-brightness galaxies are two such galaxy
systems that could be used to test the ΛCDM model and its discrepancies with obser-
vations. However, strong gravitational lensing is a rare phenomenon and less than 300
SGLs have been confirmed till now. Similarly, LSBGs are underrepresented in the galaxy
catalogues, even after the majority of the galaxy population is hypothesised to be LSBGs.
Hence, due to their characteristic nature, these galaxy systems are hard to correctly iden-
tify from the enormous amount of data generated in the current and upcoming surveys.

In this thesis, as a first step towards using SGLs and LSBGs to refine our understanding
of our universe, I have developed deep learning (DL) based algorithms known as trans-
formers for the identification of SGLs and LSBGs from large-scale surveys. Transformers
are DL models introduced in natural language processing that operate on the principle of
attention. This mechanism allows the model to selectively focus on relevant parts of the
input, similar to how humans can selectively listen to relevant information in a conver-
sation. I analysed the performance of transformers for the analysis of astronomical data
for the first time and I have shown that this is a robust algorithm that could be adapted
to any domain of astronomy. A detailed discussion of the results and the planned future
perspectives are described in Sections 6.1 and 6.2.

6.1 Conclusions

SGL search with transformers

The upcoming large-scale surveys such as LSST and Euclid are expected to identify around
105 SGLs by analysing around 109 sources (Collett & Auger 2014; Ivezić et al. 2019; Verma
et al. 2019; Euclid Collaboration et al. 2022b). In this scenario, relying on semi-automated
methods or traditional approaches such as crowd science will not be a practical solution.
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Hence, in Thuruthipilly et al. (2022), I explored the possibilities of a new deep-learning
technique known as the transformers for the identification of SGLs from large-scale sur-
veys. The simulated dataset created by Metcalf et al. (2019) for the Bologna lens challenge
was used to test the performance of transformer models with different architectures and
compare their performance with the winning models (mostly CNNs) that participated in
the Bologna lens challenge. In addition, it is also shown that the transformers are capable
of performing on par with the state-of-the-art CNNs and the best models I have created
were able to outperform all the CNN models that participated in the Bologna lens chal-
lenge.

Since the transformers have been used for the classification of strong gravitation lenses
for the first time, I explored in detail how the hyperparameters of the models enhance
their performance. The performance of the models was found to increase with the num-
ber of self-attention layers and saturates after a certain number depending on the training
dataset. The transformer models is able to filter the relevant features of the image, which
can prevent overfitting to an extent and show a more stable performance compared to
CNNs. Generally, the transformers are found to be more confident binary classifiers (pre-
dicting a classification score of p ∼ 0 or p ∼ 1) in comparison to CNNs. In addition,
the transformer models trained on a simulated dataset based on KiDS DR 4 are capable
of identifying SGL systems from the real data of KiDS DR4 and perform similarly to the
CNNs presented in Petrillo et al. (2019). However, it should be noted that the simulated
dataset used to train the model does not exactly capture the complexity of the real data and
hence directly testing our model without fine-tuning will result in a considerable number
of false positives as seen in my follow-up studies; Thuruthipilly et al. (2024a) and Grespan
et al. (2024) in which I am the second author.

LSBGs in DES DR 1

It is estimated that the majority of the galaxy population (∼ 50%) resides in the LSB regime
(Martin et al. 2019). Nevertheless, they are poorly represented in the current galaxy cata-
logues. To alleviate this issue, I study the use of transformers for the identification of LS-
BGs from dark energy survey data release 1 (DES DR 1) and increase the sample size of
the LSBGs. For this, I used the 23 790 LSBGs from the DES DR1 identified by Tanoglidis
et al. (2021b) to train two different transformer ensemble models capable of separating
LSBGs from artefacts in the DES DR 1 (Thuruthipilly et al. 2024b). The trained ensemble
models identified 4 083 new LSBGs from the DES DR 1 which was previously missed by
Tanoglidis et al. (2021b) and increased the sample size of LSBGs by 17%. Combining the
sample of LSBGs from Tanoglidis et al. (2021b) with the newly identified 4 083 LSBGs, the
total number of LSBGS in DES DR 1 is increased to 27 873 effectively increasing the num-
ber density of LSBGs in DES to 5.57 deg−2 from 4.75 deg−2. Hence, extrapolating based
on this number density of LSBGs, we are expected to find more than 100 000 and 80 000
LSBGs from LSST and Euclid, respectively. Since the LSST and Euclid are deeper than DES
DR 1 by 2 orders of magnitude, the projected estimate of the LSBGs to be found from LSST
and Euclid could only be treated as a lower limit.

The distribution of the morphological parameters, such as the Sérsic index and axis ra-
tio, of the total LSBG sample from the DES DR 1 is similar to that of the dwarf galaxy popu-
lation. This similarity indicates that most galaxies in our sample are likely dwarf galaxies.
I divided the LSBG sample based on their g − i color into blue and red galaxy samples,
to find that ∼ 70% of the LSBGs are blue galaxies, while the remaining ∼ 30% are red
galaxies. This result aligns with recent findings by Lazar et al. (2024) for dwarf galaxies,
supporting the argument that the majority of LSBGs are indeed dwarf galaxies. Further-
more, I investigated the clustering tendencies of LSBGs and discovered that they cluster
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more strongly than high-surface-brightness galaxies (HSBGs), driven predominantly by
the red LSBGs rather than the blue LSBGs. By cross-matching the total LSBG sample from
DES DR1 with the X-ray-selected galaxy cluster catalogue from the ROSAT All-Sky Sur-
vey compiled by Xu et al. (2022), a total of 1310 LSBGs were identified to have associated
with clusters. Among them, 317 LSBGS could be classified as ultra-diffuse galaxy (UDG)
candidates. The LSBGs associated with the cluster showed a weaker trend in color with
cluster-centric distance resulting in red LSBGs being located closer to the cluster center
compared to those in the outer regions. However, no such significant trend was observed
for UDGs. Furthermore, both LSBGs and UDGs tend to be larger in physical size as they
are situated farther from the cluster center. These results are promising for the analysis of
the LSBGs from the upcoming large-scale surveys such as LSST and Euclid.

LSBGs & UDGs in Abell 194 cluster

The LSST and Euclid are expected to be two orders of magnitude deeper than DES DR1.
Therefore, in my next work, I analyzed how well transformer models trained on shallower
data could identify LSBGs and UDGs in deeper data. The transformer ensemble models
trained on DES DR1 were tested on the data of the Abell 194 cluster (which is also imaged
in DES DR 1), imaged with the Hyper-Suprime-Cam (HSC) and has a comparable depth to
10-year LSST data. To account for differences in imaging from DES and HSC, both image
data were converted into surface brightness units, ensuring they had similar average pixel
values for corresponding spatial regions. After searching with the transformer models and
a visual inspection, 171 LSBGs (87 new) among which 28 are UDGs (16 new) were identi-
fied. The transformer ensemble models trained on the shallow data were able to identify
93% of the LSBGs without any fine-tuning and missed only 12 LSBGs on a deeper dataset.
These results are promising as we can use the existing sample of LSBGs from the shallower
datasets to train and identify LSBGs from the upcoming large-scale surveys such as LSST
and Euclid and need not resort to semi-automated methods. In this analysis, I improved
the masks of the LSBGs by correctly masking small contaminants that may be present on
top of the LSBGs. I found that the masks and the subtraction of the local sky background
greatly influence the parameters estimated with Sérsic fit.

The newly estimated number of UDGs in Abell 194 is in agreement with the observa-
tions in the literature that the number of UDGs in a cluster is linearly correlated with the
cluster mass (van der Burg et al. 2017; Mancera Piña et al. 2018; Karunakaran & Zaritsky
2023). Similar to the findings in our previous work (Thuruthipilly et al. 2024b), the Sérsic
index distribution of the UDGs is found to be similar to that of dwarf elliptical galaxies
indicating that the UDGs might be the tail end of the dwarf galaxy population. Analysing
the cluster-centric properties of the LSBGs and UDGs in the Abell 194 cluster showed that
the LSBGs and UDGs near the cluster centre tend to have higher Sérsic index than those
in the outer parts of the cluster. Similarly, the brighter LSBGs and UDGs are also found
to be near the cluster centre. Applying aperture photometry on the available GALEX data
of Abell 194, it was also found that 15 LSBGs in Abell 194 emit radiation in both NUV
and FUV wavelengths, and 5 LSBGs emit radiation in the NUV wavelength, indicating
recent star formation in these galaxies. There was a noticeable trend in the FUV − NUV
and NUV − r colors as a function of cluster-centric distance, showing that the colors tend
to become redder towards the center of the cluster which is in agreement with the obser-
vations of Venhola et al. (2019b) and Junais et al. (2022). Examining the relation between
NUV − r color and the absolute magnitude in the r band, it was found that the major-
ity of the NUV-emitting LSBGs are in the blue cloud with only two LSBGs being red in
color which both are massive galaxies. The results from this work once again show that
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the transformers can be successfully adapted for the analysis of the data from upcoming
large-scale surveys such as LSST.

6.2 Future perspectives

Recently, as a follow-up on my results in Thuruthipilly et al. (2022), Grespan et al. (2024)
identified 71 high-confidence SGLs, including 44 entirely new ones, by fine-tuning the
best-performing models from Thuruthipilly et al. (2022) with known lens candidates in
KiDS DR4. However, it should be noted that the systems identified with deep learning
models are only SGL candidates and we need spectroscopic redshifts of the source and
the lensing galaxy to confirm their status as SGL. Dedicated follow-up spectroscopic sur-
veys such as the Sloan Lens Advanced Camera for Surveys (SLACS; Bolton et al. 2008),
Strong Lensing Legacy Survey (SL2S; Sonnenfeld et al. 2013) and ASTRO 3D Galaxy Evo-
lution with Lenses (AGEL; Tran et al. 2022) have been employed in the past to confirm
and compile the current known sample of SGLs. The upcoming surveys using the 4-metre
Multi-Object Spectroscopic Telescope (4MOST) would increase the confirmed number of
SGLs and the spectroscopic data could be used to estimate the stellar velocity dispersion
of the lensing galaxy. As noted by Biesiada et al. (2010) and Cao et al. (2015), knowing the
redshifts of the lensing galaxy, source galaxy and the velocity dispersion of the lensing
galaxy could be used to constrain the cosmological models.

However, obtaining the spectroscopic data would be challenging for the large number
of SGLs to be discovered in LSST and Euclid. Hence, as a future follow-up, I am planning
to develop ML-based segmentation models which are capable of separating the data of
the SGL system into source galaxy, lens galaxy and background which could be used to
estimate the lensing parameters such as the Einstein radius and photometric redshifts of
the lensing galaxy and source galaxy. By fitting the light profile of the lensing galaxy to
a Sérsic profile, one could obtain the surface brightness (µe) and the effective radius (Re)
in angular scale which in turn could be used to estimate the velocity dispersion using the
fundamental plane relation (logRe = alogµe + blogσ0). However, it should be noted that
the coefficients a and b of the fundamental plane relation should be estimated indepen-
dent of cosmology. This could be achieved by training an artificial neural network on the
publicly available supernova Ia data set to predict the distance by knowing the redshift.
Knowing the distance to the lensing galaxy independent of cosmology, one could estimate
the physical effective radius and calibrate the fundamental plane relation independent of
cosmology.

Coming to the LSBGs and UDGs that I have presented in this work, it should be noted
that they are only LSBG or UDG candidates as we do not have the spectroscopic redshift of
these galaxies to confirm their status as LSBGs and UDGs. However, it is unlikely that the
majority of the reported sample are false positives. It is essential to have the redshift infor-
mation to estimate the physical properties of the LSBGs and UDGs. However, due to their
characteristic faintness, the spectroscopic data of LSBGs is hard to obtain. For instance, cur-
rently, the known number of UDGs with spectroscopic data is around 50 (Kadowaki et al.
2021). Hence we need dedicated follow-up observations of LSBGs to understand them bet-
ter. In the future, I am planning to conduct a dedicated large-scale spectroscopic observ-
ing campaign to create a large sample of LSBGs with spectroscopic information using the
current and upcoming instruments. Examples of these instruments include the multi-unit
spectroscopic explorer (MUSE) at the very large telescope (VLT), the multi-object double
spectrographs (MODS) at the large binocular telescope (LBT), the keck cosmic web im-
ager (KCWI) at the keck observatory, the multi-espectrógrafo en GTC de alta resolución
para astronomía (MEGARA) at the gran telescopio Canaris (GTC), and Bluemuse at the
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VLT. In addition, currently, I am a co-investigator of two observing proposals submitted
for field blue UDG observations. The first proposal is to observe 20 field-blue UDG candi-
dates from the catalogue of Zaritsky et al. (2022) using the multi-purpose instrument for
astronomy at low resolution (MISTRAL) in the Haute-Provence Observatory to estimate
the spectroscopic redshifts of the UDGs. The second proposal is a follow-up of 20 field
blue LSBGs that I found in Thuruthipilly et al. (2024b) using LBT/MODS to estimate their
redshifts and further study their physical properties such as metallicity and star formation
surface density of some detected regions. For the sample in both of these observations,
we have complimentary data in g, r, z bands UV data from GALEX for some of them. If
the proposal gets accepted, we will have the spectroscopic data for ∼ 40 UDG candidates
which could be used to improve our understanding of the field UDG population.

Most of the LSBGs that I have found from DES Thuruthipilly et al. (2024b) including the
sample from Tanoglidis et al. (2021b) are blue. Hence, some fraction of these LSBGs would
likely have HI counterparts which could be detected with current and upcoming radio
telescopes such as very large array (VLA), the MeerKAT radio and the square kilometre
array (SKA). Having well-resolved HI observations will help us to constrain the dynamics
of the LSBGs and test different dark matter models similar to the work by Montes et al.
(2024). I am also planning to cross-match the sample of LSBGs with the existing catalogues
of multi-wavelength observations to enhance our understanding of the LSBG population
(e.g., IR: to study dust in LSBGs, sub-mm: to probe molecular gas content in LSBGs, UV: to
estimate the star formation histories of LSBGs, X-ray: investigate AGN presence in LSBGs).

One of the interesting observations we found that needs detailed follow-up is that
the red LSBGs tend to cluster strongly in comparison to red HSBGs. However, since we
do not have the spectroscopic redshifts of the LSBGs, we can not confirm if it is due to
the projection effect or any bias in the LSBG sample that we have created. A detailed
follow-up study is planned using the marked correlation function instead of the angular
correlation function. The idea is to study how different galaxy properties of the LSBGs and
HSBGs affect the clustering strength of the LSBGs and HSBGs (Sureshkumar et al. 2021).
In addition, we are also planning to obtain robust photometric estimates for LSBGs and to
use the photometric redshifts of the LSBGs to investigate if the LSBGs show similar trends
in spatial clustering.

Recently, Lazar et al. (2024) observed that the morphological classification of the dwarf
galaxies into early-type galaxies (ETGs) and late-type galaxies (LTGs) cannot be correlated
to its morphological parameters as seen for the massive galaxies. Similarly, Vega-Ferrero
et al. (2021) also found that ML morphological classification models trained on the brighter
galaxies can not perform well on fainter galaxies. Since the majority of the LSBG sample,
will belong to the dwarf galaxy population, we are planning to split our LSBG sample from
DES DR 1 based on their morphology into ETGs (elliptical and lenticular galaxies) and
LTGs (spiral and irregular galaxies). Then use the sub-samples with different morpholo-
gies to investigate how the morphology of the LSBGs correlates with their morphological
properties and how these correlations are different from the HSBGs.

One other major focus in future projects is to investigate the UDG population to test the
different UDG formation scenarios. UDGs are an interesting sub-class of LSBGs and vari-
ous formation mechanisms have been proposed which are still being debated. Currently,
UDG formation scenarios predict that the red UDGs will be rare in the field and estimating
the red and blue fraction of the observed field UDGs will be able to confirm this predic-
tion. However, it should be noted that the red field dwarf galaxy population is observed to
be around 40% (Lazar et al. 2024). If UDGs indeed belong to the subset of dwarf galaxies,
exploring the underlying reasons for the distinct color distributions between UDGs and
dwarfs would help us understand the UDG formation channels.



132 Chapter 6. Conclusion and Future Perspectives

Current searches for UDGs have found that the UDGs are found abundant in clusters
and they scale in proportion to the halo mass of the cluster (van der Burg et al. 2017;
Mancera Piña et al. 2018). Thanks to my collaboration with Prof. Jin Koda, I have dedicated
HSC observations of 8 clusters including the Coma and Hydra clusters. I am planning to
use the transformer models that I have developed in Thuruthipilly et al. (2024b) to find
the LSBG and UDG population in these 8 clusters. The LSBG population found from these
clusters can be used to constrain the slope of the luminosity function. In contrast, the UDG
population can be used to constrain the relationship between the halo mass of the cluster
and the number of UDGs in the cluster. In addition, a collaboration with Prof. Jin Koda is
also planned to find globular clusters in the UDGs found from these 8 clusters to estimate
the halo mass of the UDGs.

The LSBG and UDG population in the early universe is still unexplored realm due
to their lack of detection in large-scale surveys. However, with dedicated observations
with powerful telescopes such as the Hubble Space Telescope (HST) and James Web Space
Telescope (JWST), we will be able to probe the LSBG population of the early universe and
how they have evolved. For instance, Bachmann et al. (2021) used the HST observation to
probe the LSBGs in clusters at z > 1 and found that the distant UDGs are under-abundant
by a factor of ∼ 3 compared to local UDGs. Similarly, Carleton et al. (2023) observed the
faint population of galaxies in the El Gordo cluster situated at z ∼ 0.87 with JWST and
concluded that multiple formation channels are responsible for UDG formation. However,
these observations are done only for small samples of galaxies and we need to extend
these analyses to more high-z LSBGs to have statistically confident conclusions. Hence in
the future, I am planning to use HST, JWST and extreme large telescope (ELT) to probe the
high-z LSBGs and compare their properties with local LSBGs to analyse the evolution of
galaxies in the faint regime.

In summary, the SGLs and LSBG population holds the answer to many questions such
as the nature of dark matter and dark energy, the contribution to baryons in the local
universe by LSBGs and solutions to small-scale problems. The coming age of data will
help us to get closer to these answers and the methodologies that I have developed in this
thesis will be a stepping stool for this. With the above-mentioned future projects planned
I plan to take part in this quest.
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