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““Why do we fight, Kal, why do we keep going?”
“I don’t know, I’ve forgotten.”
“It’s so we can be with each other.”
“They all die, Tien. Everyone dies.”
“So they do, don’t they?”
“That means it doesn’t matter, none of it matters.”
“See, that’s the wrong way of looking at it. Since we all go to the same place in the end, the moments
we spent with each other are the only things that do matter. The times we helped each other.” ”

Brandon Sanderson, Rhythm of War
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NATIONAL CENTRE FOR NUCLEAR RESEARCH

Abstract
Search for galaxy mergers in big sky surveys

Luis E. SUELVES

During their lifecycle and evolution, galaxies can approach each other and collide,
becoming some of the most impressive views in the sky. These are galaxy mergers, as their
interaction can result in two or more galaxies merging into one. These galaxies show a high
variability of morphological distortions due to the tidal forces arising during the process.
Their aspect depends on the relative masses, the stage within the process, the line-of-sight
projection in the sky, the brightness, distance, and size of the merging members, and the
properties of the observation and instruments.

This thesis covers the studies I carried out to classify galaxy mergers in the big datasets
obtained from wide sky observations. The surveys I worked with are the Sloan Digital
Sky Survey (SDSS) and the deeper Subaru/Hyper Suprime-Cam (HSC). Both preceded
the upcoming Large Survey of Space and Time (LSST), which will be carried by the Vera
Rubin Observatory. LSST will capture in one night the same amount of data that SDSS
collected over nearly a decade. The steep increase of data size from survey to survey has
made it imperative to find automatized techniques to treat the data. For that, I worked on
dimensionality reduction methods, on the image calibration, and on Machine Learning
(ML) techniques such as Neural Networks (NN) or dimensionality reduction methods.

In this thesis, I describe the discovery and development of a new potential methodology
to identify galaxy mergers in large surveys. This method is based on the effect that the
surrounding of galaxies has in the sky background analysis of the astronomical image. It
was discovered when testing the performance of a NN using only photometric information.
We trained it on a class-balanced dataset of mergers and non-mergers built out of SDSS
galaxies, classified visually by online volunteers in the Galaxy Zoo Data Release 1 (GZ
DR1). Testing multiple combinations of the photometric parameters as NN inputs led us
to find how the SDSS DR6 sky background error was capable of tracing galaxy mergers
with a training-set accuracy of 92.64 ± 0.15 % test-set accuracy of 92.36 ± 0.21 %. Moreover,
studying the sky error plane formed by the g and r bands revealed that a decision boundary
line is enough to achieve an accuracy of 91.59%. The interpretation of this result is that the
sky background error is tracing low signal-to-noise features around the observed galaxies.

The success of the sky error boundary led us to test its extension to a wider set of
galaxies from SDSS DR6. This was in fact the whole GZ DR1 set. We studied the presence of
merging galaxies of various types in different regions of the diagram. It was also found that
non-merging galaxies with nearby stars and non-interacting galaxies could appear in the
regions populated by mergers. In order to avoid this contaminated non-mergers, we built a
decision tree that discarded galaxies with nearby stars or galaxies too far to be potentially
colliding. This provided a 67.07 % of dirty non-mergers that were successfully discarded,
and a 72.44 % percent of mergers that were correctly retained. Thus, further tailoring of our
approach with focus on reducing the contamination would make the boundary capable of
finding SDSS sources.

Finally, we tested how to implement the sky error method in the deeper HSC images.
We used images on the North Ecliptic Pole (NEP), available through the AKARI-NEP
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collaboration. In this field, I joined the ML-based search for mergers in the HSC images of
the North Ecliptic Pole (NEP) led by my auxiliary supervisor dr. William J. Pearson. We
confirmed visually the merger candidates identified by the model and published the first
catalogue of mergers in the NEP. The Galaxy Zoo: Cosmic Dawn! program provided a
follow-up set of morphological classifications, from which I selected a sample for the HSC
sky error extension. Within an aperture around each source, I estimated the background
and obtained the distribution of low Signal-to-noise pixels. Because the sky error in
SDSS is computed during the sky background measurement, I also created my own data
reduction, making sure the Low Surface-Brightness (LSB) features from the tidally striped
material around the mergers are not lost. I compared the resulting images with and without
subtraction of the dithering-based background model, and concluded it does not eliminate
the LSB features in the image. I calculated multiple parameters on the LSB pixels, observed
the parameter space through dimensionality reduction methods, and found that they have
the potential of creating a new area where mergers can be found.

Overall, in this thesis I demonstrate that galaxy mergers can be identified in large sky
surveys by the effect that the low signal-to-noise stripped material has around them in the
images.
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Streszczenie
Search for galaxy mergers in big sky surveys

Luis E. SUELVES

Podczas swojego cyklu życia i ewolucji galaktyki mogą zbliżać się do siebie i zderzać,
tworząc jedne z najbardziej imponujących widoków na niebie. Interakcja galaktyk może
skutkować połączeniem się dwóch lub więcej galaktyk w jedną. Galaktyki w trakcie
zderzeń wykazują dużą rozmaitość zniekształceń morfologicznych spowodowanych siłami
pływowymi powstającymi podczas tego procesu. Wygląd układu galaktyk w trakcie
zderzenia zależy od ich stosunku mas, etapu procesu, orientacji względem linii widzenia,
jasności, odległości i rozmiaru łączących się galaktyk, ale także właściwości teleskopów i
kamer.

Niniejsza rozprawa obejmuje badania, które przeprowadziłem w celu wykrywania i
klasyfikowania zderzeń galaktyk w dużych zbiorach danych uzyskanych z obserwacji
dużych obszarów nieba. Przeglądy, z którymi pracowałem, to Sloan Digital Sky Survey
(SDSS) i głębszy Subaru/Hyper Suprime-Cam (HSC). Oba poprzedzają nadchodzący Large
Survey of Space and Time (LSST), który będzie prowadzony przez Vera Rubin Observatory
i który w ciągu jednej nocy będzie zbierał taką samą ilość danych, jaką SDSS zebrał przez
prawie dekadę. Gwałtowny wzrost rozmiaru danych z dekady na dekadę sprawa, że
konieczne stało się rozwinięcie zautomatyzowanych technik przetwarzania danych. W
tym celu pracowałem nad metodami kalibracji obrazu i technikami uczenia maszynowego
(ML), takimi jak sieci neuronowe (NN) lub metody redukcji wymiarowości.

W rozprawie opisuję odkrycie i rozwój nowej potencjalnej metodologii identyfikacji
zderzeń galaktyk w dużych przeglądach. Metoda ta opiera się na wpływie, jaki otoczenie
zderzających się galaktyk ma na tło nieba na zdjęciu astronomicznym. Efekt związany
z tłem został odkryty podczas testowania wydajności sieci neuronowej wykorzystującej
wyłącznie informacje fotometryczne. Trenowaliśmy sieć na zrównoważonym klasowo
zbiorze danych galaktyk łączących się i niełączących się, stworzonym z galaktyk SDSS,
sklasyfikowanych wizualnie przez ochotników w Galaxy Zoo Data Release 1 (GZ DR1).
Testowanie wielu kombinacji parametrów fotometrycznych jako danych wejściowych NN
doprowadziło nas do odkrycia, w jaki sposób błąd tła nieba SDSS DR6 był w stanie śledzić
fuzje galaktyk z dokładnością dla 92,64 ± 0,15 % zestawu treningowego i z dokładnością
92,36 ± 0,21 % dla zestawu testowego. Co więcej, badanie płaszczyzny błędu nieba
utworzonej przez pasma g i r ujawniło, że graniczna linia decyzyjna jest wystarczająca do
osiągnięcia dokładności 91,59%. Interpretacja tego wyniku jest taka, że błąd tła nieba jest
wrażliwy na źródła o niskim stosunku sygnału do szumu wokół obserwowanych galaktyk,
w tym wypadku ogony pływowe zderzających się galaktyk.

Sukces metody opartej na błędzie tła nieba skłonił nas do przetestowania jej rozsz-
erzenia na szerszy zbiór galaktyk z SDSS DR6. W rzeczywistości był to cały zbiór GZ DR1.
Zbadałem obecność łączących się galaktyk różnych typów w różnych regionach diagramu.
Okazało się, że galaktyki nie łączące się z pobliskimi gwiazdami i galaktyki nie oddziałujące
ze sobą mogą również pojawiać się w regionach zajmowanych przez galaktyki łączące się.
Aby uniknąć tych zanieczyszczeń, zbudowałem drzewo decyzyjne, które odrzuca galaktyki
z pobliskimi gwiazdami lub galaktyki zbyt odległe, aby mogły potencjalnie się zderzyć.
Zapewniło to 67,07 % brudnych nie-zderzeń, które zostały pomyślnie odrzucone, oraz 72,44
% procent zderzeń, które zostały poprawnie sklasyfikowane. Zatem dalsze dostosowanie
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tego podejścia zoptymalizowane w kierunku zmniejszenia zanieczyszczeń sprawiłoby, że
granica byłaby w stanie prawidłowo sklasyfikować źródła SDSS.

Na koniec przetestowaliśmy, jak wdrożyć metodę błędu nieba na głębszych obrazach
HSC. Wykorzystaliśmy obrazy północnego bieguna ekliptycznego (NEP), dostępne w
ramach współpracy AKARI-NEP. W tej dziedzinie dołączyłem do opartego na ML wyszuki-
wania zderzeń na obrazach HSC bieguna północnej ekliptyki (NEP), prowadzonego przez
mojego promotora pomocniczego dr. Williama J. Pearsona. Potwierdziliśmy wizualnie
kandydatury na zderzające się galaktyki zidentyfikowane przez model i opublikowal-
iśmy pierwszy katalog zderzeń w NEP. Program Galaxy Zoo: Cosmic Dawn! dostarczył
kolejny zestaw klasyfikacji morfologicznych, z których wybrałem próbkę do rozszerzenia
błędu nieba HSC. W obrębie apertury wokół każdego źródła oszacowałem tło i uzyskałem
rozkład pikseli o niskim stosunku sygnału do szumu. Ponieważ błąd nieba w SDSS jest
obliczany podczas pomiaru tła nieba, skonstruowałem również własną metodę redukcji
danych, upewniając się, że cechy niskiej jasności powierzchniowej (LSB) z materiału pasów
pływowych wokół zderzających się galaktyk nie zostaną utracone. Porównałem obrazy
z różnymi podejściami do problemu odjęcia tla, dzięki czemu doszedłem do wniosku, że
metoda stosowana standardowo dla danych HSC zachowuje elementy o niskiej jasności
powierzchniowej w stopniu wystarczającym do wykrywania zderzeń galaktyk. Obliczyłem
wiele parametrów dla pikseli LSB, zbadałem przestrzeń parametrów za pomocą metod
redukcji wymiarowości i stwierdziłem, że mają one potencjał utworzenia nowego uproszc-
zonego obszaru, w którym można znaleźć zderzenia galaktyk.

Podsumowując, w rozprawie wykazałem, że zderzenia galaktyk mogą być identy-
fikowane w dużych przeglądach nieba dzięki efektowi, jaki wywiera na tło nieba wokół
nich materiał o niskim stosunku sygnału do szumu.
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CHAPTER 1

Introduction

The thesis documented in the following pages focuses on galaxy mergers and their iden-
tification in modern astronomical surveys. The underlying theme is the astrophysics of
Galaxies, their evolution and how they transform through these merging interactions. As-
trophysics as a field itself attempts to understand the mechanisms and processes governing
every object of the sky. Galaxies are one of the most essential types among them: they delin-
eate the Universe’s large-scale structure, as its main building blocks, and at the same time
they are composed by the smaller astrophysical elements we know from our own Milky
Way: stars, planets, black holes, gas, etc. The evolution and processes in galaxies depend
on the dynamics of their inner components, their whole aspect, and their surrounding
environment.

1.1 Galaxies

It can be considered that the concept of galaxies was initially coined after the – nowadays
known as – "Great Debate" in 1920, where the scientists Harlow Shapley and Heber D.
Curtis held opposing positions about the nature of the spiral nebulae observed at that
time (e.g. Hoskin, 1976; Smith and Berendzen, 1982; Trimble, 1995, among many). The
centre of the debate was not just the nature of those puzzling objects, but the scale of the
Universe itself. Many points were made by the two scientists and the audience, based on
the evidence they had at that time, their own research, and their backgrounds. A somewhat
definitive conclusion on this mystery around the spiral nebulae was given by the discovery
of Cepheid-type variable stars in the M31 Andromeda nebula by Edwin Hubble. These
are stars that emit oscillating energy levels in periodic intervals, where the period and
the total emitted energy are related to each other by what is known as period-luminosity
relation (Leavitt and Pickering, 1912). Due to the nature of light propagation, given our
detected energies and the known emission, their actual distance can be calculated by the
relation between the two energies, (see Fernie, 1969, for a historic review of this relation).
The Hubble (1925)’s catalogue of Cepheids in both M31 and M33 confirmed, through the
light curves published in Hubble (1926) and Hubble (1929), respectively, that both objects
are located much further than the Magellanic clouds, becoming the conclusive evidence
that those two nebulae are "island universes" as our own Milky Way.

Galaxy science took off at that time and has gone a long way since then. These universe
islands have been found to be composed by the many of the components that we find in
our Milky Way, ranging from gas-rich star forming regions to the central Super Massive
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Black Holes (SMBH). Despite they have shown to be much smaller than the separation
between them, that does not imply galaxies do not interact with each other but quite the
opposite. In this introduction, I will attempt to review the most relevant aspects regarding
galaxy components, morphologies, and evolution models that are currently known and
that are in the edge of the understanding of the astrophysics community.

1.1.1 Components of galaxies

Present day models indicate that a galaxy is mainly formed by dark matter, gas, dust, and
stars, in varying amounts and proportions.

1.1.1.1 Dark Matter

Currently, the most widely accepted cosmological model of our Universe is the ΛCDM
model, and one of its most fundamental aspects is that the components of galaxies are
bound together due to the gravitational well of their host dark matter halo (White and Rees,
1978). Dark matter cannot be observed directly due to its lack of interaction with light, and
while this makes it technically impossible to observe directly, there are many indications of
its existence due to its effect on the mass distribution and the dynamics of galaxies. The first
hints of its presence in fact appeared in galaxy studies, in the separate discoveries made by
Fritz Zwicky and Vera Rubin.

Fritz Zwicky analysed the dynamics of the Coma Cluster by assuming the cluster to be
in equilibrium and applying the Virial theorem (Zwicky, 1937). He then calculated the virial
mass considering a spherically symmetric cluster and the line-of-sight proper velocities to
be the galaxies average velocities. Finally, comparing the obtained mass with the observed
luminosity as a factor of solar luminosities provided a mass-to-light ratio of 500, which we
currently know to be wrong, but that was impossible to reconcile in the absence of dark
matter. In the case of Vera Rubin, an analogous lack-of-light appeared when comparing the
rotational curve in our Milky Way and in other spiral galaxies with the stellar distribution.
Both distributions did not match in the outskirts of the galaxy: while the light distribution
decreases towards the outer radii, the rotational curve remains flat (Sofue and Rubin, 2001).
In both studies, the mass attributed to the estimated dynamics was much larger than the
luminosity observed, indicating the presence of some mass-producing gravitational field
but no light emission.

The cosmological and galactic evolution models quickly acquired this dark matter to
explain the galactic large-scale structure. The current models can be summarized by the
conclusions from Press and Schechter (1974), White and Rees (1978), and White and Frenk
(1991): the galaxy distribution has evolved by the hierarchical and self-similar growth
directed by dark matter collapse, because galaxies originate from gas condensing, cooling,
and forming stars within those dark matter haloes. This process can be understood as
a sequence of gravitational instabilities of dark matter overdensities: the dark matter
clumps collapse into each other and the haloes become larger. The haloes originally formed
by the linear evolution of the set of the primordial perturbations in our Universe – the
nature and origin of which is out of the scope of this thesis – that collapse non-linearly
when an overdensity threshold is reached. Then, the primordial gas started falling into
these dark matter halos and the galaxies started to form. Quoting from White and Rees
(1978): "Luminous galaxies up to a certain limiting size can form when this gas cools and
becomes sufficiently concentrated in the centre of the [dark matter halo’s] potential well to
be self-gravitating and liable to fragmentation".

Nonetheless, dark matter in galaxies is not only a theoretical concept, and many further
detections that can only be reconciled by its existence have been made over the decades.
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Strong gravitational lensing by single galaxies has also shown that the lens cannot be
modelled alone by the light emitted, requiring a dark matter halo (e.g. Dye and Warren,
2005; Nightingale et al., 2023). It has also shown its gravitational influence through the
weak lensing effect of the large-scale structure from cosmic shear surveys (Heymans et al.,
2021; Abbott et al., 2022; Dark Energy Survey and Kilo-Degree Survey Collaboration et al.,
2023). The rotation curves of spirals keep showing examples of dark matter in galaxies
(Dolgov, 2000; Sofue and Rubin, 2001). Dark matter is in fact necessary to explain the
dynamics of the family of galaxies interacting with the Milky Way in our Local Group.
X-ray emission due to high energy electrons have been found in the mass distribution of
galaxy clusters. This has been attributed to the hydro-static equilibrium of the electrons
within the gravitational well: as the field in a cluster is very strong, the electrons become a
hot plasma that generates X-rays by bremsstrahlung and heavy element lines (e.g. Fox and
Loeb, 1997; Nagai et al., 2007; Schindler and Diaferio, 2008; Reiprich et al., 2013).

Last but not least, the existence of dark matter is also supported by cosmological
surveys. The main probe of this type comes from the Baryonic Acoustic Oscillations (BAOs),
observed both in the Cosmic Microwave Background (CMB) and in galaxy surveys. To
understand the physics behind BAOs, it is necessary to understand the Universe according
to ΛCDM before the epoch of recombination, when the CMB was emitted. The Universe
was fundamentally composed by a plasma "soup" of protons and electrons interacting
electromagnetically in thermal equilibrium through the exchange of photons. In such a
system, an over-density – such as the primordial cosmic perturbations – would produce
a sound wave that propagates through the medium, undergoing oscillations powered by
the opposing forces of gravity and radiative pressure. The other components present at
that time were neutrinos, other more massive atomic nucleus generated during the Big
Bang Nucleosynthesis – the cosmic period when atomic nuclei formed –, and dark matter.
The dark matter had its own and heavier overdensities, but also was dragged to the BAO
overdensities by the gravitational pull of the baryons. Due to the non-stopping expansion,
the plasma cooled quasi statically to a temperature smaller than the ground energy level of
a Hydrogen atom. This allowed the photons to decouple and to stop scattering between
charged particles, which were recombining into neutral atoms. The Cosmos in this stage "is
known" as the surface of last scattering, and produced the light that has become the light
that A. Penzias and R. Wilson found in 1965 (Penzias and Wilson, 1965) and our telescopes
study today. The complex superposition of sound waves is imprinted in the temperature
fluctuations of the CMB, together with many other types of anisotropies – which are also out
of the scope of this thesis. The angular scale of the BAO depends on the sound speed in the
plasma, but the amplitude of its waves is correlated with the relative amount of baryonic
matter and dark matter. This is because of the attraction between baryonic overdensities
and the dark matter they dragged. The success in applying the ΛCDM model to the angular
scale of the CMB anisotropies is one of the main arguments supporting the Cold Dark
Matter (CDM) paradigm, being (Planck Collaboration et al., 2020) one of the latest results.

Now, while dark matter was dragged by the baryonic overdensities that propagated
as BAOs, it also maintained its own overdensities. After recombination, both dark matter
and baryons would coalesce over time into overdensities derived from the BAO’s wave
expansion. Nonetheless, the majority of mass fell into the more massive dark matter
overdensities. This led to a statistical distribution of galaxies within dark matter haloes
with a characteristic scale provided by the propagation length of the sound waves at the
epoch of recombination. Galaxy Surveys are able to recover this scale by the correlation
between the distance of galaxies, being (Eisenstein et al., 2005) one of the – if not THE – first.

The properties and structures of the Dark Matter haloes around galaxies and group
of galaxies have been studied thoroughly over the years. The main target for proving
these properties has been the dynamics of the components of the galaxies towards their
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outskirts, and their distribution, as a proxy of the halo of Dark Matter. The combination
of observations and simulations gave way to empirical halo profiles (Merritt et al., 2006).
The most generally accepted ones are the Navarro-Frank-White (NFW) profile (Navarro
et al., 1997), which combines in one function two different radial profiles for the inner (r−3)
and outer (r−4) parts; or the Einasto profile, consisting of a three-dimensional generalized
power law r−n, being n a parameter to fit. One prominent success of the Einasto profile is
in the galaxy of Andromeda (Einasto, 1969) was followed up in Tempel et al. (2007), using
the optical and infrared observations (Tamm et al., 2007).

1.1.1.2 Baryonic Matter

Current observations of the baryonic components of galaxies come from a combination
of the study of our Milky Way, the galaxies in the Local Group, and many other galaxies
that our telescopes can observe with enough high resolution to discern internal regions.
We now know fairly well the multiple life paths of individual stars and have good models
to understand the behaviour of binary stars and stellar clusters. The processes in which
clumps of gas become capable of forming stars have also been modelled with considerable
confidence: gas cools down radiatively until it is able to collapse into stars through Jeans
instabilities (Jeans, 1902). This produces populations of stars which can be modelled
through stellar population synthesis (Salpeter, 1955; Conroy, 2013), allowing to build a
theoretical spectrum of a galaxy. The combination of light from a galaxy emitted along
the whole electromagnetic spectra is called Spectral Energy Distribution (SED). Different
components of the galaxies undergo different processes that emit in different wavelengths.
Examples of science using SED fitting can be found in (Małek et al., 2010; Nanni et al., 2020;
Riccio et al., 2021; Hamed et al., 2023b; Pistis et al., 2024).

The combination of the different stages of stars and the surrounding gas leads to the
complexity of Phases of the Interstellar Medium (ISM). It is crucial to relate the ISM gas
cycles to understand how they shape galaxy evolution and, more importantly, the processes
in galaxy mergers. In the cold gas regions that collapse into Jeans instabilities producing
new stars, the gas that is not fuelling the newborn stars gets heated and dispersed by the
high energy light and cosmic rays they generate. Therefore, an originally cold gas cloud
becomes over time a gas-depleted cluster of stars, covered by progressively colder gas
shells.

Dispersing gas is however not the last contribution of stars to the ISM, as during
the later stages of their life processes they reintroduce gas through planetary nebulae
and supernovae, heating it again (McKee and Ostriker, 1977). This gas shows a larger
abundance of heavy elements than the original media. This increases the metallicity of the
ISM, which measures the relative amount of elements heavier than hydrogen and helium.
It also heats the surroundings and, in the case of supernovae, distorts the media due to the
explosion’s high speeds, energy, and large distance reach. A new cycle where the gas cools
down into forming new stars is possible if the amount of gas that manages to cool down is
large enough.

The gas can be observed by its emission in varying wavelengths and specific narrow
and broad-band emissions. These lines are emission lines from some of the elements present
in the gas, and their width depends on the velocity dispersion of the emission regions.
Moreover, the gas in a galaxy does not change only due to the internal processes and gas
expulsion, but also follows a cycle where the gas comes back to the galaxy by mergers – see
Sect. 1.2 – and inflows from the surrounding medium, known as circumgalactic medium
(CGM; e.g. Tumlinson et al., 2017).

Dust grains also can form from the gas, and although not very abundant, dust has
a crucial effect on the light emission. They are mainly small solid particles, their size is
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between ∼100nm and ∼1µm, although measurements are uncertain (Ysard et al., 2019).
The gas can form dust grains when it cools down, and it fulfils the appropriate conditions
for any of the multiple dust formation mechanisms (e.g. Gail and Hoppe, 2010).

Dust has two main influences on the galaxy’s light emission. It can absorb and scatter
the light of nearby stars, producing the extinction or attenuation of the light emission.
Moreover, the light it absorbs is re-emitted in longer wavelengths as infrared emission. It
produces a very complex net effect where high energy light emission in the Ultraviolet is
reduced and the far infrared one increases (e.g Calzetti et al., 2000; Hamed et al., 2023a;
Małek et al., 2024)

In all this review, we have not considered yet all the other known and more exotic
forms of baryonic matter. Pulsars and Black Holes, the compact objects resulting after SNe
explosions. Planets, which from 1992 we know to exist outside the Solar System around
pulsars (Wolszczan and Frail, 1992) and since 1995 around other stars (Mayor and Queloz,
1995). Cosmic Rays are particles produced in energetic processes, ranging from those in the
stellar coronae to SNe, that can ionize or swipe clumps of gas. Many galaxies also have a
Supermassive Black Hole (SMBH) in their centres. These SMBH have been found (Balick
and Brown, 1974; Ekers et al., 1975; Lo et al., 1975) and observed (Event Horizon Telescope
Collaboration et al., 2022) in the Milky Way, in Andromeda, and many other galaxies.

These SMBHs can power the most energetic phenomena observable in the sky by
the accretion of gas. The first observation of such a process was done by Schmidt (1963).
Originally, the source was dubbed Quasi Stellar Object (QSO), because the optical telescopes
found it to be a point source like a star, although they had an unusual emission in radio
wavelengths and showed a high redshift on the hydrogen emission lines that was only
consistent with a distance very far outside the Milky Way. Nowadays, we know the process
that powers QSOs is an accretion disk rotating around the SMBHs, which is known as Active
Galactic Nuclei (AGN). AGNs are another key element in galaxy life and evolution. They
have a strong effect on the cycle of gas along the Universe’s large-scale structure because
their power can eject gas from the galaxies to their surrounding media (e.g. Feldmann et al.,
2016).

1.1.2 Types of galaxies: galaxy classification

1.1.2.1 Morphology

Since the first studies of the spiral nebulae in the 1920s and 1930s, it became quickly
apparent that galaxies show a high variability. The first famous classification is Hubble
tuning fork, shown in Fig. 1.1, which is still a reference for astronomers today. It covered the
more frequent galaxy types, in a sequence that was already hinting an evolutionary path:
the radially symmetric galaxies (E0), that led to the more ellipsoidal shapes of elliptical
galaxies (E3 – E7), which then separated into two paths of spirals galaxies, with (Sa, Sb, Sc)
and without (SBa, SBb, SBc) a bar, and with the intermediate stage of lenticular galaxies
(S0). This method was nonetheless excluding the irregular galaxies, whose abundance was
increasing at that time.

Current understanding of galactic evolution corrects this evolutionary line. The elliptical
galaxies dubbed as early-type galaxies are actually old galaxies with little star formation,
and therefore are a late life stage. The late-type spirals are the opposite, they show more
gas, more star formation, and are comparatively younger in their stellar populations.
Nonetheless, the names early-type and late-type still accompany us today.

Elliptical, lenticular, and spiral galaxies are indeed the most abundant galaxies in the
local universe, around a 60% of spirals, a 22% of lenticulars, and a 13% of ellipticals were
found in the first catalogues (de Vaucouleurs, 1963). While there is obvious dispersion
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Figure 1.1: Hubble’s original diagram.

(a) Elliptical Galaxy. (b) Lenticular Galaxy. (c) Spiral Galaxy.

Figure 1.2: Credit: Aladin SDSS DR9.



1.1. Galaxies 7

in the properties of members of the three types, they do have clear common ones. An
example of an isolated elliptical galaxy is shown in Fig. 1.2a. The shape is spheroidal, with
no clear substructure, except for the brightness profile that increases towards the centre.
The colour is predominantly red because the majority of stars it hosts are red old stars,
the less massive and more long-lived ones from the remaining stellar populations. The
gas in the ISM has been depleted, the galaxy has been quenched, so that there is no clear
presence of gas clumps and star forming regions. In fact, the reason why galaxy evolution
leads to this stage is a key question for our modelling and is still science in progress (e.g.
Corcho-Caballero et al., 2023; Park et al., 2023; Lorenzon et al., 2024).

Lenticular galaxies are like in Fig. 1.2b. They are somewhere in between elliptical and
spirals because, although they have a bulge and a flat disk, the bulge-to-disk size ratio is
larger than for spirals and they don’t show spiral arms.

Spiral galaxies are like Fig. 1.2c. Their aspect is by far less uniform than ellipticals: they
have three main components whose relative size – and even presence – changes for every
source: the central core, known as bulge, where older and redder stars are present and
that resembles a nuclear elliptical galaxy; the disk, which is flat and axisymmetric at first
approximation, with the famous arms spiralling along the disk generally in pairs, and that
is in general full of gas, with a very dynamic ISM; and finally the bar, not present in all
spirals, that crosses the bulge across its centre, and that seems to drive gas inwards from
the disk towards the bulge and to increase star formation along the bar (Knapen et al., 1995;
Martel et al., 2013).

There have been multiple further attempts to improve this classification. One of them
was created by de Vaucouleurs in the 60s, where he added an orthogonal axis of variability
to the evolutionary line (Figure 1.3). This orthogonal cross-section included deviations of
more general shapes, such as how long the arms spiral around the galaxy, the relative size
between the central bulge and the disc, etc. One other attempt was the Yerkes classification
system (Morgan, 1958), that combined the morphological information, mainly the degree
of central concentration and extension, and the spectral information.

While the community kept attempting to categorize the morphological zoo of galaxies
and understand their life processes and evolution, a fourth broad type of galaxies had posed
an additional puzzle since the beginning – if we count the other three as elliptical, spiral, and
lenticular. Those were the irregular and peculiar galaxies, and Hubble’s and de Vaucouleurs’
classification did not have a clear place for them. In the case of irregular galaxies, the main
characteristic is that they lack of any symmetry and the structure observed in the other
galaxies. In the case of peculiar galaxies, their shapes were clearly, to a greater or lesser
extent, highly distorted versions of the three main types. The first big catalogue of irregular
and peculiar galaxies was Arp’s Atlas of Peculiar Galaxies (Arp, 1966). These types of
galaxies we now know are produced by the interaction between galaxies, and depend on
the relative stage along the whole interaction process (Toomre and Toomre, 1972).

As the reader might imagine, the complexity in galaxy types has been increasing over
the decades. Some of the most abundant ones are dwarf galaxies, which are generally
smaller galaxies around the larger elliptical, spiral, or lenticular ones. Their shapes tend
to be either spheroidal ∼43%, spiral ∼45%, or irregular ∼13% (Lazar et al., 2024). Clear
examples of local irregular dwarfs are the Magellanic clouds or Andromeda’s satellite M32.

Other types of galaxies are those which host an AGN, showing a complex range of
galaxy "manifestations". The galaxy components themselves are generally too dim in
comparison with the nucleus’ high luminosity to be observed fur the nearby universe.
AGNs show quite strong emission in other bands than the optical. Their emission in radio
waves, or narrow and broad emission lines, determine the type of AGN. Overall, the AGN
type depends on two things: the presence of a high-speed radio jet, launched along the axis
of the accretion disk; and the relative orientation of the system. The orientation is important
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Figure 1.3: de Vaucouleurs’ revision (de Vaucouleurs, 1959)

because AGNs have a complex axisymmetric structure, and the emission features depend
on the sections of the structure that are visible.

To complicate a bit more the zoo of galaxies, there are the low-surface brightness (LSB)
galaxies. They do not fit very well into the current galaxy evolution models, but they
are anticipated to become one of the most frequent classes when the large galaxy surveys
become sensitive enough to find them (McGaugh, 1996; Bothun et al., 1997; Martin et al.,
2019). This is because, as the name indicates, they have a very dim brightness profile,
making a high depth in minimum brightness necessary to find them. We have seen many of
them already in recently built catalogues such as Thuruthipilly et al. (2024). Other type of
galaxies in the LSB regime are the Ultra Diffuse Galaxies (UDG), which have been observed
in the Local Group (e.g. McConnachie, 2012), and more might still be found (Newton et al.,
2023).

1.1.2.2 Photometry

The astronomical images contain not only the morphological information of the galaxies
but also their flux imprint. These are the photometric measurements, they take care of
the measurement of the flux that a source has in an astronomical image. In the case of
the majority of telescopes, it is done in a single band. The flux of a source is described by
magnitudes, which relate to the flux through a logarithmic relation. The main reason for
using magnitudes is historical, as the human eye is sensitive to the brightness of stars in
the sky in a logarithmic way. In 1856, Norman R. Pogson defined it as m = −2.5 log F ,
being F the flux and m the observed (or apparent) magnitude. Because of the logarithm, the
subtraction of two magnitudes corresponds to the fraction between two fluxes: m1 − m2 =
−2.5 log F1/F2 . Therefore, if the index 1 and 2 correspond to two different bands – r and g
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(a) Colour-Magnitude schemat-
ics. Credits: Wikipedia Joshua
Schroeder

(b) Addapted from (Baldry et al., 2004) by Prof.
Francesco M. Valentino.

Figure 1.4: Colour-Magnitude diagram: schematic and SDSS results.

bands would be a contemporary example, covering roughly the red and green areas of the
visible light, respectively – their subtraction represents the slope in the SED along the areas
covered by the bands. These are the colours of the galaxy, and provide relevant physical
information about the galaxies.

The most basic application of photometric measurements to galaxy properties is the
colour-magnitude diagram. This diagram shows distinct populations clumping in two
different areas. Figure 1.4a indicates a schematic, while Fig. 1.4b shows an actual plot
representing galaxies from the Sloan Digital Sky Survey (SDSS). Note the relative inversion
of the x-axis, as luminosity increases towards the left in Fig. 1.4b, and towards the right
in Fig. 1.4a. Specifically, the x-axis in 1.4b indicated the absolute mass of the galaxies, as
calculated within the Petrosian magnitude (Petrosian, 1976) – see Sect. 2.1.1 in Chapter 2.

The red sequence region is where galaxies like the elliptical ones introduced above
are located, and the blue cloud is where spiral galaxies are located. As the colour u − r
measures the flux fraction -log Fu/Fr = +log Fr/Fu, galaxies with a larger colour should
have a larger proportion of red light than blue light. This is one of the main indications
of the stellar populations of elliptical and spiral galaxies described in Sect. 1.1.2.1. The
elliptical galaxies are redder, they have more red old stars and less blue new stars, while
the opposite is true for the spirals. The figure also indicates the green valley, a region in
between the two types where fewer galaxies can be found. The presence of the green valley
illustrates not only the bimodality of the distribution but also the imperfect separation of
both classes. Moreover, the red and blue areas not only show late and early-type galaxies
respectively, as there also exist blue elliptical (e.g. Lazar et al., 2023) and red spirals.

1.1.3 Galaxy evolution: hierarchical growth of structure

The bimodality of the colour-magnitude diagram and the morphological types imply two
major evolutionary stages for galaxies. The Hubble tuning fork was already aware of this
(Figure 1.1). If one considers the presence of gas as the main driver of the transition between
the two galaxies, a fairly clear picture of the processes that drive galaxy evolution can be
obtained.

Quite interrelated with the galactic gas cycle is the dark matter halo mass function,
which indicates the number density for any given mass of haloes present in the Universe.
The mass function resulting from the Press-Schecter formalism (Press and Schechter, 1974)
is indicated in Fig. 1.5. At the same time, one can assume a luminosity function of galaxies,
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Figure 1.5: Both panels compare a theoretical luminosity function with the luminosity
function found in simulations. The theoretical luminosity function has been obtained
from the mass function of dark matter haloes following the Press-Schecter formalism and
considering a constant M/L. The panel on the left shows how the luminosity function
of galaxies in simulations disagrees with the dark matter distribution. The right panel
indicates the effect on the luminosity function of multiple physical phenomena observed
in real galaxies, that have been applied to the simulations. Courtesy of dr. Wojciech A.
Hellwing, in the lecture Introduction to Cosmology.

i.e., the number density of galaxies for any given total luminosity. However, assuming a
constant mass-to-light ratio (M/L) does not provide an equivalence between the dark matter
mass function and the galactic luminosity function. This is partly due to the complication to
estimate the mass of luminous matter in galaxies, as it requires a good quality of information
of the galaxy’s SED to simply get an initial model. Nonetheless, the masses can be measured
with a good enough quality to show clear disagreements. In fact, the effects of baryonic
processes in the gas circulation are responsible for this mismatch.

The suites of simulations that include baryonic matter dynamics through hydrodynam-
ics and/or semi-analytic models (see Somerville and Davé, 2015, for a review on modern
simulations) have helped enormously understanding why the discrepancy. The two panels
in Fig. 1.5 indicate the explanation of these findings. On the left panel, it can be seen clearly
that the galaxy luminosity – represented as high absolute magnitude in the KS band MKS –
adapts to the halo mass function only in one intermediate point, and shows an underpopu-
lation of galaxies for both the lower and larger luminosity tails. The right panel shows how
a combination of photoionization by stellar emission and feedback from supernova is able
to reduce the amount of galaxies with low stellar mass. This is because both of them reduce
the efficiency of gas cooling that allows the stars to be formed. Photoionization is produced
by newly formed stars, as their energy is emitted in high energy light and cosmic rays that
disperse the surrounding gas in the star forming regions. Supernova have their effect when
they emit gas back to the ISM, but can also propel gas outside the galaxy. SNe’s net effect
reduces star formation in low mass galaxies due to the gas ejection. On the bright end,
AGNs are responsible for reducing the stellar mass within the most massive haloes. They
do it through the consumption and emission of gas to the inter galactic media produced by
the accretion disk.

These insights obtained through simulations are a clear example of the big interrelation
of galactic processes. Nonetheless, those above are reduced to stars, gas, and SMBHs, the
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surroundings of galaxies and what the interaction with other galaxies could produce. As
we know from the Press-Schecter formalism and ΛCDM model, the Universe’s distribution
is driven by the gravitational assembly of mass. Small and initially overdense regions come
to each other and collapse into subsequently larger and larger structures. It is therefore not
surprising that one of the other main influences in galaxy evolution come from the actual
collapse of galaxies with each other, from galaxy mergers.

The improvement of the simulations is allowing larger numbers of particles, higher
resolution, and better understanding of the baryonic physics involved in galaxy evolution.
At the same time, they are providing further new insights in the importance of galaxy
mergers in the growth of structure. Many simulations have focus on estimating the mass
growth produced by mergers (e.g. Rodriguez-Gomez et al., 2016; Angeloudi et al., 2023).
Some others have shown the strong influence of the accretion of minor mergers in build-
ing massive spirals galaxies (e.g. Jackson et al., 2022), or massive elliptical galaxies (e.g.
Rutherford et al., 2024).

Thus, galaxy mergers are a crucial stage in mass assembly of galaxies, although it is not
yet known to what extended. Furthermore, they have also shown to have a significant effect
in the star formation, morphological transformation, and many other important attributes
of galaxies. To continue advancing our understanding of the Universe and the evolution of
galaxies, it is necessary to learn more about merging galaxies.

1.2 Galaxy Mergers

Galaxy mergers are irregular/peculiar galaxies which get their shape because they interact
with each other. Merging is a process that culminates into the original parent galaxies
becoming a final daughter one. Tidal gravitational forces between the galaxies arise during
approaching orbit and highly distort the morphologies, generating various features such as
tidal tails, bridges, or shells (Toomre and Toomre, 1972; Quinn, 1984).

Research over the physics behind the beautiful galaxy shapes in Arp’s Atlas led to
many discussions during the 60s and 70s about their nature. At that time, it was doubted
whether gravitational tidal forces could lead to thin bridges or arms, but should only
be responsible for much broader shape distortions. In Toomre and Toomre (1972), the
Toomre brothers performed a series of simulations of two massive bodies approaching
each other surrounded by a disk of ideal non-self-interacting test particles. Using a Runge-
Kutta integration method (Pfleiderer, 1963), they combined relative orbits between the two
massive bodies, their relative masses, the initial rotation of the disk of the test particle,
and the view angle of the eventual tidal features. They showed how the simulations
reproduced some types of patterns seen across the night sky, such like the "Antennae"
galaxies: Figures 1.6a and 1.6b. The process is essentially gravitational and kinematic,
showing how simple and well known laws can lead to highly complex manifestations.
These ideal particles would correspond to gas and stars that in reality would be behaving
rather like a heterogenous "continuum" and not as the modelled isolated points.

Current detections of mergers indicate that they make up fewer than 10% of the galaxies
at low redshifts (Mundy et al., 2017; Duncan et al., 2019), evolving up to 20% in the redshift
interval z ϵ [2,3] (Tasca et al., 2014). However, their influence of galaxy evolution at high
redshifts is still under debate (Lofthouse et al., 2017).

1.2.1 Effect of Mergers

One of the most commonly accepted effect of mergers is that two spiral galaxies of similar
masses become elliptical after the process (Mihos and Hernquist, 1996, Conselice, 2006), and
that they trigger star formation along the process (Joseph and Wright, 1985; Patton et al.,
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(a) Antennae-like system as simulated in Toomre
and Toomre, 1972

(b) Anthennae galaxies, Credit:Hubble
ESA/NASA

Figure 1.6: Atennae galaxies: simulated in and in the real sky

2005), although this increase has not always been found (e.g. Pearson et al., 2019a). This star
formation seems to be triggered by the movement of gas towards the bulge (Sanders and
Mirabel, 1996). These type of mergers are commonly denominated as wet major mergers:
wet due to the abundance of gas, major due to a mass ratio between the two merging objects
close to 1 – generally from 1 to 1:4. The star formation enhancement has nonetheless not
been seeing when two elliptical galaxies merge due to the lack of gas. This merge class is
considered as a dry major merger (Hwang et al., 2011). Mergers also seem to be related to
the power of the accretion disks in AGNs by inducing the redistribution of gas between the
galaxies (e.g. Keel et al., 1985; Scott and Kaviraj, 2014; Ellison et al., 2019). Nonetheless, this
is still not fully confirmed and there are works that disagree with this picture (e.g. Kocevski
et al., 2012).

Galaxy mergers with a large difference in mass between the two parent galaxies, known
as minor mergers – generally those with mass ratios larger than 1:10 –, have been also seen
to drive the morphological transition between spiral galaxies and lenticular ones (Bernardi
et al., 2011; Eliche-Moral et al., 2018; Maschmann et al., 2020; Tous et al., 2023). We also
know that the Milky Way (Helmi, 2020) and many other nearby galaxies show features
of the satellites that they have already assimilated. This, supported by the Press-Sechter
formalism, has led the community to deduce that the assimilation of satellites is one of the
pathways of galaxies to obtain new gas and form new stars.

However, merging is not the final destination of all sources that show signs of interaction.
The distorted aspect of a pair of galaxies does not necessary need to imply they are going
to merge into one. Those are known as pass by galaxies, being the Cartwheel Galaxy
one of the most famous examples. Information about the relative velocity and distance
would be necessary to make a prediction. Besides, the process is inherently slow due to
the dimensions of galaxies: they can last for ∼1 billion years (Kitzbichler and White, 2008;
Lotz et al., 2008; Pearson et al., 2024a), and the tidal features can last up to ∼3 billion. As a
consequence, even with a high image resolution and quality of the data, the merging state
can be ambiguous.

The environment of galaxies can also play a role on merging systems, as shown in the
two projects I have been part of during my PhD: Pearson et al. (2024b) and Sureshkumar
et al. (2024a). Both works reached through different approaches to the conclusions that
galaxy interactions are less likely to result in a merger within environments more dense
in number of galaxies, where the galaxies have a higher relative velocity. This was in
accordance with previous works (e.g. Ostriker, 1980), although it seemed to not be the case
for small scales in the simulations of Omori et al. (2023). Thus, how merging depends on
the galaxy large-scale distribution is still under debate.
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1.2.2 Types of features

During merging, whole galaxies get distorted and some of the material gets stripped to
the outskirts of the original systems. The debris generated by the tidal interactions shows
different morphologies that depend on the type of collisions. Some of the particular features
that can be found are tidal tails, streams, or shells. This variety of distortions is produced
by different types of collisions.

Tails Tidal tails are gas-rich (see e.g. Duc et al., 2000) and mostly found in late-type
galaxies, i.e., spirals. They host star-forming complexes and are able to form star-clusters or
even second-generation dwarf galaxies that get stripped from the final system (Duc and
Renaud, 2013). The first attempts to research major mergers were done through numeric
simulations of disk-like sources, such as in Toomre and Toomre (1972). It was shown that
the tidal arms appear from near-resonance between the orbital speeds of the galactic discs.
These tidal tails form from pulled out material of the disks, and are the most prominent
characteristic of merging systems. Figure 1.7a shows an example of tidal tails formed from
two spiral galaxies interacting.

Streams Compared with the tidal tails, the tidal streams are relatively gas poor and
show faint stellar absorption lines in spectroscopic studies (Fensch et al., 2020). They
are frequently found as stripped material from a low-mass companion orbiting or being
consumed by a primary galaxy (Hood et al., 2018). Therefore, they are characteristic of
minor mergers, where the mass of the low-mass source is one fourth or less than the high
mass one. Figure 1.7c depicts two stellar streams emerging from the sides of an elliptical
galaxy. It is worth noting that the southwest streams ends in a shell/arc shape that seems
to begin forming.

Shells The models and observations of galactic shells have shown they are relatively gas
poor in comparison with tidal tails (Charmandaris et al., 2000). From numerical simulations,
it has been inferred that the mechanisms responsible for shell formation are likely to be near-
radial infalls of relatively massive minor mergers, with mass ratios above 1:10. Shells are
therefore thought to be made up of stars from accreted satellite galaxies, tidally disrupted
by the massive main galaxy they merge into. They are relatively frequent around elliptical
and lenticular galaxies (Krajnović et al., 2011; Fensch et al., 2020). Shells appear as arcs
concentric to the spheroidal shape, as in Fig. 1.7b.

Passing by galaxies, in the minor merger mass ratio range, are also believed to produce
shells. They cross them radially close to the centre of the main galaxy, with a low impact
parameter, and excite radially the stellar distribution. Also, both radially and non-radial
are believed to produce them (Hernquist and Quinn, 1988).

1.3 Merger identification

Galaxy merger identification is the obvious first step for studying the phenomena, but it
is not trivial. There are multiple ways of doing it, which can be gathered in four main
categories: visual inspection, cross-pair studies, morphological parametrization, and Ma-
chine Learning (ML) based classification. All of them have different applicability ranges,
depending on if the data is an image or a spectrum, on the resolution, on the photometric
bands used, etc.
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(a) Galaxy pair interacting with tidal tails, Aladdin SDSS
DR9.

(b) Elliptical galaxy with shell, Aladdin
SDSS DR9.

(c) Galaxy with stellar stream, Aladdin SDSS DR9.

Figure 1.7: Most frequent tidal features in galaxy mergers. The contrast in the image was
enhanced to make the dim features more visible.
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1.3.1 Visual inspection

Identification of galaxy mergers through visual inspection is simply the educated or amateur
opinion saying if the image of a galaxy shows a merger or not. Depending on the image
quality and resolution, the features can appear clearer to the viewer. It is a very time-
consuming and subjective method, that has clear human biases. The difficulty presented
by ambiguous or not-well-resolved sources can lead to classifications that are inconsistent
between observers, or even between repeated iterations by the same observer. The image
of the galaxy itself can be ambiguous: it may show distortions that are not due to galaxy-
galaxy interactions; even though two galaxies overlap they can be at far distances; or they
may show an interaction that is not going to end as a merger, but it is a pass by. Due to the
huge time-scales of merging events, there might be cases in which the final state simply
cannot be known.

Traditionally, astronomers have characterized the shapes by eye, as was done in the
initial galaxy classifications (de Vaucouleurs, 1959) and is currently done for creating
catalogues of mergers (de Vaucouleurs, 1963; Arp, 1966; Darg et al., 2010a). It has also been
carried out for creating catalogues of merging features (Sola et al., 2022), or to make further
performance tests of other types of methods (Pearson et al., 2022).

The tools available through the use of the internet by the general public have allowed
the extension of classifications to large numbers of volunteers. The most famous of which
is Galaxy Zoo1 (GZ; Lintott et al., 2008). GZ is a project where volunteers join through the
internet and classify the morphologies of galaxies provided. These types of studies are
called citizen science. A person using the GZ online interface is presented with the image
of a galaxy and a set of questions that belong to a decision tree. These questions try to cover
many possible properties of the galaxy, such as the presence of spiral arms, tidal arms, or
even artefacts coming from satellites and bright stars. Over the years, GZ has delivered
many large catalogues of morphological classifications (Lintott et al., 2011; Willett et al.,
2013; Walmsley et al., 2023), and have been taken advantage of by many studies2

1.3.2 Cross-Pairs

One drawback of visual inspections that has been mentioned is how two galaxies nearby in
the sky might not be physically interacting. A method that can untangle this degeneracy is
to estimate how far from us, and therefore between them, those galaxies are located. The
cross-pair approach makes use of the photometric (see Conselice et al., 2003; Lotz et al.,
2011, but note the method is combined with morphological paramters) or spectroscopic
information (Patton et al., 1997; Barton et al., 2000; Le Fèvre et al., 2000; Patton et al., 2002;
Lambas et al., 2003; Lin et al., 2004; De Propris et al., 2005; Ellison et al., 2008; Rodrigues
et al., 2018; Duncan et al., 2019) to estimate the redshift of the galaxies as a proxy to the
distance.

Through the redshift of a source, one can calculate the relative velocity it moves with
respect to the observer. Initially, this was understood as the Doppler effect on the light’s
wavelength: if the galaxy is approaching, then its light is shifted towards higher frequency,
what in practical effects would make it more blue. When the source is moving away, then it
is shifted to red. The first results of a distance-velocity comparison were done in Hubble
(1925): the distance was measured through Cepheid stars and the velocities were based on
the redshift. The measurements showed how the galaxy of Andromeda is approaching the
Milky Way, although it also showed a linear relation between the distance and the receding
velocity of other nearby galaxies. This turned out to be one of the most fundamental aspects

1http://www.galaxyzoo.org/
2https://www.zooniverse.org/about/publications

http://www.galaxyzoo.org/
https://www.zooniverse.org/about/publications
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of our Universe and the ΛCDM model, that the universe is expanding. It was in fact one of
the first predictions of the general relativity (Lemaître, 1933). Nowadays, it is known that it
expands linearly at a close distance, following the Hubble Law: v = H0 × d, where v and d
are velocity and distance, and H0 is the expansion rate known as the Hubble Constant. For
further sources, this constant is a parameter H(t) dependent of different components of the
Universe: mass, radiations, dark energy, and even the curvature of the cosmological metric
itself.

Distances in astrophysics and cosmology are nonetheless not easy to define. Because the
Universe is expanding, the separation between two sources changes as the light traverses it.
As a consequence, it is necessary to construct lengths based on measurable quantities. The
angular diameter distance DA and the luminosity distance DL. The DA of a source is based
in the geometrical relation between its original known diameter 2R, and the observed one δ
defines DA. Differently, the inverse square law characteristic of wave propagation is what
defines DL, relating the emitted luminosity (L) to the observed flux (S):

DA =
2R
δ

; DL =

√
L

4πS
. (1.1)

which would be equivalent to each other in a Euclidean space. In general, they are related
(Etherington, 1933) by

DL = (1 + z)2DA = (1 + z)Dc . (1.2)

where Dc is the comoving distance, which corresponds to the distance between two sources
is the expansion did not exist. The distance in which a source at Dc is located for a given
redshift is known as proper distance Dp(z). All these distances can be calculated as a
function of redshift and the cosmological model.

The relative velocity of other galaxies towards ours is not only affected by the cosmolog-
ical expansion but also by the motion given the gravitational effect of their surroundings.
This proper motion has an effect that decreases as distance increases, as the expansion
dominates more and more the bulk of the velocity. The proper motion effects are more clear
in dense regions like galaxy clusters, as it is sensitive to the cluster dynamics.

The combinations of these two effects leads to allowing the use of the measured motion
of galaxies to address if two galaxies are in direction of collision or just together in the sky by
chance. The cross-pairs technique mainly uses a range of sky-plane distances and velocities
between the merger candidates to determine if they are merging or not. As the accurate
measurement of redshift must be carried out through spectroscopic observations, this
method requires the spectroscopic resources that are not as economical as photometric ones.
Regarding photometric redshift measurements, while the accuracy of those is improving
with the combination of galaxy templates and Bayesian methods or ML-based models (e.g.
Hildebrandt et al., 2010; Bilicki et al., 2018), it is still necessary to compare them with spec-z
values to address their quality.

1.3.3 Morphological Parameters

Given the distortion produced by the tidal interactions, one evident option is to quantify
the shape distortion of the images and determine regions of the parameter space occupied
mainly by merging sources. Through the years, many parameters have arisen, providing
many alternatives. Overall, the morphological parameters are quite dependent on the image
resolution, the effects of the background subtraction (see Sect. 1.4.2), and the brightness
depth of the images. Morphological parameters are applied by defining regions of the
parameter space where galaxies with merging-related features are located.
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The initial parameters introduced in the modern literature are those that form the CAS
system: Asymmetry, Concentration, and Smoothness. Asymmetry is estimated through the
absolute value of the subtraction between the galaxy image and its 180◦ rotation (Abraham
et al., 1996; Conselice et al., 2000). The Concentration is estimated by the ratio between
the radii which contain two different amounts of the total light of the galaxy (Kent, 1985;
Abraham et al., 1994; Bershady et al., 2000; Conselice, 2003). Generally, it is calculated
between the radii at 80% (r80) and at 20% (r20) of the total light. It is worth noting that
the extension and total light also have to be defined empirically. Last but not least, the
Smoothness comes from applying a smoothing weight to the image and subtracting it from
the original one. The residuals are higher in the presence of clumped regions (Takamiya,
1999; Conselice, 2003).

The dependence of the Asymmetry on the sky background and resolution has been
addressed in Sazonova et al. (2024). The parameter’s dependence on those image properties
complicates defining value ranges that determine merging distortions consistently (which
occurs also for many of the other parameters introduced above). The sky background effect
can be attenuated by changing the absolute value with a root-mean-square formula, because
it makes the equation independent of Gaussian noise. Also, the resolution differences can
be attenuated by deconvoluting the images with higher image quality.

The other state-of-the-art in merger morphological parameters is the Gini-M20 set. The
Gini coefficient is defined from the series sum of pixels, each of them weighted by their
order from the brightest to the dimmest. It is 0 for a flat distribution and 1 if all light is
concentrated in a single pixel (Abraham et al., 2003). M20 is calculated from the second-
order moment of the brightness distribution for the pixels that contains the 20% of the light,
normalized by the second-order moment of the total source. The second moment of bright
pixels is sensitive to the spatial distribution of bright features such as bars or spiral arms
(Lotz et al., 2004). These two parameters can be combined to define a decision region of the
combined plane that characterize galaxy mergers (Snyder et al., 2015; Snyder et al., 2015;
Rodriguez-Gomez et al., 2019; Pearson et al., 2022; Sureshkumar et al., 2024b).

It is worth noting that, due to the complex nature of galaxies, an infinite resolution of a
galaxy would be affected by the vast amount of galaxy features, making some parametriza-
tions unpractical. This can be understood similarly to the complex nature of the sea coastline
(Vulpiani, 2014), that in fact played a crucial role in the development of fractal studies
by Lewis Fry Richardson in the 50s. If one wants to measure the length of a coastline
section, the minimum distance of the measurement tool has a strong effect on the result.
This lower limit determines the range of features that can affect the calculation: the more
features, the more the distance estimated will tend to be. Therefore, for a galaxy image
with infinite pixels, a morphological parameter defined as a function of all pixels can turn
quite unreliable at high resolutions. Nonetheless, the real world resolution range where
this could be relevant is achievable only for a small amount of galaxies, where a visual
inspection would be more adequate.

It is also worth mentioning that, while we call them morphological parameters, they
are actually non-parametric quantities. They are more descriptive statistics, that do not
depend on a few parameters to be fit, and instead do not imply any previous assumption
or model. They are simply applied to the catalogue of sources, and the empirical results are
what indicate their capabilities.

1.3.4 Machine Learning

The progressive improvement of the computing technology over the last decades has led
to the introduction a new problem-solving techniques that make a high use of computing
resources, the Machine Learning (ML) or Deep Learning (DL) methods. They rely on the
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mathematical optimization of many parameters over some dataset, what is known as the
training of the model. The main advantage of ML is its automatization, once the parameters
are able to solve the desired problem, they become much more efficient than during the
model training or than humans performing the same tasks. This is because they respond
with machine speed and without any new difficult computation. Nonetheless, there is the
caveat that the new data has to be similar enough to the training data for the model to be
able to perform well.

The more extremely successful examples of ML models are the newly arising large
language models. These models are able to generate reliable written conversations using the
access to the whole internet to train models with ∼ 109 parameters. They are revolutionizing
the way of working, as quick inputs to this type of models can reduce the time to do a wide
variety of tasks.

The state-of-the-art in the application of the large language models to astronomy can
be seen in ChatGaia3, an interface that has access to the Gaia Space Telescope (e.g. Gaia
Collaboration et al., 2016, the first data release) data and has been adapted from large
language models. The user can ask the ChatGaia about some selection of stars by a simple
question, and then ChatGaia understand the question and gets the desired source from the
Gaia data repository. Moreover, the user can ask the model to generate a plot with the data,
as ChatGaia is able to generate a catalogue file, load it to a plotting code language such as
python, and generate the script that runs the plot.

Machine Learning models have also found their way around a wide range of applica-
tions in image recognition and classification, ranging from facial recognition in social media
to more complex objects in very different situations. The parameters are trained to identify
features that characterize different classes, such as the face-on wheels of cars or the vertical
trunk of a tree.

Depending on the initial knowledge about the data that one wants to analyse with an
ML model, there is a bifurcation in what type of models are more convenient to build.
When the data is a set of classes that are already known, this requires a Supervised ML
model: the parameters will be trained so that the output classifications try to match those
already known from the input. When the initial classifications are not known beforehand or
the information is purposely ignored, then an Unsupervised ML model would be at hand.
Such models can, for example, cluster images similar in some way by creating a parameter
space.

One of the fields that have been taking advantage increasingly of ML classification
methods is galaxy classification. Image recognition methods have proven their strength
for it. This is the case mainly – but not exclusively – of the convolutional neural networks
(CNN) (Dieleman et al., 2015). CNNs have proved capable of learning the aspect of multiple
types of galaxies (Domínguez Sánchez et al., 2018; Vega-Ferrero et al., 2021; Thuruthipilly
et al., 2022; Walmsley et al., 2022). Galaxy merger identification with CNN has in fact
become a fourth standard methodology for merger identification (Ackermann et al., 2018;
Bottrell et al., 2019; Nevin et al., 2019; Pearson et al., 2019a,b; Walmsley et al., 2019; Ferreira
et al., 2020; Wang et al., 2020; Domínguez Sánchez et al., 2023; Margalef-Bentabol et al.,
2024). However, it has shown it has limits: it struggles with misclassifications (Pearson
et al., 2022) and with estimating the merging stages and times (Margalef-Bentabol et al.,
2024; Pearson et al., 2024a).

3https://www.whatplugin.ai/gpts/chatgaia

https://www.whatplugin.ai/gpts/chatgaia
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1.4 Photometric data reduction & Sky background

The images and spectra of the galaxies astronomers study come from modern telescopes
that operate in multiple wavelengths, resolutions, image sizes, and either on ground-based
observatories or space-satellites. The study of galaxy mergers is done mainly in two regimes:
high resolution of individual sources or large sky surveys. While high resolution images try
to understand in more detail the information of a reduce number of sources, in large-scale
surveys the goal is to cover an area of the sky that provides as many sources as possible
with a limiting quality.

The regime of telescope surveys of this thesis is ground-based large-scale surveys in the
optical bands. The surveys used for this thesis are the Sloan Digital Sky Survey (SDSS; York
et al., 2000), specifically its Sixth Data Release (SDSS DR6; Adelman-McCarthy et al., 2008),
and the Hyper Suprime-Cam instrument (HSC; Aihara et al., 2018) on the Subaru Telescope
(Iye, 2021). It is worth noting that, while spectroscopic observations have not being carried
out in this work, SDSS is in fact a spectroscopic survey, that makes use of the photometric
images for selecting the targets for spectrometry.

The optical systems of these telescopes consist of a camera and the telescope itself.
These telescopes have a reflector system, where the light first arrives to what is known as
the primary mirror, which collects the light into a second mirror that subsequently focuses
it into the camera. Figure 1.8 depicts a reflector telescope, specifically the cassegrain model,
of similar structure to the one in both SDSS and Subaru/HSC. For SDSS, the structure is the
same but the shape of the mirrors changes4. The light arrives towards the primary mirror
from the top-right corner, where the astronomical sources would be. The primary mirror
has the shape of a concave ring, so that the light is pointed towards the secondary mirror
located within the ring overture. The secondary mirror then focuses the light to the camera
taking the images.

In order to get information in the images that is relevant for physical measurements,
the observations must have a reliable flux and sky position. To get them is the main task of
the astronomical calibration process, commonly known as data reduction. The main steps
are to calibrate the flux detected by the camera, the telescope effect on distributions of light,
and the positions in the sky plane.

The predominant type of camera in modern astronomy is the Charge-Coupled Device
(CCD) camera. Its pixels are exposed for a given amount of time to the skylight, absorbing
photons that progressively excite electrons. The brighter the area of the sky that the pixel
is exposed to, the more electrons are excited over time. After the detection, the camera
reads sequentially the stored electrons per pixel, and transform the number of electrons into
a digital value. This number is generally identified as Analogue to Digital Units (ADU),
although in the earlier Data Releases of SDSS it is named as Data Numbers (DN). Thus,
the photometric calibration provides the means of converting these ADUs to fluxes. In
the following lines, I’ll define some subsequent relevant steps in photometric calibration.
Because in this thesis I have run the data reduction pipeline of HSC (Bosch et al., 2018) – see
Sect. 3.4.2 –, I will cover the general data reduction steps in the same order as they appear
in the pipeline.

1.4.1 Data reduction calibration frames

The first trouble that has to be overcome when working with ADU’s is that they cannot be
negative numbers, and for that CCD camera’s automatically apply an offset known as bias
to every exposure. In order to correct this bias from the actual observations, one creates the
Bias images: quick exposures, generally taken in the shortest time in which the electronic

4https://skyserver.sdss.org/dr1/en/sdss/telescope/telescope.asp

https://skyserver.sdss.org/dr1/en/sdss/telescope/telescope.asp
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Figure 1.8: Reflector telescope, cassegrain model. The direction of the light is indicated by
the arrows on the black dashed lines. They reach first the parabolic primary mirror, that
concentrates them onto the hyperbolic secondary mirror. From it, the light rays arrive at
the focal point where the camera would be located. Credits: Wikipedia

system is capable of making a picture, where the camera shutter is closed so that no light is
entering. They are applied by subtracting the average of the taken bias frames.

Secondly, CCD cameras have an internal noise because of their semiconductor nature.
The electrons in the internal lattice can get excited due to the systems’ thermal energy.
The CCD cameras are therefore under a cooling system to reduce the thermal electrons.
Nonetheless, the dark current is still present for low temperature, and in order to correct
for the dark noise that arises during the exposure time it is necessary to generate the Dark
calibration frames. They are created by performing camera exposures of similar time length
as the planned science exposures. This is because the dark current’s production of electrons
at low temperatures increases linearly with time in first approximation. Then, the Dark
frames are averaged and subtracted from the images.

Next is the Flat field exposures, where the goal is to address the slight difference in
photoelectric efficiency from pixel to pixel. The procedure is to expose the CCD to a flat field
so that all the pixels detect an equal amount of light. They are applied as a factorized weight
that corrects for this heterogeneous detection. Creating a perfect flat field is generally quite
difficult, but they can be considered good enough for practical purposes. There are two
typical options of doing it: one is by illuminating a section of the telescope’s covering dome
with a homogeneous lamp, what is known as dome flat fields; the other is by exposing the
camera to regions of the sky that are illuminated homogeneously in first approximation
during twilight or dawn.

1.4.2 Sky Background Subtraction

The next step is the sky background subtraction. The goal of the sky background subtrac-
tion is to eliminate light pollution from any sources that are not the astronomical objects
themselves. In the visible electromagnetic range, this background can be produced by
multiple phenomena. One is the reflexion by the atmosphere of any surrounding element
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such as the moon, environmental light around the telescope, natural air glow from molec-
ular or atomic oxygen lines (Broadfoot and Kendall, 1968; Massey and Foltz, 2000), and
even from the combined effect of all astronomical sources on the atmosphere (Leinert et al.,
1998). Nonetheless, the sky background can come also from internal reflections within the
telescope – it is worth noting this does not refer to the fringe patterns that arise in narrow-
band photometry, as narrow bands were not used for this work and thus not considered in
this introduction – or from bright sources affecting the camera itself, even when they are
not observed in the focal plane (e.g. Watkins et al., 2024). There exist other astronomical
sources outside the atmosphere that can affect the background. One is the zodiacal light,
made by the glow of the solar system’s dust distributed across the ecliptic plane, when
illuminated in the side of the sky opposite to the Sun. Another is the Galactic cirrus, dusty
clouds within the Milky Way that can also affect the low surface brightness regime.

There are multiple methods to calculate the sky background of an image. The general
concept consists of characterizing the image ADU level in pixels that can be considered
to not be illuminated by any source. This can be done by masking pixels belonging to a
source detection, then calculation the background level by a mean or median of the pixel
counts. Because the background pixels are generally more abundant than the source pixels,
at least outside the regime of surveys focused on LSB targets, even the median itself can be
a good enough approximation in many cases. More sophisticated scientific goals require of
addressing the spatial dependence of the background by fitting a 2D polynomial instead of
using a global statistic.

The method used in SDSS DR6 to calculate the sky level is the clipped median, that
consists of calculating the sky level and standard deviation σ, then discarding any pixels
brighter than some factor of σ, and remaking recursively the calculation. A clipped median
with enough background pixels available converges to the sky background level after
several iterations, providing a mean and σ model for a Gaussian background distribution.
Because the background can show spatial variability, the SDSS DR6 clipped median was
calculated in pixel boxes across the image to generate a background map of the image.

The sky background subtraction is crucial when identifying galaxy mergers, because
the tidal features and stripped material that characterize them are in a Signal-to-noise (S/N)
regime that can be affected by an over-subtraction. However, the background subtraction
can influence many more aspects of the images. For instance, the background modelling in
SDSS DR6 showed the problem that large galaxies had their flux, size, and concentration
underestimated (Blanton et al., 2005; West, 2005; Hyde and Bernardi, 2009; West et al., 2010).
This appeared to come from calculating the background without masking the detected
sources, that resulted in an over-estimation and was corrected for the Data Release 8 (DR8)
in Blanton et al. (2011).

1.4.3 Source extraction

Another crucial part of the analysis is to detect the sources present in the image. The most ba-
sic algorithm, implemented in the most generally used source detection software programs,
such as Source Extractor (Bertin and Arnouts, 1996) or statmorph (Rodriguez-Gomez et al.,
2019), or in the SDSS and HSC pipelines, are the segmentation maps. Segmentation maps
are based on finding groups of pixels that arise above the background. They require set-
ting the background level and a measurement of its standard deviation σ, then defining
all groups composed of a minimum number of pixels with ADU a factor of σ above the
background. Therefore, the segmentation requires knowing the background.

Source detection has further complications. One is the possibility of having two or more
actual astronomical sources in the same segmentation map. This is known as blending,
and solving it requires of disentangling the multiple detections within the parent source.
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Deblending is not an easy problem to solve, and it is in fact one of the main challenges of
astronomical imaging. As the new telescopes and cameras manage to observe further and
dimmer, the amount of sources that are observed increases, and it becomes more likely that
they overlap with each other (Melchior et al., 2021).

1.4.4 Point Spread Function

When the three calibration frames are applied, the effect of the optical system can be ad-
dressed through the extracted sources. The combination of internal diffractions is modelled
with the Point Spread Function (PSF). A point source observed by the telescope is deformed
according to the optical system the same way as any other source, but point sources can be
modelled as an initial 2D delta function so that the modelling can be extrapolated to the
rest of the sources. Moreover, for ground-based telescopes, point sources suffer from the
effect of turbulences in the atmosphere. This produces a Gaussian-like shape to the light
distribution that contributes to the instrumental PSF.

In astronomy, a point source is a star, because their angular size is small enough so that
it can be considered as a point source entering the telescope. The procedure to define the
PSF consists on selecting stars along the image, characterize their shape, and define an
empirical PSF. The PSF is not corrected from the images by itself, but rather used as a kernel
that can be applied to correct for the shape deformation when calculating fluxes or shapes.

It is important to mention that the brightest objects in the sky, such as well known
stars, can spoil the image by saturating the pixels. Saturated pixels have their electrons
depleted during the time of exposure, reaching a maximum of detection, and even excite
surrounding pixels. Those bright stars therefore cannot be used for PSF estimation and
instead become an artefact.

For the case of the HSC pipeline, the PSF estimation, source detections, and sky back-
ground are done subsequently multiple times. The sky background is subtracted prior to
detecting the sources and making each PSF model. The specific steps on the pipeline, how
they are implemented, and how I actually modified them are detailed in Sect. 3.4.2.

1.4.5 Photometric and Astrometric calibrations

Once the frames have been reduced and the sources detected, then the fluxes and the
celestial coordinates of the image can be calibrated. These are the photometric and astro-
metric calibrations. The astrometric calibration searches for position correspondences of a
set of sources in the image that can be identified and then referenced to those in already
categorized catalogues. The sources used for astrometry are generally stars in a brightness
range that does not saturate the camera and whose PSF has been characterized. Some of
the well known stars that can be observed with the naked eye could be ideal for calibration,
as their position is well determined, but the majority of them indeed saturate the camera’s
of the modern deep telescopes. The astrometry is calibrated as a ladder, mapping the stellar
positions of the main stars from small telescopes, to subsequently dimer stars in deeper
surveys. Moreover, because the Sun, the Earth itself, and the stars are in constant motion, a
general reference for the observation time has also to be set. This has been generalized by
defining an astronomical time epoch. The current convention adopted by the International
Astronomical Union (IAU) is the J2000 date, which takes as reference moment the 1st of
January of the year 2000 at 12h.

The photometric calibration has the goal of comparing the camera fluxes to a standard
system that then can be used to extract relevant physical information. This is calculated
by setting the telescope’s zero point: the reference source with a magnitude equal to 0 in
a given band. The zero point is generally defined by taking some standard source. The



1.5. Thesis Contents 23

standard source used historically is the star Vega, although many modern surveys use the
similar AB system (Oke and Gunn, 1983). Therefore, by setting the zero point of all the
sources in the survey to the standard catalogue, one creates the photometric calibration.

1.4.6 Coaddition

The calibration steps that have been discussed above have been referred to individual
astronomical exposures. Nonetheless, these can be coadded into one single frame increase
the depth. Coaddition is the combination of multiple science exposures through the overlap
of images covering the same portions of the sky. The main advantage of coadding images
is to reach an image depth equivalent to the combined time of the individual exposures,
but using several shorter shots instead of a single long one. This has multiple motivations:
to reduce noises that increase with time, to avoid saturations that would arise during too
long exposures, to correct for time-dependent background, to avoid transiting objects as
satellites or asteroids, and to allow the parallel performance of time-domain science studies.

Coaddition is generated by taking all the images that overlap in the positions of the
sky, then making use of the reference coordinates acquired from the astrometric calibration
to build a coaddition grid, and finally obtaining the ADUs per pixel by applying some
averaging statistics between the pixel values of the individual exposures. For HSC, the
coaddition is done by the weighted average of the frames, through a per-pixel weight
calculated from the inverse of the mean variance.

1.4.6.1 Dithering

One practical advantage of coaddition comes from applying a method called dithering
(Tyson, 1990). This is accomplished by pointing the multiple exposures used for coaddition
to different points of the sky, so that the pixels do not observe the same source all the
time. By combining systematically shifted frames, it is possible to identify static signatures
coming from the telescope and camera, or attenuate the time-dependent background. Due
to dithering strategies, the sources in the sky are detected by multiple pixels, reducing the
impact of inhomogeneous photoelectric efficiency, or avoiding that pixels with internal
problems always observe the same sources. Specifically, for the HSC data reduction that
has been employed during the thesis, the dithering makes it possible to identify the static
background produced due to the camera’s filter response to the sky along the focal plane,
as described in Sect. 4.1 of Aihara et al. (2019). The sky background models measured
through dithering have been tested as a solution to avoid over-subtraction of LSB structures
in multiple works (Duc et al., 2015; Trujillo and Fliri, 2016; Watkins et al., 2024).

1.5 Thesis Contents

This thesis is focused on developing methodologies to find galaxy mergers in large sky
surveys. The amount of images, the size of the data, and the number of galaxies observed
is going to increase unprecedented in the upcoming years. The Large Survey of Space and
Time (LSST; Ivezić et al., 2019), which will be carried by the Vera Rubin Observatory now
under construction, will observe as many galaxies in a night as SDSS in a decade. Thus,
optimization in the identification of mergers will be crucial to make a proper use of this
bast information. Visual inspection will become unfeasible for them, but even cross-pair
or ML-based techniques will need to overcome new challenges to keep up. How can we
efficiently find galaxy mergers in big sky surveys? In this thesis I will show how I have
developed new ways of finding merging galaxies.



24 Chapter 1. Introduction

I began by seeing if photometry could be enough to find mergers through ML-based
models. Photometric measurements are one of the primary outputs of the image analysis,
so taken advantage of them for merger classification could be highly beneficial. I built a NN
and selected a catalogue for training it to discern between mergers and non-mergers. The
galaxies and photometric measurements used came from images of SDSS DR6. How I used
this data and discovered that the sky background error as a quite promising measurement
to find mergers is described in Chapter 4. Similarly to a morphological parameter, the
sky error provided a separation between mergers and non-mergers by a boundary, when
representing its value for the training sources in a plot.

Such discovery has the potential of becoming a new tool for merger identification, but
there are still two challenges that it would need to overcome before. One would be to show
a reduced contamination by non-merging galaxies when applied to a dataset more general
and heterogeneous than the training sample. The other extension would be to have it
applied robustly to other surveys which would have different image properties and depth,
and lack a sky error parameter computed in the same way as for SDSS DR6.

The extension to a larger dataset within SDSS DR6 was carried out by taking all galaxies
of GZ DR1, from which the NN training galaxies were obtained. This work is described
in Chapter 5. The training set had specific types of mergers, and the relative amount
of merging and non-merging sources was not representative of the real sky. I visually
inspected sources on the sky error parameter space, noting both the galaxy class and the
potential features that may confuse the classification. These contaminations were indeed
found, and I addressed them through a decision tree that discards them according to certain
conditions.

The extension to deeper sources was done on HSC images, and is described in Chapter 6.
As the output photometry in HSC does not have a sky error parameter like SDSS, I designed
a technique to characterize the surrounding of galaxies. The goal of this is to reproduce
what the sky error parameter does. Besides, I run the HSC data reduction pipeline in order
to make sure I analyse the sky without having the sky background modelling modifying it
too much.

If the model fulfils these two extensions successfully, then a sky background error
methodology could be applied to the next generation of large-scale surveys such as LSST.
The text is structured by describing the individual parts of each project together, splitting
into the Chapters addressing the Data (2) and the Methodologies (3) of this work. Then, the
thesis is structured in three major stages: the NN method that allowed me to unveil the
importance of the sky background error, in Chapter 4; the visual inspection and decision
tree applied to extend the method to the rest of SDSS DR6-GZ DR1 galaxies, in Chapter 5;
and the analysis of mergers in HSC-NEP, first by the visual inspection of ML-based mergers
that resulted in the catalogue of Pearson et al. (2022), and finally by the LSB features around
HSC galaxies, for the extension to deeper data of the sky error method, in Chapter 6. The
thesis concludes with its Summary in Chapter 7.
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CHAPTER 2

Data

Different sets of data were employed for creating the galaxy catalogues we studied. The
main goal of this chapter is to introduce the telescopes we worked with, and convey the
motivation of the data selections. We built catalogues in the Sloan Digital Sky Survey
Data Release 6 (SDSS DR6; Adelman-McCarthy et al., 2008) and in the Subaru/Hyper
Suprime-Cam (HSC) in the North Ecliptic Pole (NEP). The data catalogues from galaxies
imaged in SDSS were visually classified in the Galaxy Zoo Data Release 1 (GZ DR1; Lintott
et al., 2011). The catalogues built out of galaxies from HSC were morphologically classified
in Pearson et al. (2022) and in Galaxy Zoo: Cosmic Dawn (GZ:CD). We made selections out
of the GZ DR1 and GZ:CD sets for testing galaxy merger identification methods in the two
depth regimes of SDSS DR6 and HEC-NEP. The properties that characterize the data and
the relevant measurements for this thesis are also described.

2.1 Sloan Digital Sky Survey Data Release 6

The Sloan Digital Sky Survey (SDSS; York et al., 2000) is a photometric and spectrometric
survey that has aimed to create detailed maps of the sky through a 2.5-metre telescope at
the Apache Point Observatory in New Mexico, USA. It began in 2000 and has undergone
multiple phases, each expanding its scope and depth, starting from SDSS-I through the
current SDSS-V. Each phase provided updates of the instruments and techniques used.
SDSS has collected data on millions of objects, providing precise measurements of their
positions and fluxes, and it can be considered one of the first large-sky astronomical surveys.

The SDSS galaxies we worked with were observed in the SDSS Data Release 6 (DR6;
Adelman-McCarthy et al., 2008), that was within the SDSS-I phase. The telescope’s camera,
as shown in Fig. 2.1, had its CCDs distribution in six columns, each of them with five rows
corresponding to the five SDSS photometric filters: u, g, r, i, and z (Gunn et al., 1998). The
SDSS observing strategy consisted of scanning the sky with the 3 arcminute focal place
of its camera, drifting the telescope pointing along stripes. From the calibrated images, a
selection of spectroscopic targets using the estimated photometry was created. The SDSS-I
spectroscopic galaxy targets were selected if they had a Petrosian magnitude – see Sect. 2.1.1
– in the r-band smaller than 17.77 (rpetro > 17.77), although other sources such as quasars or
stars were also observed spectroscopically. Some of the galaxies fulfilling the target criteria
could be discarded due to complications such as nearby bright stars or target blending. The
position of the targets was registered, and it was used to drill the positions for the SDSS
fibres in plates crafted to cover the sky in each exposure. The fibres were inserted one by
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Figure 2.1: Schematic of the SDSS camera in the focal plane shown in Gunn et al. (1998). It
depicts the 5×6 CCD cameras distributed in five rows for each photometric band.

one into the holes drilled in the plates, and the telescope took data of the 640 sources per
plate simultaneously.

The SDSS DR6 survey reached a magnitude limit of 22.0 in the u, g, and r bands, of 21.3
in i and of 20.5 in the u-band. Besides, the pixel size of the camera was of 0.396 arcseconds,
and the median PSF width across the survey was of 1.4 arcseconds. This makes it the
most swallow dataset we worked with during this thesis. This is important, because the
higher the magnitude limit, the smaller, dimer and more distant galaxies can be observed.
Moreover, higher depth also implies more sources and more density in the sky-plane
projection, i.e., more blending of sources.

The SDSS DR6 observed 9.5k squared degrees of the sky, detecting almost 240 million
sources. Out of them, 800 000 galaxies had spectroscopic observations. The catalogues
of galaxies that we built were obtained from these sources. However, we needed for our
purposes the morphological classification of those galaxies. For that, we made used of
galaxies classified in Galaxy Zoo (GZ; Lintott et al., 2008).

2.1.1 SDSS Photometry

The photometric magnitude of galaxies in SDSS is obtained for its five bands ugriz. These
magnitudes are calculated by an asinh magnitude function (Lupton et al., 1999) from the
measured fluxes. Here we include the definition of the main SDSS magnitudes (Stoughton
et al., 2002) used for our experiment, as described in Suelves et al. (2023):

Point-spread-function flux: is calculated by fitting the point spread function (PSF) – see
Sect. 1.4.4 – interpolated to the source position. The PSF, with its spatial variation for each
image frame and band, is measured by the SDSS’s pipeline.
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Fibre flux: the flux contained inside the an aperture of the same angular size as the
fibres of the SDSS spectrograph. Those fibres cover circular apertures of 3 arcseconds in
diameter. In order to simulate better what the fibre sees in reality, the images are convolved
with a 2-arcsecond seeing prior to the flux measurement. Appendix A describes how the
magnitude and errors are derived from the aperture counts.

Petrosian magnitude: the flux is calculated inside an aperture of radius rP. This radius
is determined by forcing the inner flux to be a fixed factor – the Petrosian ratio RP – of
the mean flux on the circular annulus at the same rP. The aperture rP set in the r band is
applied for the other four bands, so that the measurement is within a consistent aperture.

Exponential profile fit: the flux is obtained from the fit of the galaxy’s brightness
distribution with an exponential profile, convolved with the PSF. The 2D exponential
profile depends on the radius from the centre r as I(r), the surface brightness at r:

I(r) = I0 exp
[
−1.68

r
r0

]
, (2.1)

where I0 is the flux at r = r0, the half-light radius.
De Vaucouleurs profile fit: fit with a De Vaucouleurs profile, convolved afterwords

with the PSF. Its form is:

I(r) = I0 exp

[
−7.67

(
r
r0

) 1
4
]

. (2.2)

Model magnitude: standard magnitude employed for SDSS data, computed by a linear
combination of the best fits with the exponential and the De Vaucouleurs profiles:

Fmodel = f racDeV FdeV + (1 − f racDeV)Fexp , (2.3)

where f racDeV is the linear combination factor that leads to the best possible fit of the profile
combinations.

2.1.1.1 Sky Background Error

The sky background error (skyErr) parameter in SDSS DR6 was calculated in the back-
ground measurement of the calibrated images. This sky background was estimated in
256×256 centred every 128 pixels across the image Euclidean grid. For each box, the
background level was calculated by a clipped median with a clipping factor of 2.32634×σ,
masking only the brightest and saturating stars.

Once the background in each box was estimated, the error was obtained from the
interquartile range of the resulting background distribution. The sky level and the sky
error were linearly interpolated from the box centres to the centroid of each source. The sky
background and error were obtained initially in the units of pixel counts, Data Units (DN),
and then transformed to the flux unit maggie for the CasJobs repository portal1. Maggies
are linear flux units that corresponds to 3631 Jy. One maggie is defined to have an AB
magnitude of 0, so that they are calibrated according to the zero point of the images 2.

2.1.2 Galaxy Zoo Data Release 1

The Galaxy Zoo Data Release 1 (GZ DR1; Lintott et al., 2011) provided its volunteers with
images of galaxies from a set of ∼600 000 out of the 800 000 spectroscopic target galaxies of
SDSS DR6. Through its interface, the users were asked questions related to the shape and

1https://skyserver.sdss.org/casjobs/
2http://cas.sdss.org/dr7/en/help/docs/algorithm.asp?search=mag_model

https://skyserver.sdss.org/casjobs/
http://cas.sdss.org/dr7/en/help/docs/algorithm.asp?search=mag_model
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visual properties, and the gathered answers resulted in a morphological classification. Each
GZ DR1 vote was weighted based on the agreement rate of the volunteer that emitted the
vote has with the majority opinion of all the objects they viewed. When the online program
was completed, the catalogue with the resulting voted classifications were published.

The main GZ DR1 catalogue provided three morphological labels defined from the
relative amount of votes. These labels are Elliptical, Spiral, and Uncertain. They were
defined after correcting the volunteer votes for the difficulties of discerning spiral galaxies
from ellipticals in the faint, small, or far regime. This is because spiral galaxies imaged with
low resolution appear similar to elliptical ones. Such low resolution can be because the
spiral appears faint in the image and the spiral features are not obvious, or because it is
small so that the spiral features are not resolved. This gets enhanced if the galaxy is far: if
one could observe the exact same source at redshifts 0.1 and 1, it would become fainter and
smaller for the higher redshift.

The correction was performed in Bamford et al. (2009) and reproduced in the final
dataset (Lintott et al., 2011). This bias was calculated by building magnitude-size bins,
estimating the spiral-to-elliptical ratio for each bin, and assuming this ratio to be constant
along the whole survey using the better resolved bin as reference. Thus, every galaxy
received a correction factor for the elliptical and spiral votes, i.e., debiased vote fractions. It
is important to note that this factor is only related to the limitations of the image themselves,
and a different survey would require a different bias estimation. Other biases, such as those
coming from the volunteers or the actual morphological dependence on cosmic history,
were not included. Each galaxy that had a debiased vote fraction for elliptical or spiral
classes above 0.8 were flagged as Elliptical and Spiral galaxies, and those that did not fulfil
those two conditions were flagged as Uncertain galaxies.

Regarding merging galaxies, one of the options that were shown to the volunteers asked
about the presence of merging signatures. Thus, the galaxies in the catalogue received
a merger vote fraction fm. These votes were not debiased as the votes related to early-
versus-late type options explained above. The work in Darg et al. (2010a,b) provided a
follow-up catalogue of mergers, where the authors confirmed visually the merging galaxies
and selected their merging companions. The mergers they checked were galaxies with fm >
0.4. The released public catalogue3 is composed of merging galaxy pairs, including some
multi-merger cases, with a total of 3 003 merging systems in the redshift range [0.005, 0.1].

One drawback of the GZ DR1 merger votes emitted by the volunteers was that only
major merging clear features were explained to them. Thus, it is possible that some less
usual merging types such as minor mergers, shells, or coalescing galaxies got low merger
votes.

2.1.3 Photometric NN’s training dataset

The dataset used for training a Neural Network (NN) is required to contain a represen-
tative sample for each different class intended to be identified. We attempted to discern
merging and non-merging galaxies using the SDSS DR6 sources that were morphologically
determined in GZ DR1.

Our selection of galaxy mergers for training was taken from the Darg et al. (2010a)
merger catalogue. To complete the dataset, we needed to include non-merging galaxies.
As a preliminary non-merger set, we considered all GZ DR1 galaxies with fm < 0.2 (as
in Pearson et al., 2019b). We built the training set to be class balanced, that is, each class
that the NN learned to recognize was equally represented in the training data. Using a
training set reproducing the real abundances, the NN would become very good at finding
non-mergers, but might not learn and confuse some of the less abundant mergers, thereby

3https://data.galaxyzoo.org/#section-4

https://data.galaxyzoo.org/##section-4
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contradicting the purpose of this work. Besides having a class balanced set, we wanted
to have a distribution of merging and non-merging galaxies similar in mass, so that they
represent comparable populations in every property that is not related to the merging
process. For example, if all mergers were significantly more massive than the non-mergers,
the NN could be identifying the mass distribution rather than the merging state. While
the r-band photometric magnitude is a good proxy for galactic mass (e.g. Mahajan et al.,
2018), it is a detected flux that depends strongly on the distance. We thus considered
the spectrometric redshift (spec-z) as a proxy of the source’s distance. We obtained one
non-merging nearest neighbour for each merging galaxy based on the model magnitude
r-mag and the spec-z through a 2D Euclidean distance.

The galaxies had spec-z calculated from the fibre spectroscopy described above, and
flux measurements that resulted in the magnitude types described in Sect. 2.1.1. We applied
a cut in the spec-z < 0.01 and another cut in the model magnitude r-mag < 18.05; the former
was because zero non-mergers could be found below that redshift, and the latter because
the density of non-mergers decreased with r-mag. From the original 3 003 primary mergers,
four of them were found to show fm < 0.4, of which three even showed fm < 0.2, which
meant that they appeared in both initial samples. Thus, these four galaxies were removed.

The final dataset was reduced to 2 930 mergers after all the restrictions were applied.
Therefore, the 2 930 non-mergers were matched and a final full dataset of 5 860 galaxies
was obtained. From this, we separated 5 360 class-balanced galaxies for training-validation
purposes, and kept the remaining 250 mergers and 250 non-mergers for testing the trained
NNs.

2.1.4 Decision Tree dataset

The training dataset defined for training the NN led to useful insights to find mergers
using the SDSS DR6 sky background error, described in Chapter 4. In order to extend this
sky-background-based merger identification to more galaxies, we made use of the whole
GZ DR1-SDSS DR6 catalogue, and split it.

Multiple subsamples of these galaxies were selected for visual inspection. These sub-
samples were groups of nine galaxies taken from subsets of the GZ DR1 dataset as defined
by four properties: by the model magnitude in the r band, by GZ merger vote fraction
fm, by GZ morphology flag, and by the location in specific areas of the Fig. 5.1 boundary.
We chose of taking nine galaxies in order to get good statistics without compromising too
much time in the visual inspection. The first three selections are described below, and the
last property is explained in Chapter 5. The nine galaxies per subsample were randomly
drawn from each of the four-parameter GZ DR1 subsets.

It is important to insist on clarifying the nomenclature across this dataset: a subset
comes from the four-parameter-based selection from the GZ DR1 dataset, a subsample is
the nine-galaxy groups drawn from the subsets.

Magnitude: when doing a preliminary inspection of the galaxies along the Fig. 5.1 sky
error diagram, it was clear the importance of the magnitude of the galaxy in the visual
appreciation of merging features. Three magnitude intervals were defined: the bright
interval of magnitude values below 14, the intermediate one from 14 to 16.5, and the dim
interval for galaxies of magnitudes above 16.5.

Merger vote fraction fm: we took advantage of the vote fraction bins employed in Darg
et al. (2010a) to determine four possible ranges from the minimum to the maximum votes.
The fm = 0 galaxies should be the safest non-merging value, as none volunteer considered
them to be interacting. The galaxies with fm ∈ (0,0.2], considered as merger by a minor
portion of volunteers, might hide some features. The fm ∈ (0.2,0.4], interval that in Darg
et al. (2010a) was considered as intermediate between mergers and non-mergers, is even
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more likely to show mergers that are not major merging pairs. Finally, the higher interval
fm ∈ (.4,1.0] is where the mergers from Darg et al. (2010a) were taken, and therefore where
the majority of merging pairs should appear.

Morphological labels: we considered galaxies showing the three GZ DR1 flags: Ellipti-
cal, Spiral, and Uncertain. It is important to note that for Elliptical and Spiral flags fm is by
definition smaller than 0.2, while for Uncertain sources fm has values along the whole [0,1]
interval.

2.2 Subaru/Hyper Suprime-Cam deep field in the North Ecliptic
Pole

The HSC is a wide field camera mounted on the Subaru Telescope, with a primary mirror
of 8.2 metres, located near the summit of Maunakea, in Hawaii, USA. Opposite to SDSS, it
has a filter wheel that allows the multiple optical bands to be rotated. Of these bands, we
worked mainly with the g, and r, which are similar to the SDSS ones. It has 116 CCDs, out
of which 104 are used for the actual images, 8 for the guiding system and 4 for the focus
system4. Each of the CCDs has its pixels separated into four vertical channels.

HSC is a wide field camera with a field of view of 1.8 degree in its focal plane. It has
been mainly used for creating a large survey of the northern sky. This wide survey is known
as the HSC Subaru Strategic Program (HSC-SSP; Aihara et al., 2018). Besides the SSP and
it’s up to now three data releases, HSC survey also includes deep and ultradeep fields. The
deeper the field, the more the coadded exposures that were taken in it.

The North Ecliptic Pole (NEP), observed as one of the HSC deep fields, is the field where
Pearson et al. (2022) was carried out. This HSC-NEP deep optical observations (Goto et al.,
2017; Oi et al., 2021) were designed to cover the AKARI-NEP infrared wide field survey
(Matsuhara et al., 2006; Lee et al., 2009; Kim et al., 2012). The observation was carried out
in two rounds. The r-band images were observed in the 1st of July 2014, during a night
with high air disturbance. The remaining g, i, z, and y-bands were observed later, between
the 8th and 11th of August 2015, under better conditions. The atmospheric turbulences
during the r-band observations made its seeing worse than that of the other four bands.
The resulting r-band seeing was 1.25 arcseconds and for the rest of the bands, between 0.7
and 0.8 arcseconds. The images used were reduced using the HSC photometric pipeline
hscPipe version 6.5.3 (Bosch et al., 2018; Aihara et al., 2019).

2.2.1 Galaxy Zoo GAMA-KiDS and Galaxy Zoo: Cosmic Down!

The Galaxy Zoo GAMA-KiDS was carried out on the images of 50 000 images from the
Kilo-Degree Survey (KiDS; de Jong et al., 2013a; de Jong et al., 2013b), out of galaxies
observed in the Galaxy and Mass Assembly field (GAMA; Driver et al., 2009; Holwerda
et al., 2019)5,6.

The Galaxy Zoo: Cosmic Down (GZ:CD) program was based on cutouts from the NEP
images taken in the 2019 HSC deep field observations of the Hawaii Two-0 (H20) survey
(Zalesky, 2021). The classification was performed by GZ volunteers during 2023 and 2024.
Similarly to previous GZ programs, the volunteers answered questions regarding merging
interactions, although GZ:CD also included major and minor disturbances, in contrast with
GZ DR1.

4https://hsc.mtk.nao.ac.jp/pipedoc_5_e/hsc_info_e/index.html#hsc-info
5https://www.gama-survey.org/
6https://indico.in2p3.fr/event/16341/sessions/9954/attachments/49229/62439/Kelvin_2018061

2-Lyon.pdf

https://hsc.mtk.nao.ac.jp/pipedoc_5_e/hsc_info_e/index.html##hsc-info
https://www.gama-survey.org/
https://indico.in2p3.fr/event/16341/sessions/9954/attachments/49229/62439/Kelvin_20180612-Lyon.pdf
https://indico.in2p3.fr/event/16341/sessions/9954/attachments/49229/62439/Kelvin_20180612-Lyon.pdf


2.2. Subaru/Hyper Suprime-Cam deep field in the North Ecliptic Pole 31

2.2.2 HSC-NEP training dataset

The work in Pearson et al. (2022) classified galaxy mergers by a Deep Learning (DL) model
built by my auxiliary supervisor dr. William Pearson, published in Pearson et al. (2022). For
training, it used classifications from GAMA-KiDS Galaxy Zoo. The training was done on
observations from the HSC-SSP Data Release 2 (DR2; Aihara et al., 2018, 2019). Therefore,
the training galaxies were cross-matched from the GAMA-KiDS-based training set in
Pearson et al. (2019a) with the HSC-SSP DR2 sources, providing a smaller dataset than that
in Pearson et al. (2019a).

To read all the details of how the dataset was created, please refer to the original work
(Pearson et al., 2022). The training of the model, its application, and the visual inspection
that I contributed to, were all performed on the r-band observations, despite the worse
seeing quality.

The model was separately applied in two redshift ranges: a low redshift range for z <
0.15, and a high redshift interval 0.15 ≤ z < 0.30. The galaxies from the Pearson et al. (2019a)
training dataset belonged to the low redshift range, but there is not a catalogue of mergers
in the high redshift range. Thus, to train the 0.15 ≤ z < 0.30 galaxies, a data augmentation
was applied to the low-redshift galaxies, modifying them to replicate a higher redshift
observation. Again, full details on this can be found in Pearson et al. (2022).

2.2.3 HSC sky error extension

We matched the GZ:CD catalogue with the galaxies from the HSC-NEP catalogue created
out of the multi-band optical images (Goto et al., 2017; Oi et al., 2021), reduced in Kim
et al. (2021). We applied this GZ:CD classification to the galaxies g-band HSC-NEP images,
although we carried out our own data reduction using the HSC photometric pipeline
hscPipe version 6.7.

The raw images and calibration frames were downloaded from the SMOKA repository7.
SMOKA is a web repository developed and maintained by the National Astronomical
Observatory of Japan (NAOJ). It includes "public science data obtained at the Subaru
Telescope", among others. For HSC, the calibration frames are created monthly, as they
are quite stable within long periods of time. For reducing the g-band HSC-NEP images
taken in July 2015, we made use of the 2015 May bias, dark and dome flat frames. We were
suggested to use the May 2015 frames instead of the July ones, as there were some temporal
issues for finding the July frames, and the practical difference between them was small.

The basics of the first version of the pipeline, the initial version 4, are described in Bosch
et al. (2018). However, a new background estimation method, together with other updates,
was introduced for it the hscPipe version 6, as described in Aihara et al. (2019). We provide
a detailed description of the pipeline in Sect. 3.4.2.

We created a class-balance dataset from the GZ:CD. The galaxy mergers were selected by
considering as mergers every galaxy with merging votes above 0.7, following the criteria of
the previous GZ release (Walmsley et al., 2022). Analogously to the training dataset for the
NN in the first project, we matched each merger with its nearest neighbour, drawn from the
galaxies with merging vote equal to zero, in the plane formed by the r-band magnitude and
the photometric redshift. Because not all the HSC-NEP galaxies have spectroscopic redshift
available, we considered the photometric redshift a good initial proxy of the distance. The
final catalogue contained exactly 256 mergers and their 256 corresponding non-mergers.

7https://smoka.nao.ac.jp/HSCsearch.jsp

https://smoka.nao.ac.jp/HSCsearch.jsp
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CHAPTER 3

Methodology

Multiple methodologies were applied along my PhD studies in the work presented in this
manuscript. For the Neural Network (NN) applied to our training-set galaxies in the Sloan
Digital Sky Surveys (SDSS) – see Sect. 2.1.3 –, we normalized the input parameters in a wide
variety of ways, and study them with dimensionality reduction methods. For the visual
inspection applied to the Galaxy Zoo Data Release 1 source selection – see Sect. 2.1.4 –, we
built a set of questions to classify them. We also built a decision tree, following what was
found in the visual inspection, created to automatically select galaxies with surrounding
detections that might be contaminating the merger identification. Multiple methods were
applied to the Hyper Suprime-Cam North Ecliptic Pole (HSC-NEP) galaxies – see Sects.
2.2.2 and 2.2.3. We contributed to the visual inspection of the classifications generated by
the Machine Learning method of Pearson et al. (2022). We also reduced the HSC-NEP g
bands images. We finally obtained the pixels within an aperture around the galaxies and
measured the background within them. Then, we generated parameters over the histogram
of the background pixels, and applied further dimensionality reduction methods to those
parameters. The description of the methods applied around the photometric NN, in Sect.
3.1, is described as in Suelves et al. (2023).

3.1 Photometric NN

An NN has combinations of layers, composed of basic mathematical nodes called neurons,
connecting the input values to the model’s final outputs. Each neuron weights the value of
a previous point on the network – which can be all the dataset inputs or all the neurons
in the previous layer – by its internal weight g and bias b parameters, performing a linear
transformation of the type f (x) = w · x + b that subsequently goes through a g( f (x))
non-linear activation function. g( f (x)) simulates a synaptic-like step in which the output is
either zero or very small – no connection –, or a larger number that allows the information
to ‘progress’ across the NN structure in some measure. The final output of the NN gives
information about the input data such as their classification among a list of classes.

The NNs in this work were trained with known class labels – supervised learning –, so
that the neuron weights could be progressively modified and the models learnt to solve the
task for which they had been built. Such a process may fall into a situation in which the
NN explicitly memorizes the training dataset, a state known as overfitting. Neural network
studies are mainly focused not only on how to increase the learning abilities, but also on
how to reduce this overfitting and manage the generalization of the trained result.
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One of the controversies with NNs is that they tend to be treated as black boxes that
somehow solve problems, even though it is not well understood how they manage them
and why. This project centres its attention not only on testing our NN models, but also on
determining the information the NN finds in the dataset, and for that we made use of some
other techniques such as dimensionality reduction, which we also explain in this section.
The goal of the NN is not only to classify mergers but also to learn their properties, which
can only be achieved by understanding its internal functioning.

3.1.1 Basics of our NN

An NN is essentially defined by the layer-neuron architecture and the properties of the
connections. We used dense layers, linking each of one layer’s nodes to all those of the
previous layer, creating subsequent, fully connected layers from input to output. In the
intermediate step between layers, we applied batch normalization (Ioffe and Szegedy, 2015)
– to normalize and shift the post-layer value array l to a mean l̄ = 0 and variance Var(l)
= 1 – in order to make it faster and more stable. Moreover, we applied a dropout rate
(Srivastava et al., 2014) for each layer, which consisted in setting some arbitrary percentage
of the neurons to zero during each training step. This was done to allow all the neurons to
be relevant in some way, forcing them to not rely on a higher influence from others.

The non-linear neuron activation function selected was the commonly used Rectified
Linear Unit (ReLU Nair and Hinton, 2010). The NN output is addressed as a two-class
classification, also known as binary classification. The final result is given as a softmax
probability value for the merger (Pmer) and non-merger (Pnom) classes. It fulfils Pmer + Pnom
= 1. The optimization method chosen was the Adam method (Kingma and Ba, 2014),
characterized by a dynamic learning rate. The loss function used for optimizing the
classifier was the TensorFlow’s BinaryCrossentropy class. The layer layout, the dropout
rate, and the initial learning rate selected are presented in Sect. 4.1.1.

3.1.2 Training

The model was trained on the pre-selected combination of labelled objects detailed in Sect.
2.1.3. Training datasets are commonly separated into three groups: a training set that is
used for the optimization process, a validation set that is studied parallel to the training but
without affecting the learning steps, and a test set that is only considered when the training
is finished, to check the model’s capabilities. During our NN learning, the training updates
were done over a batch of 64 galaxies, randomly shuffled for every training epoch. At the
same time, the validation set was used as control sample: updates on the neurons were
externally saved only when there was an improvement in performance over the validation
set. Specifically, we considered that the performance improved when both the validation
loss decreased and the validation accuracy increased with respect to the last save. The
test set was left unseen by the NN until the end, acting equivalently to applying the NN
to a fully new group of objects, except that this new group was drawn from the same
distribution as training and validation.

For training the NN, we employed the k-fold cross-validation method (Stone, 1974;
Rodriguez et al., 2010). It consists in separating the training dataset by shuffling objects
randomly into k equally sized groups. One full training was executed k times so that every
train-validation run had k − 1 groups forming together the training-set and the remaining
one as the validation-set, which was switched each time. As a result, we obtained k trained
NNs that could show the model instability and at the same time give a more reliable
performance test. Moreover, if the learned parameters of the NN happened to be almost
the same for all folds, an average of them could be used. For our 5 360 training+validation
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galaxies, we decided to split them into five k-folds, partly motivated to avoid extending the
training time for too long. This adopted validation method will be referred to in the rest of
the text as five-fold cross-validation. The advantage of applying our five-fold validation
is that it allows us to compare NN training results with different inputs by the mean and
standard deviation of the validation saved-peaks per fold.

3.1.3 Input space normalization

Inputs for NNs are generally normalized to facilitate the optimization process and simplify
the numerical accuracy (Yu et al., 2005). For our inputs, we chose the min-max normaliza-
tion. The original galaxy’s feature array Xg was adapted to an [0,1] interval by applying
the equation:

xg =
Xg − Min(Xg)

Max(Xg) − Min(Xg)
. (3.1)

Different NNs were trained by separately using the different magnitude types described
in Sect. 2.1.1. However, the photometric information not only consisted of magnitudes
but also of the measurement errors or the ten colour indexes – derived by subtracting
magnitudes in each band from one another. We considered multiple combinations of
photometric information and labelled them as follows: an NN trained over an input space
with only band magnitudes was labelled as B; with only colours was labelled as C; with
bands and colours was labelled as BC; and with bands and colours and also with errors
was labelled as BCE.

3.1.3.1 Variations of the error normalization

Additionally, for the BCE cases, we considered two more normalization formulas. This was
due to the intrinsic relation of the errors σB with the magnitudes, and thus normalizing them
while ignoring this relation might lead to losing information. A more explicit possibility
would be to relate the error normalization σb to the measurement-error ratio.

While Eq. 3.1 was kept for bands and colours, two value corrections were used for σb,
differing whether the post min-max band values b were involved or not. The first case was
obtained by the proportion of the original errors ΣB to the original band measures B, that
is, the fractional error:

σb =
ΣB

B
. (3.2)

The other case was obtained by considering the pre ΣB/B and post-normalization σb/b
ratios to be the same, solving an equality between the two fractions:

σb = b
ΣB

B
. (3.3)

Neural networks with their input normalized with Eqs. 3.2 and 3.3 were labelled as BCEp
and BCEn, respectively.

3.1.3.2 Min-max normalization of feature space, but not included fully

The multiple photometric parameters we combined to form the NN’s input spaces had
values varying by up to several orders of magnitude. When we min-max normalized
them into the [0,1] interval, this sometimes distorted in some way the relation between
them. An illustrating example can be found in how the band magnitudes showed different
normalized values between the input spaces of the BCE and the B versions of NNs. For the
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BCE case, the parameter with the maximum value was generally the u-band magnitude, and
the minimum was the error in some of the five bands. For the B case, while the maximum
was the same, the minimum was the magnitude in some other band. Therefore, when
applying Eq. 3.1 to the BCE space, the resulting input values for the band magnitudes were
close to 1 and for the colours and errors close to 0. However, for the B case one could have
a value 1 for the u-band and 0 for the z-band.

To understand the role of specific parameters, it was necessary to isolate them. If one
were interested in only studying the band’s performance, min-max normalizing them alone
would be the immediate option. Nonetheless, the values would by construction differ
between the combined BCE and the isolated B input spaces, and making a comparison
would not be easy. We attempted to mitigate this by getting the normalized values of a
subset within a larger input set but discarding the non-interesting ones. As an example:
to understand the role of the magnitude bands in the BCE space, we would perform the
same normalization as for the BCE NN, but keeping only the band magnitude values
and discarding the colours and errors after applying the min-max formula. We define the
nomenclature of this type of input, using the bands’ example, as follows: ‘bands as if in
BCE’ or ‘bands as if with colours and errors’.

3.1.4 Statistics on the NN results

To quantify the success and performance of the NN, we define the following four clas-
sification groups: the mergers classified correctly are regarded as true positives (TPs);
true negatives (TNs) are the non-mergers homologous; false negatives (FNs) are mergers
mistakenly identified as non-mergers; and false positives (FPs) are non-mergers mistaken
as mergers. Moreover, we consider accuracy as the ratio of correctly classified objects with
respect to the whole set size:

Accuracy =
TPs + TNs

TPs + TNs + FPs + FNs
. (3.4)

For a single validation fold, the denominator would be the 1 720 galaxies that compose
it. The mergers’ correctly classified rate is given as TPs/(TPs+FNs) and the non-mergers’
correctly classified rate is given as TNs/(TNs+FPs).

3.1.5 Dimensionality reduction

Dimensionality reduction techniques transform a high-dimensional set of data into a lower-
dimensional representation. With the goal of simplifying a given problem or visualizing the
data in a more adequate way, they attempt to maintain as much information of the original
data as possible. In our case, we applied them with the purpose of visualizing the galaxies’
distribution in 2D, reducing the original input dimensions.

We considered two different ways to do it, one of which was the principal component
analysis (PCA; Hotelling, 1933), which is actually not a machine learning model but essen-
tially a matrix diagonalization. The other way was the t-distributed Stochastic Neighbor
Embedding (t-SNE; Maaten and Hinton, 2008; Van Der Maaten et al., 2009), which is more
oriented to resembling the original distribution.

Principal Component Analysis: a linear method that performs a coordinate transforma-
tion of an N-dimensional dataset’s feature space – where each dimension corresponds to a
data variable – into a new N-dimensional orthonormal coordinate base. This new reference
frame is composed of basis vectors called principal components. They arise as a conse-
quence of diagonalizing the covariance matrix of the dataset and ordering the eigenvalues
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λi. The absolute value of λi represents how high the variance is along the correspondent
eigenvectors. Through PCA, one can obtain 2D or 3D plots with the projection of the data
onto the directions with most feature variations.

t-distributed Stochastic Neighbour Embedding: a machine learning algorithm that
reduces an N-dimensional space into a 2D one, while maintaining its statistical distribution
as much as possible. This method calculates the relative probability of each pair of high-
dimensional objects so that very similar or closeby points have high probabilities and very
different ones have low probabilities. A similar probability distribution is initialized in 2D
and, through minimizing the Kullback–Leibler divergence between both with respect to
the point positions, an embedded map in 2D of the original space is produced.

3.2 Decision Tree

The goal of this project was to identify contaminants around galaxies that might be spoiling
the identification methods. These contaminants can be stars, galaxies, or image artefacts
next to the target galaxies. They can confuse the classification method, making it to
misidentify the target as a merger when it is actually a non-merging galaxy. Two main
methodologies were employed for characterizing the target galaxies and the potential
contamination: the visual inspection, and a decision tree created to automatically identify
some of the features found visually. We applied the cross-pairs method to identify the
merging pairs that had spectrometric redshift measurements – see Sect. 1.3.2.

Moreover, the galaxies analysed were selected from the sky background error diagram
described in Sect. 4.2.3. We determined the areas of the diagram populated by the mergers
and non-mergers from the training sample. This provided reference regions of the diagram
where those classes could be found. This was done applying the alpha shape algorithm,
which allowed to draw a boundary around the denser clusters of the diagram.

3.2.1 Cross-pairs criteria:

In order to consider the galaxies to be merging by the cross-pairs method, we applied the
criteria for relative distance ∆r and relative velocity ∆v analogous to those in Ellison et al.
(2008). We measured the relative distance through the function kpc_proper_per_arcmin
from the astropy.cosmology package. This function calculates the projection in the sky,
in units of arcminutes, of the proper size of a kilo parsec (kpc) for a given redshift1, – see
the third paragraph in Sect. 1.3.2, where distances in cosmology were defined. Thus, we
obtained ∆r given the separation in the sky and the redshift of the target. We measured the
velocity (v) directly from the redshift, as v = z·c, where c is the speed of light in vacuum.

We considered consistently the same ∆v = 500 km/s across all visual inspection options.
However, a slightly larger relative distance than 80 kpc/h was instead chosen for the visual
inspection option "One distorted galaxy, with a cross-pair nearby" – see Sect. 3.2.2. This
value was ∆r = 100 kpc/h, because we observed tidal distortions in the target galaxy in
multiple cases of this classification type in the presence of a companion with ∆r between 80
and 10 kpc/h.

3.2.2 Visual Inspection

For visual inspection, multiple samples of nine galaxies were randomly drawn from subsets
of GZ DR1, as described in Sects. 2.1.4 and 5.1.1. Each galaxy was visually inspected

1Source code of the function: https://github.com/astropy/astropy/blob/main/astropy/cosmology/f
lrw/base.py

https://github.com/astropy/astropy/blob/main/astropy/cosmology/flrw/base.py
https://github.com/astropy/astropy/blob/main/astropy/cosmology/flrw/base.py
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and classified following the flow chart in Fig. 3.1. We dub these galaxies from now on as
target galaxies. The visual inspection was performed in practice using Aladin Sky Atlas2,
specifically the Desktop software (Bonnarel et al., 2000). Aladin allows loading images both
from the computer or from the Collections its system has available, such as the SDSS DR9
survey images. Each catalogue was loaded from TOPCAT (Taylor, 2005), a software for
reading easily .fits files. Each catalogue was loaded from TOPCAT into Aladin using the
Simple Application Messaging Protocol (SAMP) interoperation system that allows to send
datasets between both. The SDSS DR9 colour images available in the Aladin Collections
were loaded as an interactive sky and the visual inspection of the catalogue galaxies was
done on them.

Here are explained in more detail the options from the flow chart and the reasoning
behind them. These options were added as new six columns to the .fits file catalogues:

3.2.2.1 Major Merging Pairs

Two Galaxies Clearly interacting: When the target galaxy was clearly interacting with
another galaxy that also showed signs of tidal disruption, the target galaxy was considered
to be a major merger.

One distorted galaxy, with a cross-pair nearby: In the case of the target galaxy looking
distorted, the presence of a galaxy of similar apparent size fulfilling the cross-pair criteria,
as described in Sect. 3.2.1, was considered as a sufficient condition for the target to be in a
merging interaction.

Cross-Pairs: both galaxies of comparable size: If the target galaxy did not show a clear
distortion, but there was a cross-pair galaxy of similar size nearby, the target galaxy was
considered to be a major merger.

3.2.2.2 Other Mergers

Cross-Pairs: one galaxy looks like a satellite: If the target galaxy did not show clear
distortion, but there was a cross-pair galaxy of clear smaller size nearby, the target galaxy
was considered to be a minor merger, and thus to belong to the other mergers cathegory. It
is important to note that the small companion rarely had spectrometric redshift available,
limiting the application of this criterion to a minority of cases.

Galaxy with satellite infalling: When the target galaxy had signs of distortion due to
a smaller galaxy nearby, this was considered to be a minor merger, even if the potential
minor pair did not show clear signs of distortion.

Highly distorted coalescing galaxy: This was the case of highly irregular galaxies, and it
was considered only for a high enough resolution that allowed to observe the coalescing
features. Such features could be double nuclei with distorted surroundings or clear signs of
an absorbed satellite galaxy.

3.2.2.3 Non-Mergers

Elliptical or Spiral clearly non-interacting: If the galaxy showed a well define early or
late-type morphology, it was clearly a non-merger.

2https://aladin.cds.unistra.fr/

https://aladin.cds.unistra.fr/
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Galaxy in a crowded field, without cross-pairs: Some galaxies were bright, showed a
large angular size, and appeared in quite crowded fields, blending with many smaller
sources. Others were surrounded by galaxies of similar size and even at comparable
redshift, forming groups and clusters. Nonetheless, if the relative distance and velocities
did not fulfil the cross-pairs condition with any of the nearby galaxies, then the target
galaxy was considered a non-merger.

3.2.2.4 Contamination by Stars

A target galaxy was considered contaminated by a star if it was blending with a star of
comparable size, or if a star of comparable size was located close to it. The definition of
"close" here is subjective and, in practice, it changed slightly from case to case. Overall,
"close" meant that the star was located at a distance from the target galaxy by approximately
less than twice the radius of said galaxy.

3.2.2.5 Contamination by Visual Pairs

A target galaxy was considered contaminated by a galaxy if it was blending with a source
considered to be a galaxy by the SDSS catalogue; if there was clearly a galaxy of comparable
size nearby at different redshift; if there was a small galaxy without spectroscopy close
to and there was no distortion either in the target galaxy or in the neighbour; or if in a
crowded field none of the galaxies fulfilled the cross-pairs conditions. The definition of
close here is analogous to Section 3.2.2.4.

3.2.2.6 Contamination by Artefacts

A target galaxy with an image artifact blending or close to it was considered affected by an
artifact. These artefacts were mainly diffraction spikes from bright galaxies, satellite trails,
or saturated sources.

3.2.3 Decision Tree

Once the results from the visual inspection were gathered for all galaxies in the subsamples,
many showed contaminations – see Chapter 5, Sect. 5.1.2. These contaminants could be
found automatically without the visual inspection by performing a decision tree.

3.2.3.1 Catalogue of sources surrounding a target galaxy

The first component of the decision tree was a set of SDSS DR6 detections obtained from
CasJobs around each of the target galaxies. CasJobs is the name of the server that hosts the
SDSS catalogues3. Although newer servers are currently in use for the latests SDSS DRs, it
still can be accessed for previous iterations such as DR6. Its data can be access by means of
Structured Query Language (SQL), written queries that select catalogues according to some
properties and provide only a desired set of columns.

To make sure possible cross-pair galaxies were included in these catalogues, we took
all the sources within a comoving radius of 100 kpc/h around each source. This co-
moving radius was calculated applying the kpc_proper_per_arcmin function from the
astropy.cosmology package as described in Sect. 3.2.1.

3https://skyserver.sdss.org/casjobs/

https://skyserver.sdss.org/casjobs/
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Figure 3.1: Flow chart describing the decision options applied for the visual inspection of
galaxies. The left column’s three rows describe how galaxies were classified as merging
pairs, as other type of mergers, or non-merging galaxies. The right column describes the
criteria for defining three different types of contaminations near the galaxies: contamination
by stars, contamination by galaxies forming visual pairs, and the contamination by artefacts.
This flow chart was created using the online tools provided by the canva webpage (https:
//www.canva.com/).

https://www.canva.com/
https://www.canva.com/
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3.2.3.2 Flags

All the sources were obtained from a CasJobs query without any flag selection. Nonetheless,
the catalogue of surroundings sources included multiple spurious detections. To clean them
for the decision tree, some of them were discarded when they presented some specific flags.
Moreover, we considered those spurious detections to be affecting too little the surrounding
of the target galaxies, and thus to not be interesting for the tree to consider them.

The following list indicates the flags that were considered to imply that a source does
not affect the contamination. The flags were chosen by the interpretation of the visual
inspection, and a short justification is written for each of them.

• Flag 246 DEBLEND_NOPEAK → seen in many spurious detections around a bright
source

• 247 PSFFLUXINTERP → seen in some other blended spurious sources

• 248 TOOFEWGOOD_DETECTIONS → seen in small sources that blended with
galaxies of large angular size

3.2.3.3 Branches of the decision tree

Contamination by Stars: The decision tree considered the target galaxy to be contami-
nated if there is a star closer than twice the target’s Petrosian radius. This also included a
star blending within the source itself.

Contamination by Visual Pairs: A galaxy is considered to be a visual pair contaminating
the target galaxy if the distance between the centroid of both galaxies is smaller than the
sum of the Petrosian radius of also both galaxies. This again included smaller galaxies
blending with the source itself.

In order to avoid actual merging pairs to be discarded, the criteria of cross-pairs – Sect.
3.2.1 – was also tested for all galaxies surrounding the target. Therefore, if a cross-pair
source is around the galaxy, the contamination criterion was overrun by the cross-pair
merger condition.

3.2.3.4 Statistics on the Decision Tree results

Table 3.1 gathers the relevant terms to understand the output of the decision tree. First,
it shows the References to the possible contamination results: the dirty and clean visual
labels indicate contamination results from the visual inspection, while the clean and dirty
from the decision tree (dt) are the models outputs. Then, it indicates the Classifications,
similar to the formalism in Section 3.1.4: the True Positives (TPs) are visually contaminated
sources found to be contaminated in dt, while the True Negatives (TNs) are the same but
for clean galaxies. False Positives (FPs) are visually clean galaxies that are found dirty in
the dt, and conversely for the False Negative (FN) results. Finally, it shows the relevant
Statistics out of dt. Those are the Accuracy, defined as all True results divided by the size of
the dataset; the Recall, defined as the rate of dirty sources correctly identified divided by
the total number of dirty source in the dataset, i.e, TPs/(TPs + FNs); and the Specificity,
defined similarly but for clean sources, i.e., TNs/(TNs + FPs).

3.2.4 Alphashape

The main goal of the visual inspection of the GZ DR1 galaxies was to address the strength
of the decision boundary, described in Sect. 4.2.3, for finding mergers by extending the
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Table 3.1: Table with the relevant definitions to address the outcome from the decision
tree. The References provide the classification types for the decision tree with respect to the
visually inspected results. The Classifications describe the output classes, and the Satistics
are those that are relevant for quantifying the performance.

Term Definition
References:
dirty visually: any contamination visual flag = True
clean visually all contamination visual flags = False
dirty from dt a star or galaxy has been found around, and there is no cross-pair
clean from dt neither stars nor galaxies found around, or there is a cross-pair
Classifications:
TPs dirty visually and from the dt
TNs clean visually and from the dt
FPs clean visually, but found dirty by the dt
FNs dirty visually, but found clean by the dt

Statistics:
Accuracy: (TPs + TNs)/all
Recall: TPs/(TPs + FNs)
Specificity: TNs/(TNs + FPs)

training dataset to the whole GZ DR1 galaxies. The first step was to constrain the location
of galaxy mergers in the diagram. We applied the Alpha shape algorithm (Edelsbrunner
et al., 1983) in order to define the region where the bulk of training mergers can be found.
Alpha shape is a technique that can be used to define the contour around a group of points
in a 2D or 3D graph. Simply speaking, the alpha shape algorithm generates circles with
a radius =1/α, hence the name. This α is an input of the model, which places circles so
that they include points of the distribution on their perimeter, but not inside. When the
circles have been defined, then the connection between points are transformed from circular
shapes into straight lines. In practice, this builds the outer contour of the system.

For high enough radius 1/α, the algorithm stops considering outliers as part of the
contour. This is because the radius of the circles become small enough that it can fit within
points. The circles generated for such points do not reach other points, and as a result,
they get disconnected from others. Therefore, only the circles in denser areas of the data
contribute the outer edge. The boundary traces points that are closer to each other, the
circles do not fit completely between them, and they have to include more than one point on
their perimeter. In different words, the higher the α, the more detailed and dense becomes
the outer boundary. An example of the effect of high α can be seen on the left side plot in
Figure 5.2, and an example of α = 0 on the right panel.

3.3 Visual Inspection of the HSC-NEP merger candidates

The main task I carried out for Pearson et al. (2022) was to inspect visually the galaxies
classified as mergers by the ML model implemented. My auxiliary supervisor dr. William
Pearson and I visually inspected all the galaxies classified by the NN as mergers. We shared
the visual inspection of the mergers, being the majority of them observed by dr. William
Pearson. The catalogue from where the mergers were identified is described in Chapter
2, Sect. 2.2.2. The goal of this work was to confirm how many of the ML-based merger
classifications were correct. This visual inspection was performed similarly to 3.2.2, but
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instead of loading the SDSS DR6 images from the internal collection of Aladin, we loaded
the HSC-NEP r-band images.

During the work, it was necessary to adapt how Aladin presents the image in order to
discern better the presence or absence of tidal features, of shape asymmetries, or of any
other type of distortions in the images. The astronomical images shown by Aladin can have
their aspect adjusted through two modifications: the scale of the colour bar and the range
of pixel values considered. The main scales used were linear, square root, logarithmic, or
following and asinh function. All of them are shown as a scale of grey shades from white
to black. Generally, the square root and asinh were more adequate to show some of the
features than the others.

The pixel range was set by defining a minimum and a maximum pixel values. This
range fixes the limits between which the colour scale changes, making the pixels with
the highest or the lowest values to appear as white or black, respectively. Modifying
the limits of observation had two main effects that, combined with the different colour
scales, could enhance the low-surface brightness features. Setting an upper limit below
the majority of bright pixels would make them all white, reducing the dynamical range
to low surface-brightness pixels. The lower limit was sometimes forced to be lower than
the value obtained from the software autoset. This autoset would take as minimum and
maximum the interval of pixel values among those pixels shown in the interface. Making it
smaller than the minium pixel was sometimes useful to reduce the variability of the pixels
in the background level. A more homogenous background allowed discerning better the
low-surface brightness merging features

It is worth noting that this was not done for the inspection of the SDSS galaxies in
Sect. 3.2.2. This was because those galaxies were observed through the colour images in
the Aladin collection, and they had the pixel range and scale fixed as a red-green-blue
combination of the r, g, and i bands.

3.4 HSC sky error extension

The galaxies in the catalogue Galaxy Zoo: Cosmic Dawn (GZ:CD) were matched with those
in the HSC-NEP deep field, as described in Sect. 2.2.3. We then obtained squared cutouts
for each galaxy using the g-band images, where we made the analyses of the Low-Surface
Brightness (LSB) pixels. These cutouts had as centre the centroid from the GZ:CD data, and
their sides had a length equal to 20 times their effective radius (re f f ). This side length was
taken to be much larger than re f f , in order to make sure that there is enough area for the
apertures that later will be applied. The cutouts included both the calibrated image and
the variance image resulting from the data reduction pipeline. Finally, a segmentation map
was created on the cutouts using Source Extractor – See Sect. 1.4.3 –, in order to make sure
that the target galaxy was detected and correctly found in the cutout centre.

Given the cutouts around each galaxy in the catalogue, we defined an aperture around
them. The apertures’ centres were then defined at the same position as the cutout centroids,
and with a radius equal to some factor of re f f . This factor is kept as a free parameter,
because different aperture radii will include more or less sky background pixels. Thus, the
LSB analysis highly depends on it.

The background level was then calculated by a clipped median – See Sect. 1.4.2. We did
this by implementing an algorithm that initially takes all the pixels within the aperture and
calculates its median and standard deviation. The pixels within the edge of the aperture
were included as full pixels, even if only a fraction of them were inside it by the aperture’s
geometry. Later, the clipped median would proceed by discarding all pixels with higher
values than the median plus a factor of the standard deviation, i.e., pixels above median
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+ std · f , where f is the clipped median factor. This clipping factor f was also left as a
parameter of the method. The clipped median step is repeated around ten times, providing
a final background model that we use as the histogram of the LSB pixel distribution.

The resulting clipped background histogram was saved and a set of multiple parameters
characterizing the histogram shape was calculated.

3.4.1 Parameters calculated on the LSB histograms

The parameters applied to the LSB histogram consisted of basic statistics extracting infor-
mation on the shape of the histograms. The first two are the mean and median, providing
two different measurements of the background level. Then, the interquartile range (IQR)
was calculated, together with three similar parameters dubbed as Fraction 1, 2, or 3. These
were defined by the following equations, where the qx variables are the x quantiles:

IQR = q75 − q25 , (3.5)

Fraction 1 =
q75 − q50

q50 − q25
, (3.6)

Fraction 2 =
q100 − q75

q25 − q0
, (3.7)

Fraction 3 =
q100 − q50

q50 − q0
. (3.8)

The last two parameters applied were the Skewness and the Kurtosis. Both of them
measure the asymmetry of the distribution, the skewness through quantifying the third
order moment and the kurtosis through the fourth order moment.

The resulting combination of parameters provided a set of data that can be simplified
through dimensionality reduction methods. We made used of the Neighbourhood Compo-
nents Analysis (NCA; Goldberger et al., 2004) to enhance the difference between mergers
and non-mergers in the resulting eight-dimensional space.

Neighbourhood Components Analysis: it is a non-parametric model that is able to
generate an embedding for classification data, while clustering it through the known labels.
It does it by optimizing a linear function between the data and the labels. This linear
function is a d × D matrix, where D is the dimensions of the data and d is the dimension of
the embedding. For the results presented in this project D=8, and d=2 provides a 2D space.

3.4.2 HSC Photometric Pipeline hscPipe version 6.7

The structure of the HSC Pipeline used to reduce the g-band HSC-NEP deep observations
can be followed in Fig. 3.3 from left to right. The raw exposures for each of the individual
observations are split into the internal CCD’s of the camera. Out of the 116 CCD’s, 103 are
used explicitly for the observations, although one of them was not functioning. The pipeline
builds an infrastructure of directories to apply the bias, dark, and flat frames consistently
along each CCD and exposure. It is at this point that the pipeline takes advantage of the
dithering between exposures to generate one of the two focal plane background that are
explained below. This generates the Sky*.fits frames per CCD, which store the dithering-
based background image, variance, and mask frames. This Sky*.fits frame is not used
until the stage previous to the coaddition, described below, but it is generated here because
it is at this point when the frames have had the bias, dark, and flat frames applied, and this
is required previous to the background modeling.
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At this point of the pipeline, after the main calibration frames per CCD have been
applied, the source detection is performed. First, in each CCD the Instrument Signature
Removal (ISR) is applied, which treats the cosmic rays, bad pixels, or saturated pixels
by masking them and interpolating new values from the surrounding pixels. When this
is done, the pipeline performs three subsequent source detections. Each of them begins
with the estimation and subtraction of the sky background, followed by a segmentation
and source detection, and proceed with a PSF estimation. As a result, three background
subtractions are done, and the final catalogue and the PSF function are generated so that
they can be used for the photometric and astrometric calibration.

The three background subtraction images, together with the resulting variance and
mask frames, are stored in .fits files for each CCD and exposure. The .fits format can
store multiple images as Header Data Units (HDUs) that are part of one file. Each HDU
includes not only the pixel values themselves, but also a header with relevant information.
The images of an example background file skyCorr**.fits is shown in 3.4. It includes
the image, variance, and mask frames of the three detection backgrounds and of the two
background models performed later on the focal plane.

The sky background calculated during the source detection is measured in each CCD
exposure by splitting it into boxes of 256×256 pixels, with their centroids separated by 128
pixels across a 2D orthogonal grid. This effectively bins the original 2144×4241 pixels of
one CCD into a 17×33 pixel image. For each box, the background is calculated by a clipped
median with sigma factor of 3. Finally, the background image is fit into a polynomial,
smoothing the background level through the CCD field of view. This results on three
HDUs stored by the pipeline: one for the image itself, another for the variance, and a last
one for masked pixels. One example of these HDUs can be seen in Fig. 3.4, where the
image and the variance frame are the second and first frames from the right in the first row,
respectively, and the mask frame is the first one from the left in the second row. The mask
frame indicates in fact the pixels not observed by the CCD: the bottom-left arc is the camera
edge, and the vertical line corresponds to a dead channel, one of the four vertical channels
that form each CCD.

The astrometric and photometric calibration of each CCD is done using the PAN-
STARRS1 3pi survey for reference (Schlafly et al., 2012; Tonry et al., 2012; Chambers et al.,
2016; Flewelling et al., 2020; Magnier et al., 2020a; Magnier et al., 2020b,c; Waters et al.,
2020). The astrometric calibration is used to "warp" all the exposures, which is the process
of creating the pixel grid that the coadd algorithm considers to stack all the exposures. Such
grid also provides the base reference to combine all the CCD of a single exposure into the
focal plane of the camera. Taking advantage of this focal plane image, the pipeline creates
a global background for the whole exposure, generated through 1024×1024 boxes. The
model’s image, variance, and mask frames of an example CCD are shown in the first HDU
from the right in the third row and the first two from the left in the fourth row of Fig. 3.4. It
is sensitive to large-area background contributions, such as light pollution from the moon,
artificial light sources, or atmospheric glow.

Before coadding all the images – see Sect. 1.4.6 –, the three background images created
during detection are added back to each CCD. Then, the global background in the focal
plane is subtracted. Finally, the sky background generated in the first calibration stage mak-
ing use of the dithering between frames is also subtracted for each CCD. This background’s
image, variance, and mask frames are shown for an example CDD as the two HDUs on the
right of the fourth column of Fig. 3.4, and on the final row. The dithering image gets rid
of static background signatures, those that do not depend on the pointing position of the
telescope. Those are known to be strongly affected by inhomogeneities in the transmission
of the camera filters, and have been well characterized by the HSC team as shown Fig 3.2.
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Figure 3.2: It depicts the g-band global sky subtraction, obtained from combining in the focal
plane all the Sky*.fits files of an example exposure. They provide the static background
image generated from the dithering of the images, which is mainly affected by the gain of
individual CCDs. The features change from CCD to CCD. Taken from Fig. 4 in (Aihara
et al., 2019).

A summary of the sky subtraction can also be read in the hscPipe 7 webpage4.
To complete the data reduction, the Coadd algorithm is performed, and the Calibrated

Coadd frames are obtained, as indicated in the two last boxes in Fig. 3.3.

3.4.2.1 Sky background modification

Observing low-surface brightness (LSB) in astronomical images is highly dependent on
the sky background subtraction strategy. A background modelling can confuse spurious
observations with actual LSB features. We wanted to make sure that this does not happen
with the HSC-NEP images, and this was the motivation of generating our own data
reduction.

Therefore, we wanted to make sure none of the background subtractions are spoiling the
LSB pixels. Out of the five background models, we consider that only the last background,
created from dithering, might have a detrimental effect on the low Signal-to-Noise (S/N)
surrounding of the galaxies. The three background images created during the detection
stage were added back to the image in the coaddition stage. If we assume that this process
of subtracting and adding back the fitted background boxes is reversible, meaning that
no background feature is lost due to it, then it should not have an impact in the LSB
distribution. In the case of the fourth background, the global background calculated in the
focal plane using 1024×1024 boxes, the large size of the box implies that it only traces wide
background structures and not the smaller LSB structures that we are searching for.

Thus, the only background that we considered to potentially have a negative effect
in the low S/N pixels is the last one, which was calculated from the dithering. While
this background should only be affected by static noise, it is still sensitive to small scale
structures. Consequently, we performed two calibrations for the whole g-band observation
in the NEP: the first calibration was run without any modifications to the background,
and the second was run avoiding the dithering subtraction. The first calibration is called

4https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_7_e/tips_e/qa_globalsky.html#qa-globalsky

https://hsc.mtk.nao.ac.jp/pipedoc/pipedoc_7_e/tips_e/qa_globalsky.html##qa-globalsky
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Figure 3.3: Flow chart of the data reduction pipeline HSC Photometric Pipeline hscPipe
version 6.7 used in g-band images of the AKARI HSC-NEP deep field. The process begins
on the left with the raw camera exposures, the Raw Data per CCD box. Then, the main data
reduction steps are carried subsequently towards the final calibrated coadd exposures, with
two instances of sky background subtraction along the way. This flow chart was created
using the smartdraw portal (https://www.smartdraw.com/flowchart/).

through the text as "Calibration with sky" or as "Normal sky". The second calibration as
indicated as "Calibration without sky" or as "My sky".

We managed to avoid the dithering subtraction by setting to 0 the values of the pixels in
the three image, variance, and mask frames. The pipeline is run in the exact same way as in
the normal case, except that before the skyCorr*.fits files are used in the Coadd stage, we
run a script that sets its last three HDU to zero. The resulting skyCorr*.fits is depicted in
Fig.3.5.

Understanding the background subtraction, the steps in the pipeline source code, and
how to cancel the subtraction of the dithered sky, were only possible with the help of the
HSC Software HelpDesk, specifically of dr. Hiroki Onozato. I would like to dedicate these
lines to thank his constant effort and support in responding to my mails.

https://www.smartdraw.com/flowchart/
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Figure 3.4: All stored HDUs within the files skyCorr**.fits, where the ** in the file’s
name correspond to the numbers indicating the CCD and exposure for each given file.
This file includes all the background information that is used in the coaddition. The three
background subtractions done through the source detection stage are stored in groups of
three HDUs, corresponding to the background model image, the variance, and the masks,
in this order. The three HDUs of the first subtraction are the two panels on the right side of
the first row, and the first one in the left of the second row. The other three panels in the
second row correspond to the second background, and the panels of the third subtraction
are the three starting from the left in the third row. The image themselves have negative
sign with respect to the original background, because they are added back previous to
including the other backgrounds. The first HDU from the right in the third row and the
first two from the left in the fourth row correspond to the global focal plane background.
Finally, the last three images, the two on the right of the fourth row and the only image in
the fifth, correspond to the background obtained from dithering.
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Figure 3.5: The 17 HDUs plotted are the same as in Fig. 3.4, except that the last three have
been set to 0 to cancel the last background subtraction, as explained in Sect. 3.4.2.1.
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CHAPTER 4

Sky Error

This chapter presents the outcome of the suite of Neural Networks (NNs) that we trained
using the dataset described in Sect. 2.1.3. Every NN provided from the photometric input
parameters – see Sect. 2.1.1 – the classification between mergers and non-mergers. Using
multiple data normalizations and applying data reduction methods to the inputs – see
Sect. 3.1 –, we found the potential of the sky background error skyErr to classify mergers
through a decision diagram. The text in this chapter is based on Suelves et al. (2023), all the
work was carried out by myself, I built the catalogue, wrote the codes, prepared all the plots
presented in the chapter, etc. The analysis and discussion was developed together with the
co-authors, my auxiliary supervisor William J. Pearson, and my supervisor prof. Agnieszka
Pollo. During this work, we found that the description of photometric parameters in the
SDSS DR6 documentation was not accurate. We made corrections to it, which are presented
and justified in the Appendix A.

4.1 Results

4.1.1 Architecture selection

In order to determine our definitive layer layout for the photometry-based NN, we com-
pared the multiple architectures listed in Table 4.1 by their five-fold validation loss. The
nomenclature prefix indicates the layer number as nL and the suffix refers to the size when
required. Figure 4.1 shows the mean loss and its standard error of the NNs sampled on the
BC model magnitude input space. A relatively similar loss was obtained for all versions,
except for the cases with too few neurons, 2L_4 and 2L_2. The longest NNs we tried
combined up to five layers, but both 5L_b and 5L_s did not improve the performance. The
4L and 3L cases gave loss values as low as those of 2L_64 and 2L_32. Regarding instability,
the architecture with the lowest variance was 2L_16. For the definitive NN, we opted for
2L_16 due to its convenient balance: a slightly worse but more stable loss when compared
to 4L, 3L, 2L_62, and 2L_32, combined with a shorter computational time. We note that
the five-fold galaxy distribution was not fixed but selected randomly for each architecture
check.

The other tested NN parameters were the initial learning rate of the Adam optimizer
and the dropout rate. The former performed quite badly when significantly diverted from
5×10−5. Regarding the latter, the validation losses of the considered variations are shown
in Fig. 4.2. Following the argument for selecting 2L_16, a 0.1 rate would be a more adequate
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Table 4.1: Architecture options considered for the NN layout, whose performances are
depicted in Fig. 4.1. The Layout column gives the number of neurons per layer, separating
each layer with a +.

NN name Layout
5L_b 128+256+512+256+128
5L_s 64+256+512+256+64
4L 128+256+256+128
3L 32+128+32
2L_64 64+64
2L_32 32+32
2L_16 16+16
2L_8 8+8
2L_4 4+4
2L_2 2+2

Figure 4.1: Validation loss for each tested NN architecture defined in Table 4.1. It is
calculated as the mean and standard error of the loss at the best validation update obtained
in each of the five-fold validation cycles.
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Figure 4.2: Validation loss for each dropout rate chosen. The value is again the mean of the
five-fold validation cases and the error bars come from the standard error among the five
folds.

Table 4.2: NN training parameters, as defined in Sect. 3.1.4, for the Reference NN input: the
bands plus colours model magnitude case. They imply the NN has the potential of figuring
out the classification rules.

Accuracy 68.90 ± 0.72 %
TPs 61.65 ± 0.77 %
TNs 75.49 ± 0.92 %

option as it shows a larger loss and smaller standard error. However, we decided to keep
the 0.2 rate because the error bar for 0.1 covers only the upper – and worse – part of the
interval that 0.2 covers.

4.1.2 Input magnitude variations

We established the BC model magnitude as the initial reference NN for comparisons because
it more closely represents the real galaxies’ brightness. This input is a 15D space combining
the five photometric bands plus the resulting ten colours, normalized in the range [0,1].
It led to an accuracy of 68.90 ± 0.72%, as shown in Table 4.2. This accuracy implies that
we found a stable classifier capable of correctly identifying a substantial amount of objects.
Moreover, it is encouraging how around 60% of the mergers were correctly classified, given
such a simple input space.

Figure 4.3 shows the resulting accuracy of the NN applied over all six types of magni-
tudes – as defined in Sect. 2.1.1 – and the input variations – as defined in Sect. 3.1.3. The
horizontal orange line is the reference NN accuracy, and the shaded area is its error. Each
panel in Fig. 4.3 confirms how the BC magnitude inputs lead to a significant increase in
the accuracy with respect to the separated B and C cases. Both bands and colours generate
consistent accuracies in all magnitude classes because they essentially contain the same
information: one colour index is nothing more than a linear combination of the magnitudes
measured in two different bands, in other words, the ratio of fluxes. Including the two of
them at the same time seems to facilitate the NNs’ performance, and therefore seems to be
a way to improve the model. This pattern is found independently of the magnitude type.
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Figure 4.3: Six-panels plot showing the mean validation peak accuracy of the different
input variations for each magnitude type. For each magnitude defined in Sect. 2.1.1, we
provide several variations: B, which corresponds to the five band values; C, the ten colours
obtained from the five bands; BC, a 15-dimensional space combining bands and colours;
and BCE, a 20-dimensional space that adds the magnitude errors to the BC cases. All four
of these variations follow the min-max normalization defined in Eq. 3.1. Additionally, we
show the BCEp and BCEn sets, for which bands and colours were min-max normalized
separately to the errors, obtained with Eqs. 3.2 and 3.3 respectively. The distribution of
galaxies among the five validation folds is fixed to be the same. Panel A) corresponds to
the model magnitude type, B) to the fibre magnitude, C) to the PSF magnitude, D) to the
Petrosian magnitude, E) to the exponential magnitude, and F) to the De Vaucouleurs one.
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Introducing the errors in the feature space has an influence that highly depends on
the magnitude type. As described in Sect. 3.1.3.1, the errors were applied in three ways:
including them in the min-max normalization with the magnitudes and colours (BCE),
calculating them from the fractional error directly (BCEp) – see Eq. 3.2 –, or through the
combining the min-max normalization with the fractional error (BCEn) – see Eq. 3.3. For the
model magnitude, the exponential, and the De Vaucouleurs profiles, the inclusion of errors
produces an only slight increase in the accuracy. However, for the PSF, Petrosian, and fibre
magnitudes, the accuracy increases highly, reaching almost 90% for the BCEp fibre case.

Regarding the error normalization options, both the BCEp (Eq. 3.2) and BCEn (Eq.
3.3) cases have slightly better accuracy than BCE cases, while being consistent within the
standard error. The BCEn cases are generally slightly better than the BCEn ones. This is
one indication that suggests that the NN is quite dependent on the normalization method.

4.1.3 Fibre errors mixed with other data

The surprising success from the fibre BCE case deserved a deeper look: not only did it reach
a high accuracy, but it also outperformed the reference input – the BC model magnitude. We
narrowed down the search of what the main information source was within fibre BCE by
combining the bands, colours, and errors of both model and fibre magnitudes in different
ways.

Table 4.3 shows the validation mean accuracy for all the relevant combinations, sep-
arated into five blocks. The first two blocks indicate that the model B, C, or BC cases
combined with model E retain an accuracy of around 67 %, but if the model errors are
swapped with fibre errors, then the NN achieves high values, similar to those of the BCE
fibre. The third and fourth blocks confirm the same results, but applying fibre B, C, and BC
cases. The last block shows the results for model E or fibre E alone. The importance of fibre
E is therefore demonstrated not only by how these errors enhance the accuracy when they
accompany any magnitude type but also by their performance when used as a 5D input.

4.1.4 Fibre errors’ components

According to the NN results presented up to now, one can just use the fibre magnitude
error and get a correct classification with an accuracy of ∼84%. Such an achievement does
not seem intuitively justified solely by the properties of the input data. The next step was
then to understand how fibre E values were calculated.

According to the SDSS documentation, the fibre magnitudes are simple aperture mag-
nitudes, meaning we can replicate them with the original astronomical frames and the
appropriate calibration data. The whole process of reproducing the fibre magnitudes and
errors is detailed in Appendix A. We obtained the errors from the fibre aperture counts in
the fpObjc file downloaded from the SDSS repository, sampled in each band on a group of
ten galaxies. We justify the updated version of the formula that calculates the error from
the initial counts (Eq. A.5).

According to Eq. A.5, the aperture error calculation has four particular inputs per
band, which are: the digital unit count in the aperture region counts, the error in the CCD
camera’s dark current dark variance, the sky background estimation in the source’s centre
sky, and its error skyErr. We retrieved the four inputs per band for each galaxy in our kfold
validation sample. We trained several NNs, noted in Table 4.4, considering first all sets of
variables and then excluding each one at a time. It arose that the main source of accuracy
was skyErr, as expressed in the accuracy from fibre E inputs without skyErr. Furthermore,
running an NN only with skyErr showed a very similar accuracy to that of fibre E alone,
implying they contain similar information.



56 Chapter 4. Sky Error

Table 4.3: Validation mean accuracy and standard error for all the relevant combinations,
separated into five blocks. Each input space undergoes a min-max normalization. The
table’s first two blocks combine the model B, C, and BC cases with either model E or fibre E,
respectively; the third and fourth blocks do the same but for the fibre B, C, or BC cases; and
the last block shows what happens for model E or fibre E alone. As in Fig. 4.3, the source
distribution among the five validation folds is fixed to be the same.

Input space Accuracy
model B + model E 67.14 ± 0.31 %
model C + model E 67.24 ± 0.64 %

model BC + model E 69.12 ± 0.50 %
model B + fibre E 77.08 ± 0.73 %
model C + fibre E 88.30 ± 0.45 %

model BC + fieer E 87.40 ± 0.72 %
fibre B + model E 62.56 ± 0.51 %
fibre C + model E 62.40 ± 0.45 %

fibre BC + model E 62.80 ± 0.55 %
fibre B + fibre E 77.14 ± 0.60 %
fibre C + fibre E 88.66 ± 0.37 %

fibre BC + fibre E 87.84 ± 0.42 %
model E 59.06 ± 0.76 %
fibre E 83.76 ± 0.32 %

Moreover, every training in which skyErr was accompanied with other features achieved
an accuracy better than 90%. The best NN is for skyErr and dark variance together.
Nonetheless, the dark current error does not seem to be related to the galactic properties
at all, as it is a property of the CCD camera – see Sect. 1.4.1. This led to the last result,
checking the dependence of the NN accuracies on the input normalization.

4.1.5 Normalization dependence

The high accuracy our NN obtained from the skyErr and fibre E inputs varied with the
companion features. We wanted to see if this behaviour was because of the normalization
applied. The first test was to expand the min-max normalization interval from [0,1] to [0,2]
for some selected cases. In Table 4.5 the accuracies of the four most relevant inputs are
compared between both versions. Only for the fibre E all-input set is there a relatively
significant difference, leading us to conclude that the min-max resulting normalized interval
is not a critical choice.

The next step was to apply the normalization method introduced in Sect. 3.1.3.2 to
different input spaces that included either skyErr or fibre E. Table 4.6 shows the accuracy
of the NNs we built using the input skyErr or fibre E subsets, compared to the complete
spaces from which we isolated them. When SkyErr is normalized with dark variance, or
with counts and dark variance, or with all other error inputs – counts, sky, and dark
variance – the accuracy shows little dependence on the companions’ presence or absence.
For the skyErr without normalization, the accuracy is 90.88 %, which is also high. Fibre E
is shown to be related to the companion for the fibre BCE and fibre CE cases, but not for
the BCEp (fractional errors) or the BCEn case. However, the errors in the BCEp and BCEn
cases are explicitly obtained from the bands, so it could be argued that the NN does get
that information from the resulting error inputs. The pre-normalized fibre E shows better
values than its min-max, but it deviates from the other cases more than skyErr does.
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Table 4.4: Validation peak mean and error for the NN input spaces using different variables
that combine to make up fibre E. The first row considers all inputs shown in Eq. A.5,
followed by the results of excluding one variable at a time. The next row shows the case
of only skyErr, and the final three rows come from combining skyErr with every other
variable.

Input space Accuracy
fibre E – all-input-set 91.48 ± 0.31 %

fibre E – without counts 91.62 ± 0.25 %
fibre E – without dark variance 91.48 ± 0.23 %

fibre E – without sky 91.98 ± 0.27 %
fibre E – without skyErr 60.62 ± 0.85 %

skyErr – only 83.30 ± 0.38 %
skyErr + counts 91.66 ± 0.34 %

skyErr + dark variance 92.04 ± 0.26 %
skyErr + sky 90.90 ± 0.21 %

Table 4.5: Main project NNs but with the min-max normalization set to an [0,2] interval.
Little difference can be found from the previous case.

Input Space
Accuracy

min-max [0,2]
Accuracy

min-max [0,1]
Reference NN 68.82 ± 0.57 % 68.90 ± 0.72 %

Fibre BCE 88.64 ± 0.36 % 88.68 ± 0.31 %
Fibre E – all-input-set 90.82 ± 0.14 % 91.48 ± 0.31 %

skyErr – only 83.52 ± 0.38 % 83.30 ± 0.38 %
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Table 4.6: Neural network performance for input spaces in which either skyErr or fibre E
has been normalized with some other parameters that were not included as inputs (see
Sect. 3.1.3.2). The last column gives the accuracy for the input space prior to the applied
modification. For the skyErr and fibre E pre-normalized spaces (rows 4 and 9), the last
column compares their respective 5D isolated min-max value.

Input space Accuracy
Previous
accuracy

skyErr
as if with

dark variance
92.10 ± 0.28 % 92.04 ± 0.26 %

skyErr
as if with
counts &

dark variance

92.02 ± 0.21 % 91.98 ± 0.27 %

skyErr
as if in

fibre E – all-input-set
91.02 ± 0.32 % 91.48 ± 0.31 %

skyErr
pre-normalized 90.88 ± 0.25 % 83.30 ± 0.38 %

fibre E
as if in BCE 79.72 ± 0.32% 88.68 ± 0.31 %

fibre fractional
errors 88.60 ± 0.55 % 89.06 ± 0.42 %

fibre E
as if in BCEn 88.40 ± 0.33 % 88.76 ± 0.25 %

fibre E
as if in CE 77.66 ± 0.66 % 88.66 ± 0.37 %

fibre E
pre-normalized 86.74 ± 0.40 % 83.76 ± 0.32 %

skyErr pre-normalized
logarithmic scale 92.64 ± 0.15 % ...

It can be interpreted that fibre E does benefit from being together with the magnitudes
in specific combinations, but that skyErr is sufficient by itself. Nonetheless, the other
conclusion is that skyErr depends on the normalization to provide the high accuracy
observed. Because the best NN result comes from the skyErr as if with dark variance
case, a parameter unrelated to the galaxies, and the resulting accuracy is close to that of the
pre-normalized skyErr input, we can consider that the role of the dark variance is simply
to adapt the skyErr numerical representation for the NN to better identify the properties
of the mergers. Moreover, the last row with the sky error in logarithmic values achieves
an even better result, supporting the finding that the skyErr is a good merger proxy on its
own. The NN for this best case with the saved weights can be found on GitHub1.

4.2 Discussion

The accuracies obtained from the most relevant input spaces are presented in Table 4.7,
together with their performance on the test set applying the saved weights. These results
demonstrate that the NN has successfully classified galaxy mergers by making use of
photometry, and that we have found the sky background error to be the source of the best

1https://github.com/LuisEduSuelves/NN16_skyErr-log

https://github.com/LuisEduSuelves/NN16_skyErr-log
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Table 4.7: Accuracies for the central NN input spaces of the project. The table also gives the
mean accuracy over the test set, calculated using the weights at the peak validation in each
fold.

Input space Accuracy

Reference NN 68.90 ± 0.72 %
Test Reference NN 69.72 ± 0.36 %

Fibre BCE 88.68 ± 0.31 %
Test Fibre BCE 89.60 ± 0.24 %

Fibre E – inputs 91.48 ± 0.31 %
Test Fibre E –inputs 91.20 ± 0.35 %

skyErr 83.30 ± 0.38 %
Test skyErr 79.56 ± 0.10 %

skyErr min-max as if
with dark variance 92.10 ± 0.28 %

Test skyErr min-max as if
with dark variance 90.92 ± 0.20 %

skyErr pre-normalized
in logarithmic scale 92.64 ± 0.15 %.

Test skyErr pre-normalized
logarithmic scale 92.36 ± 0.21 %.

method. Such a calibration parameter potentially points to the importance of differential
image analysis, which, to our knowledge, had not been considered as a key method for
galaxy merger identification until now. Therefore, this discussion will attempt to justify the
advantages of our method. In Sect. 4.2.1, we address its reproducibility and its potential use
both in SDSS and in other surveys. Then, in the rest of the section, we study the distribution
of galaxies in the five-band skyErr space using the min-max normalization as if with dark
variance, which is the next-to-best accuracy found. For that, we show dimensionality
reduction and feature space distributions. To summarize, we infer why the logarithmic sky
error should work even better as input space, showing that a simple 2D boundary can be as
effective as the NN. Finally, we justify why the sky background error contains information
of merging processes.

4.2.1 Reproducibility of the model

The step-by-step measurement of the sky background error2 should be easy to reproduce in
any other optical survey because the measurements are very generic. Nothing the pipeline
does should be unusual for another astronomical survey and there is no dependence on
the SDSS specifications in any step. It may be that the cut-out box size where the local
background is estimated should be adapted to different pixel sizes if necessary. We cannot
foresee beforehand if any other SDSS specification might have influence, but it does not
seem the case at the present stage. Regarding the training sample, its redshift and mass
distribution define the range in which the NN is, in principle, effective. To what extent the
NN could be applied to sources outside this data will be addressed in Chapters 5 and 6.

4.2.2 Sky error properties found by the NN. Case skyErr as if with dark variance

Figures 4.4 and 4.5, show, respectively, the PCA and tSNE methods – Section 3.1.5 – applied
to the skyErr input space set normalized with dark variance. Each data point corresponds

2http://classic.sdss.org/dr6/algorithms/sky.html

http://classic.sdss.org/dr6/algorithms/sky.html
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Figure 4.4: 2D embedding using PCA. Classification results from the weights saved at the
validation peak of the first of the five folds: TP galaxies are shown by green circles, TNs
by blue crosses, FNs by black ‘x’s, and FPs are in orange. The axes are the first and second
principal coordinates. This colour scheme will be repeated for all the plots in the rest of the
text.

to a galaxy in the 2D embedding and the colour depends on the classification type (Sect.
3.1.4). Because t-SNE is highly dependent on the initial distribution, we initialized the
model based on the data’s PCA, a functionality available in the python sklearn package
that we implemented.

Through the PCA plot – Fig. 4.4 –, the main locations for mergers and non-mergers,
where TPs and TNs are denser, can be seen in opposite corners of the rhomboid shape. The
TPs are to the right and the TNs are to the left, while in the intermediate area, the plot is
less dense and more FNs and FPs arise mixed in between. Some FNs or FPs appear also in
the green and blue dense areas, respectively. This is more frequent for FPs, which indicates
that the skyErr method still does not define an unmistakable distinction between mergers
and non-mergers.

The tSNE method – Fig 4.5 – leads to very similar conclusions but from a more defined
shape with a more uniform density. The TP versus TN separation is delimited in a clear
way. Again, some FPs and FNs are dotting the TP and TN areas. The FNs appear rarely
in the blue region; they arise mostly in the TN edges that can be found even intersecting
green regions, such as near [0,-10] or [20,30].

Another approach to investigate the data is to create histograms of the inputs. For that,
we show the histogram per label in Fig. 4.6 and the histogram per class in Fig. 4.7. Figure
4.6 shows that for mergers, the distribution in the u and z bands has a less steep profile
than for non-mergers. The mergers show one peak around 0.2 in z that disappears for the
non-mergers. It translates into a defining characteristic, as the distribution is maintained
in the TPs in Fig. 4.7. In contrast, the g, r, and i bands present distributions that differ
more between labels. For non-mergers, the three of them peak near 0 and decrease in
number towards larger normalized errors. For mergers, there is a peak that shifts from
central values in g to progressively larger ones in the other two bands. An immediate
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Figure 4.5: 2D embedding using tSNE, with the same classification scheme as for Fig. 4.4.
The axes are simply the two tSNE dimensions.

interpretation is that the majority of mergers present an intermediate relative sky error
in g, a relatively high error in r, or the highest possible value 1, for a single galaxy after
min-max in i. Overall, the TPs distribution in Fig. 4.7 resembles the mergers’ one. The
TNs simply show a steep slope similar to that in u and z, with the FNs again also flat. The
FPs histograms are quite uniform in comparison to the others. It seems that the FPs cover
the part of the distribution of non-mergers that goes missing in the TN distributions. The
main signs the NN is identifying become evident when comparing TPs and TNs in g, r,
and i bands. The mergers have high skyErr values but the non-mergers have low ones.
The FN and FP profiles indicate that this is neither sufficient nor clearly defined, as the
dimensionality reductions were illustrating.

Figures 4.8 and 4.9 show the 2D histograms of the TPs and TNs, and the contour plots
of the FNs and FPs of skyErr for the u versus z and the g versus r bands, respectively. The
TPs and TNs in the first image are clearly separated, although some TNs can be seen in the
upper right area, where the TPs are mostly located. The FP and FN contour plots show
the area where the confusing galaxies are located. Similar to the patterns appearing in
the dimensionality reduction figures, the FPs are mostly around the TP area and the FNs
appear both in the intermediate region and near the TNs. For g-r, the location of the TPs is
mostly in the upper right corner, near to a value of 1. Analogously to the first image, the TP
and TN areas are clearly separated, the FPs are located mostly in the same region as the TPs,
and the FNs appear both in the TN region and in the intermediate TP-TN area. Therefore,
the properties in the 1D histograms can be seen translated into a 2D representation and the
dimensionality reduction patterns are present.

4.2.3 Pre-normalized skyErr

To better understand the pre-normalized skyErr features, we created individual histograms
as in Fig. 4.10, but using logarithmic bins to enable a better visualization. The separation
between the distributions depending on the classification type is even more pronounced
here than in Fig 4.7. For bands g, r, and i, the TPs and FPs are located in the upper half of
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Figure 4.6: Sky background error histogram panels for the five bands. Galaxies labelled as
mergers are in blue and non-mergers are in light red. The values were normalized with the
dark current variance.

Figure 4.7: Distribution of the same variables as in Fig. 4.6, but split into the four classifica-
tion types.
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Figure 4.8: Distribution of galaxies in the 2D histograms of the TPs (in green, separated
above) and TNs (blue, below), and the contour plots of the FNs (left), FPs (right), and of all
galaxies (centre) for skyErr in the u-band vs the z-band plane. The 2D histograms show
logarithmic colour-bars and the axes are in logarithmic scale. To avoid undefined values for
the galaxies with post-normalization features equal to zero, a constant value of 10−7 was
added to these. Consequently, they appear as vertical and horizontal lines at the bottom
and left sides of each panel. This allows us to see what happens with those. It should be
noted that some TNs are in 10−7 for each band, meaning the pre-normalized skyErr in both
bands was exactly the same for those galaxies. Those are located in the bottom left corner.
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Figure 4.9: Same panels as in Fig. 4.8, but this time for bands g and r.
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Figure 4.10: Sky background error original histograms in logarithmic bins and bin widths.

the data, and the TNs and FNs are in the lower half. This strong separation is not seen in
the u and z bands. These patterns are analogous to those described in the previous section,
but are even more explicit. We created one last input space with the logarithm of the skyErr
five bands to check if the NN is aware of this difference in the data’s presentation. This
provided an accuracy of 92.64 ± 0.15 %, the best result obtained in this project and shown in
the last row in Tables 4.6 and 4.7. The accuracy is 2% better than that corresponding to the
linear pre-normalized skyErr, confirming the importance of the normalization. Therefore,
we can conclude that the normalization of the data plays a crucial role in the success of our
model.

Moreover, the shape of the histograms in the three central bands g, r, and i seems to
hint at the regions of merging and non-merging galaxies in the skyErr space. This is very
likely what the NN is identifying. Figure 4.11 illustrates not only the clear separation of
the classes in the g-versus-r plane, but also that simply drawing a boundary line is capable
of providing an accuracy of 91.59%. The line was built by performing a grid search, first
for the intercepts using a fixed slope of -1, which is approximately perpendicular to the
distribution of galaxies, and followed by a subsequent grid search for the slope with the
obtained intercept fixed. A similar boundary was found for g versus i and r versus i, with
accuracies of 91.16% and 90.47%, respectively. Table 4.8 compares the accuracy and the rate
of mergers and non-mergers correctly identified using either the NN or the boundary cut.
It shows that the boundary is less accurate at identifying the non-mergers than the NN,
while it does not lose accuracy for the mergers.
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Figure 4.11: Distribution of galaxies in the 2D plane of skyErr in the g and r bands. The
mergers are shown by orange crosses and the non-mergers by dark blue plus symbols. The
boundary is the dashed black line, with its parameters given in the label, together with the
accuracy of the classification using this cut.

Table 4.8: Comparison between the application of the NN or of the boundary cut to the
logarithm of the skyErr. The rows indicate not only the accuracy but also the rate of
TPs and TNs for each method when applied on the full training dataset. The NN results
correspond to the saved weights of the first cross-validation fold.

Method NN Boundary

Accuracy 92.79 % 91.59 %
TPs rate 95.48 % 95.04 %
TNs rate 90.11 % 88.13 %
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4.2.4 Sky error analysis

All these gathered results and visualizations confirm that the NN favours the input data that
explicitly represent the sky error features contrasting between mergers and non-mergers.
The best example of this separation is observed in Fig. 4.11. It indicates that the error in the
central bands characterizes the presence of a merging process.

In physical terms, the sky error performance could have a simple explanation. Mergers
produce a chaotic flow of material between the components that in some cases cannot be
observed unequivocally in the images because it is not bright enough compared to the
galaxy itself. This low brightness could be one of the reasons why image recognition, both by
humans and by deep learning methods, can fail or can be inconclusive. Nonetheless, these
merging traces could still create a detectable signal that only arises in the sky background
around the mergers, and it is so low that only the differential analysis or error estimation
is able to discern it. However, this has been obtained from our training dataset, which is
limited in the type of galaxy mergers, specifically pre-mergers, and deepness of the images.

4.2.4.1 Deeper surveys

Our training dataset covers a specific deepness region defined by the SDSS imaging, and
the galaxy’s r-band magnitude and spectrometric redshift. As we understand it, the sky
error method would require the noise around the mergers to be affected by their low-signal
regions. Deeper imaging would transform blurred surroundings into sharp boundaries,
impairing the method’s accuracy. This makes extending the method to deeper data a
profound challenge.

In order to estimate the skyErr method’s performance on deeper data, we decided to
search for galaxies within our training set that were observed in the Stripe 82 of SDSS3.
This Stripe 82 is an area that was imaged by multiple scans, providing a magnitude that
was twice as deep as the single-pass SDSS frames (Annis et al., 2014). The sky background
error available for the Stripe 82 galaxies was calculated using the same pipeline as in SDSS
DR7, and therefore DR6. We encountered 208 counterparts through an astrometric match.
Out of those sources, we could retrieve the sky error values in counts only for 192 of them,
divided into 92 mergers and 100 non-mergers.

We applied the identification methods we have built to this deeper set. The classification
of the Stripe 82 galaxies obtained by locating the skyErr values in the decision boundary
provided a 57.81 % accuracy, and by applying the NN, we obtained a 56.98 ± 0.35 %
accuracy.

We inspected the differences between the DR6 and Stripe 82 merger observations. Figure
4.12 shows the difference between a merger properly identified in DR6 (Fig. 4.12a) but
missed in Stripe 82 (Fig. 4.12b). In this example, the surroundings appear to be more diffuse
in deeper data than previously found. This leads us to conclude that the reason why the
deepness changes the results is the relative amount of noise and signal in the galaxy’s
surroundings.

4.2.4.2 Merger remnants and post-mergers:

The Darg et al., 2010a catalogue from which we selected the training mergers consists
exclusively of merging pairs. As a consequence, we lack post-merging stages in our sample
that can indicate whether the sky error method would also identify them or not.

In order to find merger remnants using our current method, we built a catalogue of
galaxies in SDSS DR6 within the r magnitude and spec-z intervals of our training set. These

3http://cas.sdss.org/stripe82/en/

http://cas.sdss.org/stripe82/en/
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(a) DR6 (b) Stripe 82

Figure 4.12: Astronomical frame of a galaxy labelled as a merger from our training dataset.
Both images correspond to the r-band. On the left side, the DR6 frame is shown, and on the
right is the deeper Stripe 82 frame.

intervals were [12.24, 18.05] for r-mag and [0.01,0.1] for the spec-z, providing up to 286 616
sources. We then carried out two main studies. First, we located them in the skyErr decision
boundary and visually inspected different regions in the merger’s upper half. Second, we
made use of the classification in the Galaxy Zoo DECaLS (GZ-D) Campaign 5 (Walmsley
et al., 2022). Galaxies with a vote fraction for the classification answer ‘major disturbance’
above 0.6 were defined as post-mergers (Walmsley et al., 2022). Our goal was to visually
inspect the astrometric matches with the SDSS DR6 set of these GZ-D post-mergers. We
made a lower cut on the number of votes per galaxy to both reduce the inspection time and
to make sure they were extensively visualized, avoiding sources that were picked out by
their variable retirement rate (Walmsley et al., 2019). The resulting post-merger catalogue
contained 45 galaxies.

Among the SDSS DR6 sources we inspected, we did find at least one clear post-merger
that had been correctly identified by both the NN and the decision boundary. Among the
GZ-D 45 confirmed galaxy post-mergers, only seven of them were found in the merger
region. Using the NN, we obtained the same classification. Those galaxies all showed
a surrounding material that mixed with the background. Except for the missed merger
remnants, the surrounding seemed to be less diffuse than the other seven galaxies.

4.3 Conclusions

We created an NN and applied it to a class-balanced set of mergers and non-mergers using
only photometric information. The dataset was composed of galaxies from SDSS DR6
identified during GZ DR1. The 2 930 mergers from Darg et al., 2010b were combined with
the same number of non-mergers in GZ DR1 by a nearest-neighbour match in spec-z and
r-band magnitude. The NN applied was fully connected: it had two layers with 16 neurons
whose activation function is ReLU and it had a dropout rate of 0.2; the learning method
was Adam with an initial training rate of 5×10−5; the output was a softmax probability for
a two-class classification; and the classifier was the TensorFlow’s BinaryCrossentropy class.
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First, we used the band magnitudes, colours, and errors of six different SDSS flux
measurement methods. Using the model magnitude, we found a reference accuracy of
68.90 ± 0.72%. Checking the other magnitude types brought up the importance of the fibre
magnitude error. This fibre errors provided an 83.76 ± 0.32 % validation accuracy alone
and 88.68 ± 0.31 % with bands and colours. Further research showed that the components
of the fibre magnitude error could achieve an accuracy of 91.48 ± 0.31 %. We found that
the parameter that contributed mainly to this high accuracy is the sky background error.
We proved that the sky error is able to show differences between mergers and non-mergers
that can be identified in the histogram, PCA, t-SNE, and 2D histogram representations,
together with the NN results. Finally, we found that the input space of the logarithm of
the pre-normalized five-band sky background error in units of counts is able to reach a
validation accuracy of 92.64 ± 0.15 %. A version of the NN for this last input is published
on GitHub4 with the saved weights. Moreover, the NN could be substituted by a decision
boundary in the planes between the g, r, and i bands, achieving an accuracy of up to 91.59
% for the g-versus-r plane.

A likely interpretation of this result is that the higher values of the sky background error
reflect the traces of merging processes – for example, faint tidal tails – otherwise missed by
the sky background measurement due to the dominance of the signal from a galaxy itself.
Moreover, we think that the multi-band analysis of the sky background error additionally
makes our network and decision boundary sensitive to the colours of this residual flux that
originates from the matter surrounding a merging galaxy.

4https://github.com/LuisEduSuelves/NN16_skyErr-log

https://github.com/LuisEduSuelves/NN16_skyErr-log
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CHAPTER 5

Decision Tree

The simplification into a decision boundary of the NN trained by the five-band skyErr, as
described in Chapter 4’s discussion and depicted in Fig. 4.11, has the potential of facilitating
galaxy merger classification in large sky surveys. With the goal of understanding the
boundary when a more general dataset is applied, we took the whole catalogue of galaxies
observed in Galaxy Zoo Data Release 1 (GZ DR1), as NN’s training sources were a subset of
it. This chapter presents a proof of concept of the method which we plan to fine tun further
before its submission for publication.

5.1 Results

The results came from the visual morphological classifications and contaminations found,
plus the subsequent decision tree (dt) aiming to reproduce those contaminations. We
visually inspected and indicated the classifications and contaminations for GZ DR1 sources
distributed in nine-galaxy groups. Along the text, we denominate those nine-galaxy groups
as subsamples defined by four labels. This is because, as described in Sect. 2.1.4, they
were drawn from groups of galaxies, that we denominate as subsets, that were selected
depending on said four subdivisions. Here, we list the labels for the properties that combine
to define any given subsample:

• Magnitude label:

– r1 ∈ [∼ 12, 14]

– r2 ∈ [14, 16.5]

– r3 ∈ [16.5, ∼ 18j ]

• GZ morphology flag:

– Elliptical

– Spiral

– Uncertain

• Merger vote fraction fm:

– fm = 0

– fm ∈ (0, 0.2]
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– fm ∈ (0.2, 0.4] (only for galaxies with Uncertain GZ flag)

– fm ∈ (0.4, 1] (only for galaxies with Uncertain GZ flag)

• Area in the diagram (described below in Sect. 5.1.1:

– Mergers

– Non-mergers A

– Non-mergers B

– Top

– Bottom

– Right

– Left

5.1.1 Areas of the skyErr diagram:

The seven areas in which the GZ DR1 subsets have been distributed were based on the
application of the alpha shape method – described in Sect. 3.2.4 – to the denser area of
mergers and non-mergers of the diagram.

First, when extending the methodology to the larger data GZ DR1, the skyErr in units of
counts, as used for the NN, is not available through the CasJobs webpage. This is because
the sky error in counts was obtained from the uncalibrated catalogues fpObjc defined in
Table A.1 at the Appendix A. Instead, the sky background for the full GZ DR1 set can only
be obtained in units of maggies. As a consequence of changing the skyErr units, the grid
search had to be redone with this new unit in order to create a new decision boundary
analogous to Figure 4.11. The process was similar to how it was described in Sect. 4.2.3.
The resulting boundary parameters and accuracy are indicated in the label of Fig. 5.1.

Alpha shape on mergers: In order to constrain the region of mergers in the extension to
SDSS DR6 – Fig. 5.1 –, first we selected all the mergers from the training dataset above
the decision boundary. Then we run three subsequent alpha shape algorithms through
the python alphashape package1. The first iteration, depicted in the left panel of 5.2, was
done with an α = 28. It can be seen that multiple isolated outliers are not included. The
second iteration, shown in the central panel, was rerun with the same α = 28 on the sources
within the alpha shape of the previous step. After this, the final alpha shape with α = 0 was
formed, which does not discard any point, as shown in the right panel of 5.2. This is the
leaf-shaped region that we considered for mergers.

Alpha shape on non-mergers: A similar procedure was done for the non-mergers from
the training dataset. The reason for running it was to locate where the non-mergers cluster
in the diagram. In this case, two subsequent iterations of the alpha shape algorithm with α
= 20 were run – Fig. 5.3 top left for the first iteration and right for the second. The reason
for choosing a smaller α was that non-mergers in the bottom side of the diagram appeared
to be less densily clustered than the mergers above. As a result, the non-mergers area
included less dense parts of the distribution. While arbitrary, this decision was motivated
by covering a larger portion of the non-merger side of the diagram.

After two α = 20 iterations, it became clear that there were two main areas of non-
mergers in the diagram, and therefore we created two final alpha shapes with α = 0, the
non-mergers areas A and B shown in the left and right panels of Figure 5.3, respectively.

1https://pypi.org/project/alphashape/

https://pypi.org/project/alphashape/
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Figure 5.1: Distribution of all GZ DR1 galaxies from SDSS DR6 in the 2D plane of skyErr
in units of maggies for g and r band in the x and y-axis respectively. The mergers and
non-mergers are represented as in Figure 4.11, and the galaxies forming the full dataset are
the green dots plotted behind. The new boundary dashed black line, with its parameters
given in the label, shows the new accuracy obtained on the training data classification.
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Figure 5.2: Alpha shape stages applied on the training merging galaxies located above the
decision boundary of Figure 4.11. The galaxies are plotted as small orange dots. The left
panel shows the whole set of mergers and the alpha shape generated with α = 28. The
central panel shows the second alpha shape iteration, applied on the galaxies located inside
the first shape, which are the only ones plotted. It was also run with α = 28. The right and
final panel shows the mergers within the second shape, and final iteration done with α = 0.

When looking at the leaf-shaped merger area and the two non-mergers area, it can
be argued that some quite empty portions of the diagram have still not been discarded.
While this is in part because of the arbitrary selection of the α parameters, it is important to
consider what is the actual distribution of training galaxies covered in the two panels of 5.4.
On the left panel all the training mergers are shown, and on the right panel all the training
non-mergers, clarifying the defined areas are not as empty as it looks like.

Surroundings of the merger "leaf": The following step was to define the surroundings of
the leaf-shaped merging area. The goal of this is to characterize how the galaxy classification
changes along the four directions of the diagram. The rectangular box was arbitrarily built
to cover 0.5 units in log(maggies) from three directions. One goes from the upper-right
tip of the leaf in the direction perpendicular to the boundary. The other two directions
start from the two corners at the lower-left base of the leaf, and are pointed respectively
to the sides in the direction parallel to the boundary. The extension of the rectangle in the
bottom-left is limited by the presence of the boundary itself. The rectangle is formed by
joining the outer edges of the resultant shape.

This formed four different regions. Figure 5.5 depicts the three areas defined by the
alpha shape algorithm and the four areas surrounding the mergers’ leaf. The name of these
four areas comes from their location respectively to the leaf, when rotation the plot so that
the decision boundary appears as horizontal: the yellow triangle would appear in the Top
part, the grey and teal side wings would appear in the Left and Right, and in between
the leaf and the boundary a Bottom small section appears. The Bottom section is shown
zoomed in with more detail at 5.5b.

5.1.2 Visual inspection

Because of the complexity of the data separation, these subsamples are not representative of
the underlying distributions. This is exemplified in Table 5.1, that compares a proxy to the
underlying distribution with the average of all subsamples within the Top area. While there
are similar tendencies between the two distributions, such as a large contamination by stars
or a similar amount of mergers, the overall disagreement supports that both distributions
are different.
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Figure 5.3: Alpha shape stages applied on the training non-merging galaxies located below
the decision boundary of Figure 4.11. The galaxies are plotted as small orange dots, as in Fig.
5.2. The top-left panel shows the whole set of non-mergers and the alpha shape generated
with α = 20. The top-right panel shows the second alpha shape iteration, applied on the
galaxies located inside the first shape, which are the only ones plotted. It was also run
with α = 20. The bottom-left and bottom right panels show the two final shapes, generated
separately, where the majority of non-mergers are located.
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Figure 5.4: Final Merger area – on the left – and Non-Merger A and B areas – on the right
–, with the scatter plot of the distributions of training merging and non-merging galaxies,
respectively.

This can be expected because the four-parameter subsets in the Top area have quite
heterogenous sizes. For example, the total number of galaxies in the subset [r2, Elliptical, fm
= 0, Top] is much larger than the number of galaxies in the [r1, Elliptical, fm = 0, Top] subset.
The visually inspected subsamples drawn from these two subsets both have nine galaxies.
However, the votes of a galaxy in [r1, Elliptical, fm = 0, Top] are more representative of the
subset’s distribution than a galaxy in [r2, Elliptical, fm = 0, Top].

The final votes could be weighted by the relative size of all subsets, as calculated in the
last row of Table 5.1. The importance of the weighting for extracting relevant information
can be considered to be small due to multiple reasons. First, because the objective of
analysing each subsample separately is to understand what type of galaxies can appear
depending on the four-parameter selection. Second, because the analysis of the whole
dataset has as a goal to find clean and dirty galaxies along the diagram. In other words, the
underlying distribution is less important than identifying contaminants. Finally, because
there is not a high improvement in recovering the underlying distribution by using the
weighted average. Only nine galaxies were used for checking the underlying distribution,
as shown by comparing the first and third rows of Table 5.1. A similar tendency was found
for the other six areas in the skyErr decision diagram.

5.1.2.1 Galaxy types

From the visual inspection, we found multiple combinations for subsamples that provided
statistically significant samples of mergers. These morphological classifications are shown
without taking the contamination into account. The percentages determined in the fol-
lowing lines are calculated with respect to all the galaxies in a described combination of
subsets, e.g., a 50% of mergers in Elliptical galaxies with fm = 0 of the Merger area for all
magnitudes means that the percentage has been calculated for the following four-parameter
subsamples: [r1, Elliptical, fm = 0, Top]; [r2, Elliptical, fm = 0, Top]; and [r3, Elliptical, fm =
0, Top].

Regarding the major mergers, there is a 63.82% of mergers among all areas and mag-
nitude bins for Uncertain galaxies with fm ∈ (.4, 1]. This is consistent with the criteria
in which the catalogue in Darg et al. (2010a) was built, because they visually confirmed
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(a) Complete decision boundary.

(b) Zoom in into the Bottom area.

Figure 5.5: Areas generated in the decision diagram – Figure 4.11 – through the process
described in Section 5.1.1. The dots correspond to galaxies in each area, and the dot size is
very small to better depict the areas themselves. The colour "pattern" change with each area.
The Mergers area has its galaxies in orange, while the two Non-mergers areas A and B are
in dark blue and blue, respectively. The Top area appears in yellow, the Left wing in grey,
the Right wing in teal, and the Bottom in purple. The second image in below zooms into
the separation between areas near the decision boundary itself, with the aim of showing
better the shape of the Bottom area.
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Table 5.1: This table shows the results of the six visual inspection options for the Top
area, calculated in three different ways. The average row was calculated by dividing
all the votes for each visual inspection option by the total number of galaxies in the
combined subsamples in the Top area. The underlying distribution row was calculated
through a proxy obtained by the visual inspection results of nine galaxies drawn from a flat
distribution of all galaxies in the Top area. The weighted average row was calculated by
the weighted sum of each subsample’s votes. This weight was obtained by the relative size
of the subset from which the subsamples were drawn, with respect to the total size of the
Top area’s catalogue.

maj
merg

other
merg

non
merg

cont
blend

cont
overlp

cont
other

Top:
average

12.26 19.35 68.39 87.10 18.06 4.52
Top:

underlyig distribution
11.11 33.33 55.56 77.78 33.33 0.0

Top:
weighted average

8.12 23.21 68.68 92.93 15.50 3.78

sources in that same vote fraction range. Besides, for the Uncertain galaxies with fm ∈ (.2,
.4], a 26.00% of major mergers were found.

For other mergers, we found that for Spiral galaxies in the Left, Right, and Bottom areas,
in all magnitude and all fm bins: the percentage of other mergers observed is of 41.18%,
40.38%, and 38.89%, respectively. More specifically, for Spirals in the Left wing with fm ∈ (0,
0.2] there is 45.83% among all magnitudes, and similarly, for Uncertain galaxies with fM ∈
(0.2, 0.4] among all magnitudes, there is a 45%. Moreover, for Spirals in the Right wing with
fm ∈ (0, 0.2] among all magnitudes there is 56% of other mergers. Finally, for the Bottom
area the amount of other mergers for Spirals with fM ∈ (0, 0.2] among all magnitudes is of
51.85 %, and for Uncertain galaxies with fM ∈ (0.2, 0.4] among all magnitudes it is a 40.73%.

This not only confirms the potential of the decision diagram for using the sky back-
ground error to find galaxy mergers of any types, but also provides a potential recipe to
locate multiple type of mergers by studying different regions of the diagram.

5.1.2.2 Clean and dirty sources

Figure 5.6 indicates the location in the decision diagram areas of Fig. 5.5, of galaxies
showing the three morphological options from visual inspection. The galaxies found as
clean, meaning that none of the three contamination possibilities were found for them, are
located in the right column, and the dirty contaminated galaxies are in the left column.

Regarding major mergers, they appear as clean sources along all the diagram in a
relatively homogenous way. This is because we have selected galaxies with high fm in
all the areas. Besides, as described above, a 63.82% of those galaxies were indeed major
mergers. However, while the clean mergers get distributed along all the diagram, the dirty
mergers can be found mainly in three regimes: in the leaf-shaped Merger area; in the Left,
Right, and Bottom regions, although with less frequency; and mostly in the Top triangle.

The other identified type of mergers show a distribution similar to the major merging
pairs, although with a shift towards the bottom-left corner of the plot in the direction
orthogonal to the boundary, as can be seen in the clean other-mergers panel. They also
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appear contaminated more often on the Right and Left wings than in the Merger’s leaf.
Again, the Top area is the dirtiest one.

The key result of these plots is found in the panels of the non-merging galaxies. While
they appear cleaner the closer they are found to the bottom-right corner of the plot, they
appear dirty in a relatively uniform way across all areas. This is the main motivation
for creating a decision tree that is able to identify contaminated non-merging galaxies. If
the dirty sources are discarded by the decision tree, then the sky error boundary can be
used to find a sample of merging sources with a higher percentage of correctly identified
mergers, as shown in the top and central-left panels. The percentage of galaxies that we
observed, averaged among the seven areas in the diagram, to show contamination by stars
was around 40%, by visual pairs around 30%, and by artefacts around 5%.

Figure 5.7 shows the distribution of sources contaminated by either nearby stars or
by visual pairs, separated by the visual morphological classification. As the left columns
indicate, the majority of sources with a nearby star contaminating its sky background are
located in the Top area. The density of the star-contaminated sources decreases as one
moves from the Top area in the bottom-left direction perpendicular to the diagram.

Comparing the contamination of major mergers and of other mergers by stars, by galaxy
pairs, or by all contamination as shown in Fig. 5.6, one can conclude that the contaminated
mergers have both stars and visual pairs around. Because the amount of artefact-only
contamination is quite small – as indicated above, it is an average of ∼5% among all areas
–, the dirty panels in Fig. 5.6 have to be populated by galaxies contaminated both by stars
and by visual pairs in order to be consistent with Fig. 5.7.

5.1.3 Decision tree

With the goal of finding galaxy mergers in the sky error diagram, it is necessary to avoid
those sources that do not have a high sky error because they are mergers, but instead
because of the presence of contamination. These so-called clean and dirty sources have
been identified in the visual inspection results described above in Section 5.1.2.2. The
decision tree thus attempts to find as many of those dirty sources without discarding the
clean ones.

Given the relevant statistical concepts described in Sect. 3.2.3.4, Table 5.2 shows the
accuracy, recall, and specificity out of dt for merging galaxies, and Table 5.3 the same but for
non-mergers. Here mergers are sources that were considered as either merging pair or other
type of mergers during the visual inspection. The accuracy for mergers is around a 62%
and for non-mergers around 64%, making the model better than a random choice, but not
very strong. The recall and the specificity for mergers is ∼72% for both. For non-mergers,
the recall and specificity are ∼67% and ∼55% respectively

The main goal of the decision tree is to find dirty non-mergers while keeping a high
number of clean mergers. Thus, the recall of dirty non-mergers and the specificity of clean
mergers are the most important results to assess the quality of the method. In fact, the
internal parameters of the decision tree have been fine-tuned to optimize the two statistics.
Those hyperparameters are the flags employed in the catalogue of surrounding galaxies,
and the distance from the target galaxy for which stars and galaxies are considered to be
contaminating either by stars or visual pairs. They are described in see Section 3.2.3. This
distance is fully dependent on how the visual inspection was performed, and thus it is a
good approximation of the visual criteria applied.

Figure 5.8 shows the density of galaxies along the skyErr decision boundary. The
two bottom panels indicate the density for clean and dirty galaxies in the right and left
respectively. The other four panels indicate how the classification types distribute along
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Figure 5.6: Scatter plots indicating the location of the visually inspected galaxies. The dirty
and clean galaxies are in the left and right columns respectively. The major mergers, the
other types of mergers, and the non-merging galaxies, are in the top, central, and bottom
rows. The panels show the decision boundary, the two Non-mergers areas, the Merger leaf
and the Top triangle. The Right, Left, and Bottom areas are not shown but can be guessed
by the shape of the included regions.
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Figure 5.7: Scatter plots indicating the location of the visually inspected galaxies, in this
case showing the distribution of sources contaminated exclusively by stars or by galaxies.
The sources contaminated by stars are located in the left column, and those contaminated
by galaxies acting as visual pairs, on the right column. The rows show the same galaxy
morphologies as Fig. 5.6, and the areas of the boundary are also the same as depicted in
Fig. 5.6.
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Table 5.2: Table showing the accuracy, recall, and specificity from dt as described in 3.1 of all
galaxies visually classified as mergers. The third column from the left includes the formula
used for calculating it, and the last column described the implication of the parameters.

statistic value formula description

Accuracy : 62.72 % TPs+TNs
all

Recall : 71.92 % TPs
TPs+FNs

Fraction of dirty mergers correctly
identified by dt with respect to the total number

of mergers considered as dirty by the visual inspection

Specificity : 72.44 % TNs
TNs+FPs

Fraction of clean mergers correctly
identified by dt with respect to total number

of mergers classified as clean by the visual inspection

Table 5.3: It shows analogous information to Table 5.2, but for galaxies visually identified
as non-mergers.

statistic value formula description

Accuracy: 64.16 % TPs+TNs
all

Recall: 67.07 % TPs
TPs+FNs

Fraction of dirty non-mergers correctly
identified by dt with respect to the total number

of non-mergers considered as dirty by the visual inspection

Specificity: 55.35 % TNs
TNs+FPs

Fraction of clean non-mergers correctly
identified by dt with respect to total number

of non-mergers classified as clean by visual the inspection

the boundary. These panels do not have a common normalization, with the intention of
showing more clearly the distribution within each of them.

While the dirty galaxies are located all along the diagram, the clean sources cluster in
the bottom-left corner, where the Non-mergers B area is. Consequently, the majority of
TNs, which correspond to clean sources correctly determined to be clean by the decision
tree, also cluster there. At the same time, the FPs, clean sources found to be dirty, cluster
at the Non-mergers B area and also at the Bottom area. The cluster at the Bottom area
can be justified by the dt finding minor mergers to be dirty sources. This can be expected
because of the combination of two arguments. One is that the visual pair branch finds
contamination when the neighbour galaxies are located at a distance to the target that often
overlaps with the distance where a minor merging pair starts showing tidal features. The
other argument is that the small galaxies don’t usually have spectrometric measurement,
and therefore they cannot be corrected by the cross-pair branch.

The TPs, dirty sources identified in dt as contaminated, show a similar distribution
as the dirty galaxies. The FNs, dirty sources identified as clean, cluster in the areas Non-
mergers B, Bottom, and Top. This again follows the distribution of dirty galaxies.

5.2 Discussion

5.2.1 Visual Inspection

The main outcomes from the visual inspection were the insights about the subsamples
where mergers can be found and the subsamples where contaminated sources cluster.



5.2. Discussion 83

Figure 5.8: These six panels show the @D histograms for the dataset galaxies that have
been used as input for the decision tree. The two bottom panels show the distribution of
all dirty and clean galaxies in the left and right, respectively. The top left panel show the
TPs, the top right the TNs, the central-left one the FPs and the centre right one the FNs. The
colour bar goes from 0 galaxies in white, through 1 galaxy in light yellow, getting darker
and darker to the maximum of galaxies per panels.
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Many galaxies showing minor mergers or coalescing were found hidden in the subsets
of Spiral galaxies with fm ∈ (0, 0.2] in the Right and Left wings. This was also found for
Uncertain galaxies in the Bottom area with fm ∈ (0.2, 0.4], and for some sources in the
Non-mergers area A that are close to the boundary, as suggested in the central-right panel
of clean other-mergers in Fig. 5.6. This implies that the GZ DR1 question tree was not
very efficient at differentiating spiral galaxies from irregular galaxies unless those were
major merging pairs. Moreover, it also supports that mergers other than major ones can be
classified through the sky error diagram.

The first conclusion from the contamination analysis is that, in the form calculated in
SDSS DR6, the skyErr is sensible to the presence of contamination in a way that it confuses
actual mergers. This can be expected because the sky background in SDSS DR6 did not
mask sources, but instead calculated the clipped median for all pixels in every 128×128
box. This allows the PSF wings of any source near the target galaxy to have an effect
on the background. From the difference of distribution between types of contaminations
indicated in Fig. 5.7, it can be seen that indeed the stars induce a larger sky error. They are
increasingly frequent towards the Top area and perpendicularly to the boundary.

The second conclusion from the contamination is that the contamination populates the
diagram in a relatively uniform distribution, affecting non-mergers in any area, as depicted
in Fig. 5.6. This complicates to create a sample of clean mergers in the leaf-shaped Merger
area, where they appear more frequently.

Regarding the contamination of merging sources, it seems that the majority of contami-
nated mergers are affected both by nearby stars and visual pair galaxies. This is because
they are galaxies located in more crowded portions of the sky.

Last but not least, the division of subsamples of galaxies depending on the four pa-
rameters proved very useful to narrow down the region-dependent behaviour of the sky
error diagram. However, as shown in Table 5.1, it has introduced difficulties on extracting
conclusions on the underlying distribution from the whole dataset, and therefore on the
general capabilities of the methods.

5.2.2 Decision Tree

The preliminary results on the decision tree can provide two main conclusions on the
capabilities of the sky background error methodology. One comes from its construction: it
took into account only contamination by stellar or galactic sources. As described in Sect.
3.2.3, all sources within twice the Petrosian radius of a target galaxy that was a star or a
galaxy not fulfilling the cross-pairs conditions, were considered to be contaminants. The
fact that only a 5% of the sources were contaminated by artefacts, very small in comparison
with stars and visual pairs, made us decide that cleaning them was less of a priority.

The recall and sensitivity for mergers plus the recall for non-mergers were found to
be 71.82 %, 72.43 %, and 67.07 %, respectively. This is more relevant than the relatively
low accuracy for both samples, 62.72 % and 64.14 % respectively, because the goal of the
decision tree is to find contaminated non-mergers while keeping clean mergers. Moreover,
the specificity of 72.43 % for mergers also implies a relatively high amount of clean mergers
that were not discarded.

Finally, the dt results are quite consistent with the clustering in the distribution of
contaminations, impliyng that contaminants can be found consistently. Thus, a further
effort in determining them while differentiating them from the real merging features has
the potential of creating clean and large catalogues of mergers.
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5.3 Conclusions

The extension to the whole GZ DR1 sample of the sky error diagram, built in the g-versus-
r-band skyErr plane using the training dataset of Sect. 2.1.3, had two main challenges: to
make sure that GZ DR1 mergers not included in the training sample can be found, and to
limit the non-mergers that intrude in the merger area. Besides, the galaxies in the training
set were mainly major merging pairs, so that the extension aimed also to include other
types of galaxy mergers, such as minor mergers or coalescing sources.

Because the GZ:DR1 galaxies populate the diagram more widely than the training set,
as shown in Fig. 5.1, we wanted to narrow down what areas of the diagram are more likely
to be populated by mergers. We used the alpha shape algorithm to delimit an area around
the main distribution of mergers and two areas around clusters of non-mergers. Moreover,
we also studied the statistics of the diagram when moving from the main merger area in all
four directions. This resulted in defining four more areas in the diagram.

We thus separated the GZ DR1 in the seven diagram areas, plus in magnitude and
morphologies based on the GZ results. This provided subsets of GZ DR1 defined by four
parameters, and we randomly took nine galaxies for each subset, making the subsamples
that we visually inspected. We split morphologically those galaxies in three classes: major
merging pairs, non-merging galaxies, and a class gathering all other types of merging
interactions. We also noted whether there was contamination around the galaxy. The
possible contaminants were stars, image artefacts, or galaxies that we considered to not be
interacting and that were too far appart to be identified as mergers through cross-pairs, i.e.,
calculating the distance to the target making use of their spectrometric redshift.

The main result from the visual inspection was that we found contaminated non-
mergers all along the diagram. It also resulted that Spiral galaxies with GZ DR1’s merger
vote fractions fm of moderate values – around (0, 0.2] – were likely to be minor or coalescing
merging galaxies. Because of the contamination, we decided to design a decision tree
capable of finding those contaminated non-mergers.

The contaminants were mainly stars or visual pair galaxies near the visually inspected
sources. The decision tree took as input all the detections from SDSS DR6 as long as they did
not present some detection flags. If one of the detections was located at a certain distance
from the target galaxies, then the target galaxies themselves were discarded and considered
contaminated.

The performance of the decision tree was the following. It had a sensitivity of 72.43
% for clean merger identification, which indicates the amount of clean mergers that were
recovered as clean ones – see the third row of Table 5.2. It also had a recall of 67.07 %
of dirty non-mergers, which corresponds to the percentage of dirty non-mergers that the
decision tree is capable of finding – see the second row of Table 5.3. This implies that, while
the model still looses some of the mergers and also struggles to clean the sample of dirty
non-mergers, it provides a well balanced and promising result.

We considered that the implementation of this project had a fundamental complication,
the separation of the data by magnitudes and by GZ DR1 morphologies. It was initially
done because of the clear dependence of the sky error values on them, that we introduced
because they trace very well the variability of the galaxies across the skyErr diagram.
However, it complicated the generalization. In future work, we would like to separate
the more general decision tree from a more specific analysis of the magnitude and merger
votes, which would provide insight on what are the best galaxy images that the sky error
method could trace.
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CHAPTER 6

Mergers in the North Ecliptic Pole

The extension of the sky error method to deeper images requires parametrizing the effect
in the sky background of the Low Surface Brightness (LSB) merger features. Using the
selection of mergers and non-mergers described in Sect. 2.2.3, we aim to find parameters
that characterize mergers when applied to low Signal-to-noise (S/N) pixels. This text
summarized my contribution to Pearson et al. (2022) and includes my work on the extension
of the sky error method to deeper Subaru/Hyper Suprime-Cam (HSC) images. This chapter
is based on a draft of a publication which is now being prepared and should be submitted
soon after the submission of the thesis. This was again carried out by myself and the
analysis and discussion was developed together with my auxiliary supervisor William J.
Pearson and my supervisor prof. Agnieszka Pollo.

6.1 Results

As described in Chapter 3, Sect. 3.3, we visually confirmed or denied the merger classifica-
tion by the Deep Learning (DL) applied to the HSC images on North Ecliptic Pole (NEP)
– see Chapter 2, Sect. 2.2.2. The combined visual inspection was performed between my
auxiliary supervisor dr. William Pearson and me, being the majority of the galaxies identi-
fied by him. The DL model combined a Convolutional Neural Network (CNN), applied on
the r-band images, with a NN applied on morphological parameters, calculated from the
images using statmorph (Rodriguez-Gomez et al., 2019), and it was trained separately for
two redshift bins. This resulted in two catalogues of mergers with DL-based galaxy merger
candidates and their visual classifications.

The two redshift intervals in which the dataset was split were a low-redshift bin of z <
0.15, and high-redshift bin of 0.15 ≤ z < 0.30. The model provided 1 477 merger candidates
in the z < 0.15 redshift bin, 251 out of which were confirmed by our visual inspection.
Regarding 0.15 ≤ z < 0.30 interval, 1 858 of the 8 718 candidates were confirmed.

As a consequence, only 17% and 21% of the merger candidates were confirmed in each
bin. There are two possible arguments that can justify this, one is related to the performance
of our inspection and the other comes from contaminations in the DL classification.

The visual inspection performances are described in the Appendix B of Pearson et al.
(2022). They were tested by generating 100 mock major merging galaxies plus 100 non-
merging ones from the Illustris TNG simulation (e.g. Marinacci et al., 2018). The galaxies
had a redshift of z = 0.15, between the two datasets. It showed that, for both of us, the
performance is worse than the DL model. The accuracy from dr. Pearson was 0.620, and my
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accuracy was 0.630, while the model showed of 0.884 and 0.850 in the low and high-redshift
intervals.

However, during the visual inspection, we observed multiple sources with properties
that could confuse the model. Those were two blending galaxies that resembled a double
nucleus, or visual pair galaxies with no apparent distortion and different redshift. It can be
understood that this cases can be ambiguous for the model, and thus are natural sources of
contamination.

6.1.1 Sky Background modifications

The initial result of this latest project was obtained by comparing the calibrated frames
obtained from the two variations of the HSC data reduction described in Sect. 3.4.2.1. They
differ in the treatment of the sky background. Figures 6.1 and 6.2 show and compare the
results of the image processing for one calibrated Coadd frame and for one cutout around a
galaxy, respectively. The frames named "Calibrated with sky" in the bottom-left, are those
where the sky background created from the dithering between exposures was not modified,
and the "Calibrated frames without sky" are those where the three dithering Header Data
Units (HDUs) were set to zero.

The difference between the two coadds shows a defined structure. Because this differ-
ence is obtained by taking the image with normal sky and subtracting the image calibrated
without sky from it, this means that negative pixels – shown in grey in the difference
image of Fig. 6.1 – correspond to higher values in the image without the dithering-based
background. Conversely, positive pixels – shown in white – have higher values when the
background is treated normally. As a consequence, a negative value implies that a static
background feature has been corrected in the frame with normal sky, but it remains in the
image when the dither-based background is not subtracted.

The area populated by brighter stars in the left of the frame shows mainly pixels smaller
than 0 in the difference frame. This means that the dithering reduced the glow surrounding
the stars, and getting rid of the background treatment allows the bright haloes to stay in
the image. There is also a substructure, shaped as a diagonal line in the region between the
x-axis around [0, 500] and y-axis ∈ [2500, 3100], that also shows negative difference. The
origin of this structure does not seem clear to us.

The top area shows positive values instead. It is less populated by bright stars, and
it clearly looks dimmer in the frame on the right of Fig. 6.1. This under-subtraction can
be due to the lower density of sources, or due to the g-band filter itself. Overall, these
differences are small but with a high spatial variability.

The clear substructure in the large coadd calibrated frame is nonetheless not so clear in
the galaxy cutout of Fig. 6.2. The difference frame shows values one order of magnitude
smaller than those in the pixels of each cutout, so that the contrast can barely be observed.
There are flat and noise regions distributed across the Difference frame, although there is no
clear correspondence between them and the sources of the image. While this supports the
argument that the dithering-based background does not affect low Signal-to-noise features
around galaxies, it does not give insights on the origin of the small size substructures.

6.1.2 Parameters

The parameters characterizing the low-surface brightness pixels around the galaxies of
our catalogue are shown as histograms in Figs. 6.3 and 6.4. All were calculated through
a clipped median background estimation within an aperture of 2.5 times the galaxies’
effective radius (re f f ). The measurement used with a clipping factor of 2.7 and n = 10
iterations. Figure 6.3 shows the parameters with images reduced using the normal sky
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Figure 6.1: Comparison between the same Coadd Calibrated frame from the two different
data reductions applied. The bottom left and bottom right images are the calibrated frames
resulting from the pipeline runs when the last background HDUs were kept or when they
were set into a 0 value, respectively. These are 4 096×4 096 images, displayed using a
symmetric logarithmic grey scale. The Difference image in the bottom row is the difference
between both frames, created as the image on the left minus the images on the right.
According to the colour bar of the Difference image, positive numbers are in bright colours
and negative in grey.
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Figure 6.2: Comparison between the two cutouts of one of the galaxies of the GZ:CD-based
catalogue. The two bottom cutouts were obtained with the same pipeline options as in 6.1,
and the bottom panel is also the difference between the two. The colour scale in this case is
linear.
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Figure 6.3: Eight panels showing the histograms of the eight parameters applied to the LSB
pixel distribution around the GZ:CD HSC-NEP matched galaxies. The orange histogram
bins correspond to mergers and the blue to non-mergers. The name of the parameters is
indicated on top of each panel, and the bin heights are in logarithmic scale. The cutouts
used for the analysis were obtained performing the HSC data reduction without any
modifications in the g-band images.

treatment, and Fig. 6.4 corresponds to the pipeline without dithering-based background
subtraction.

Firstly, there is quite small difference between Fig. 6.3 and Fig. 6.4. This is consistent
with the results from Sect. 6.1.1, where no substructures at the level of Low-Surface-
Brightness (LSB) are evident.

A panel by panel examination shows the main difference in the distribution of mergers
and non-mergers to be in the lowermost tails of the skewness and kurtosis parameters. The
higher end of the Mean, Median, and the IQR panels also hint some difference between
classes. The Fractions 2 and 3 have slight differences in the distribution shapes. Overall,
this is the same for both treatments of the sky background.

Because the parameter distributions indicate that the LSB pixels around mergers and
non-mergers are not statistically the same, we applied a Neighbourhood Components
Analysis dimensionality reduction to the eight-parameter set of Fig. 6.3.

6.1.3 Dimensionality reduction

NCA creates an embedding using the classification labels of the data, aiming to create
something similar to the SDSS skyErr representation in Fig. 4.11. Figure 6.5 shows the
result of applying NCA to the parameters plotted in 6.3. The mergers and non-mergers
shown in the plot overlap in the more crowded area. However, there is some region of the
embedding where mergers are more abundant than non-mergers. This is marked by the
top-right red box.
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Figure 6.4: The histograms and panels are analogous to Fig. 6.3, except that the cutouts used
were obtained from the HSC data reduction where the dithering-based sky background
was not subtracted.

While there is no clear separation, as with the sky background error, the marked red
box indicates the presence of a region in the parameter space with a majority of mergers. In
this case it contains 49 mergers 30 and non-mergers, which means it is populated by ∼62 %
of mergers.

6.2 Discussion

In the Results section of this chapter, many galaxy merger candidates were considered to
have been incorrectly identified by the Deep Learning (DL) model. We observed some
patterns during the visual inspection that were common for some of the rejected merger
candidates. Double nucleus galaxies that looked more like a chance blend, or nearby galaxy
pair without tidal distortion and at different redshifts.

One test was to apply an occlusion experiment on the galaxy images (e.g. Zeiler and
Fergus, 2013). It consists on generating a map of the importance of the image pixels by
setting to zero a kernel of pixels. The image with the occluded kernel is used as input of the
model and the output is stored. The kernel then moves around the image, providing an
average of the classification outputs per pixel. In this project, it was performed by moving
a 16×16 one step at a time along the pixel grid, implying that the value in each pixel comes
from the average of up to 162 results.

The occlusion was done for eight mergers and eight non-mergers in each redshift bin,
all identified as mergers by the model and confirmed/rejected visually. It showed that the
majority of non-mergers wrongly identified as mergers had a second galaxy nearby in the
cutout. These companion galaxies showed redshifts not compatible with merging processes.



6.2. Discussion 93

Figure 6.5: Scatter plot showing the result of applying an NCA dimensionality reduction
to the parameters shown in Fig. 6.3. The dark orange crosses are merging galaxies, and
the dark blue pluses non-merging ones. The red lines delimit a region in the embedding
populated in a ∼62% by merging galaxies.
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However, the redshift was not an input of the DL model, and therefore this contamination
by visual pairs could be expected.

It is worth to note that the influence of the LSB surroundings in the merger classification
was hinted by how obscuring the primary galaxy made some sources more likely to
represent a merger. As stated in the text: "Hiding of the central source may make fainter
structures around the galaxy more apparent and hence easier to identify as a merger, but
this is speculation." (Pearson et al., 2022). It is quite interesting how this intuition from my
auxiliary supervisor become a consistent argument along all my PhD.

The analysis of the relative importance between the image-based CNN and the mor-
phological parameter-based NN in Pearson et al. (2022), concluded that the parameters
contributed more than the images to the correct classifications. Nonetheless, the analysis of
the visually rejected non-mergers did not lead to insights about contamination sources.

Overall, this initial experience during my PhD not only allowed me to learn the char-
acteristic features of galaxy mergers, but also made us aware of the contamination in
ML-based merger classifications. This discovery played a big role in motivating the analysis
in Chapter 5.

6.2.1 Sky Background modifications: effect on merging features

The comparison of the two g-band data reductions shows that the dithering-based back-
ground subtraction is independent of the LSB features around galaxies. This can be inter-
preted by seeing how the LSB-based parameters in Figs. 6.3 and 6.4 are quite similar. The
substructures in the Difference frame of Fig 6.2 are completely independent to the locations
of the sources, supporting the independence of the LSB features from the background

The HSC commissioning team’s motivation for introducing this sky background proce-
dure for the HSC photometric pipeline was, in the first place, to avoid the over-subtraction
of bright haloes. It is clearly depicted in the Fig. 5 of Aihara et al. (2019), that compares the
over-subtraction in the previous pipeline of the bright halo around a nearby galaxy with the
non-over-subtracted updated version. We find another effect of this new subtraction in Fig.
6.1, where the image obtained from the data reduction without the dithering-based back-
ground keeps the glow around the stars. Thus, the hscPipe v6.7 background subtraction
is able to reduce the residual brightness from the extended PSF of the stars in the image.
However, this corresponds to brighter sources than the majority of galaxies of our catalogue.
Therefore, this is to our knowledge one of the first studies of the effect of the HSC sky
background subtraction on LSB features around galaxy mergers in the intermediate galaxy
size regime covered in this work.

The contrast between the two coadd images of Fig. 6.1 in the area populated by stars
implies that the dithering is able to reduce the residual halo around stars. It has also
been seen in Watkins et al. (2024), which simulated images applying the extended PSF
obtained experimentally in Montes et al. (2021) for the HSC Subaru Strategic Program
(HSC-SSP). They tested, among other background subtraction methods, a dithering strategy
that included a smoothing of the resulting images. They found how the dithering sky
subtraction reduced the halo glow of the images with extended PSF.

The research in Watkins et al. (2024) also found that the dithering pattern can infuse
some structures, introduce noise back to the image, or produce over-subtraction if some
sources passed unmasked during the detection. The substructures they found in the
dithered frames were produced by the smoothing, so we did not find them in our images.
The substructures in the Difference frame of Fig. 6.1 might have also been induced by
the dithering pattern: they resemble a blurring around the position of the stars. In the
Difference frame of Fig. 6.2, that alternates flat and noisy patches, the noise added back to
the images seems also apparent.
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The use of dithering for reducing the loss of LSB tidal features around galaxies has
been explored and confirmed in previous works. The study in Trujillo and Fliri (2016)
showed how it is possible to improve the lower limit in surface brightness by designing an
optimized observation strategy. In their case, they used the 10-metre Gran Telescopio de
Canarias (GTC) telescope to improve the imaging of LSB structures around the UGC00180
galaxy. They combined the dithering of the camera with rotations around its edge, and
calculated the background for each exposure after masking the detections. They not only
obtained high details on the stellar halo around UGC00180, but also managed to show the
tidal stripped material around the two mergers, of redshifts z = 0.175 and z = 0.287, that
were found in the nearby sky – see Fig. 5 in Trujillo and Fliri (2016). Such study managed
to improve the surface brightness limit down to 31.5 mag/arcsec2.

6.2.2 Dimensionality reduction on the LSB parameters

The main interpretation of the Neighbourhood Components Analysis (NCA) embedding
obtained in Fig. 6.5 is that this eight-dimensional parameter space generated through
the LSB pixel distribution indeed has the potential of providing a clean sample of galaxy
mergers. The fact the embedding is still contaminated by non-mergers is an indication that
this work is only on its preliminary stages. There are however some details that can be
discussed.

First, the parameters we have shown were obtained applying an aperture with radius
equal to 2.5 the galaxies effective radius and a clipped median with clipping factor of 2.7×σ.
These were selected by a grid search, testing multiple values around them. Deviations from
these parameters showed more similar distributions between mergers and non-mergers.
Second, the dimensionality reduction we chose to show was the NCA because it created
the embedding using the source labels. Dimensionality reductions such as PCA or tSNE
did not create an area where mergers were more abundant, as the one within the red box of
Fig. 6.5.

Regarding the parameter distributions of Figs. 6.3 and 6.4, the mergers and non-mergers
overlap in the more dense areas. It is in the wings where there is more difference between
distributions. This is somewhat artificially enhanced by the logarithmic scale in the y-axis,
which makes smaller difference in low-number bins to look larger than big differences in
high-number bins. However, the NCA area demonstrates that the distribution difference
indeed exist.

There is still one main difference between these parameter representations and the
original sky background error method: the skyErr decision boundary in Fig. 4.11 combines
the g and r optical bands. Next iterations of this work will include the r band observations,
and we also intend to add other HSC bands. This has been delayed and could not be
included in this manuscript because we wanted to extend the dataset to all the H20-NEP
images for both bands, which were carried out by a different HSC pipeline than hscPipe
v6.7, and the new installation has not been implemented yet.

Finally, the eight parameters that we calculated were chosen to quantify the shape of the
LSB-pixel histogram. Initially, we found that these histograms were different for merging
and non-merging galaxies. The fact that our parameters provide small differences between
sources is very encouraging to, in the future, test more complicated parametrization of the
LSB distributions.

6.3 Conclusion

The main conclusion of this project was the clear presence of contamination in Machine
Learning (ML) based classifications, among the galaxies of the Subaru/Hyper Suprime-Cam
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(HSC) survey in the North Ecliptic Pole (NEP). We observed multiple sources that were not
mergers but were mistaken by the model. As a result, the output catalogue published in
Pearson et al. (2022) included the merger candidates obtained from ML model outputs, the
visual inspection confirmations. Out of the 34 264 merger candidates, 10 195 were merger
candidates, and 2 109 were visually confirmed: 251 out of 1 477 for galaxies with redshift z
< 0.15; 1 858 out of 8 718 for those in the 0.15 ≤ z <0.30 interval.

In this final work, we intended to combine all the previous work and define a skyErr-
like parameter in HSC-NEP images taken by the AKARI-NEP collaboration, also used
in Pearson et al. (2022). We took advantage of the Galaxy Zoo: Cosmic Dawn! (GZ:CD)
morphological classifications, and built a catalogue of 256 mergers and 256 non-mergers,
classified in GZ:CD and observed in the HSC-NEP g band images.

Because Low-Surface Brightness (LSB) features in astronomical images depend strongly
on the sky background subtraction strategy, and the SDSS DR6 sky error was calculated
during the sky subtraction itself, we modified the sky background in the HSC-NEP images.
We run the data reduction twice, switching off and on the subtraction of sky background
obtained from dithering, which we considered to be the most likely to influence the LSB
surroundings. As a result, we found indications that the dithering-based background does
not affect the LSB features. This was shown studying the relative difference between data
reductions methods in the image themselves and in the parameter space created for our
skyErr-like methodology, described in the following paragraph.

We defined a method to extract the LSB pixels around the observed sources, and
generated parameters that describe the LSB distribution. We selected parameters that trace
the distribution properties: the mean, the median, the interquartile range, three functions
we defined by comparing quartile sections, the skewness and the kurtosis – see Sect. 3.4.1.
The resulting parameter space showed some statistical differences between mergers and
non-mergers. We performed a Neighbourhood Components Analysis (NCA) embedding
shown in Fig. 6.5. The statistical differences appear enhanced in the red box of the bottom
right side, where a 62 % of the galaxies are merging sources in contrast with the more
homogeneous central distribution.

Further research will attempt to increase the dataset, the number of parameters, and the
photometric bands reduced. For increasing the dataset, we will implement a new version
of the HSC photometric pipeline, the hscPipe v7.9.1, which will allow the data reduction of
the H20-NEP images, from which the GZ:CD catalogue was created. Once this is done, we
will reduce the photometric bands other than g. Finally, better statistics and multi-band
parameters will provide new insights in the LSB pixel distribution, making it possible
to introduce new parameters that trace better the presence of LSB features and stripped
material.

Last but not least, analysing the sky background-based merger identification with
the increased image depth that HSC has compared to SDSS had an additional objective.
We want to explore how this method could be applied to the Large Survey of Space and
Time (LSST; Ivezić et al., 2019). This survey will make use of the Vera Rubin Observatory,
observing the South Pole sky during 10 years, reaching even deeper imaging than HSC.
The data commissioning team of those three surveys, SDSS, HSC, and LSST, has been the
same. It has evolved and become bigger over the years, shifting their focus from one survey
to the next. In fact, HSC was treated as a precursor survey to LSST, and the infrastructure of
the LSST pipeline is based on the HSC one. Thus, the extension of our merger identification
for LSST, and the possibility of including its results in the LSST data reduction pipeline, are
the underlying goal of these four years of PhD. While the work still needs to be completed,
the main steps have already been walked, and the results are just appearing on the horizon.
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CHAPTER 7

Summary

This thesis has shed light in the current methodologies to find galaxy mergers in large
optical surveys. There are two main areas in which we have advanced the field: the
possibility of using photometry for finding mergers, and the assessment of contamination
by non-interacting sources. We did this in the works presented through the Chapters 4, 5,
and 6.

We demonstrated in Chapter 4 that photometric parameters can be used for finding
merging sources. We arrived to this conclusion by the analysis of Sloan Digital Sky Survey
Data Release 6 (SDSS DR6) galaxies through a Neural Network (NN). We first created a
class-balanced catalogue of mergers and non-mergers to train the NN. For that, we selected
mergers from Galaxy Zoo Data Release 1 (GZ DR1) that were confirmed in Darg et al.
(2010a,b). This training catalogue had 2 930 mergers and 2 930 non-mergers for training and
validations, and 250 mergers and 250 non-mergers for test.

We applied multiple sets of photometric parameters as inputs to the NN. We started
with combining magnitude measurements in the five SDSS photometric bands, and in the
end found that the error in the sky background measurement was capable of providing
an accuracy of 92.64 ± 0.15 % in validation, and of 92.36 ± 0.21 % in the test set. Through
attempting to understand the NN results, we arrived to the conclusion that the SDSS DR6
sky background error can be plotted to provide a decision boundary separating mergers
and non-mergers. This can be done combining the SDSS r, g, and i bands, and as shown in
Fig. 4.11, the g-versus-r plane gives a 91.59 % of accuracy.

The sky background error prowess to find mergers was interpreted to come from the
influence of Low Surface-Brightness features around the mergers in the images. Thus,
the stripped material, tidal arms, and other interaction-induced features, would have an
imprint in the images that the SDSS DR6 sky error was capable of capturing. We made
an initial evaluation of the method’s dependence on image depth, and showed that it is
capable of identifying other mergers than major merging pairs, which were the main type
of mergers in Darg et al. (2010a,b) and thus in our training dataset.

The potential for finding mergers that the SDSS DR6 sky error showed encouraged
the work presented in Chapter 5. The initial aim was to extend the decision boundary
to all galaxies classified in GZ DR1. For narrowing down its applicability range, we
visually inspected galaxies pre-selected in subsamples defined by magnitude, GZ DR1
morphological results, and location within the diagram. In the visual inspection, we
classified the galaxies between merging major pairs, non-mergers, and other types of
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mergers. Besides, we noted if they presented nearby potentially contaminating sources
such as stars, visual pair galaxies with no physical relation, and image artefacts.

The main results of the visual inspection were two. The first was that merging galaxies
that are not major pairs, such as minor mergers or coalescing mergers, can be found in the
diagram but with lower sky error than the mergers. The second was that non-merging
galaxies with contamination around could be found all around the diagram, an issue which
we decided that needed to be addressed.

In order to address the contamination, we built a decision tree. The goal of this decision
tree is to point out the contaminated sources, avoiding them to be considered as mergers.
This decision tree discarded the target galaxies if they had an SDSS DR6 source detection
at a certain distance. Moreover, if the merging galaxies could be identified by cross-pairs
method, they were not discarded even in the presence of contamination. The tree resulted
to discard a 67.07% of the contaminated non-mergers from the visual classification, while
keeping 72.43% of clean mergers. Thus, with this initial results, we showed it is possible to
obtain a clean sample of mergers from the sky error boundary.

We also worked with deeper imaging from the Subaru/Hyper Suprime-Cam (HSC)
deep field images in the North Ecliptic Pole (NEP). I contributed to the catalogue of mergers
in Pearson et al. (2022), where we confirmed visually mergers from the Machine Learning
(ML) classification method built by dr. William J. Pearson. Some of the merger candidates
identified by the ML-based method were contaminated non-mergers that we discarded.

Furthermore, we proved in the HSC-NEP images that it is possible to extend the
methodology to the deeper images than SDSS in Chapter 6. We selected mergers and
non-mergers from the Galaxy Zoo: Cosmic Dawn! (GZ CD) program. We analysed the low
Signal-to-noise (S/N) pixels of galaxies observed at the g-band. For each source, we defined
an aperture where we measured the background sky level, which we used to identify the
low S/N pixels. By defining multiple parameters on the low (S/N) pixel distribution and
applying dimensionality reduction, we found a preliminary set of mergers can be obtained,
as shown in Fig. 6.5.

Moreover, we carried out our own data reduction of the g-band images. The SDSS DR6
sky error was itself calculated during the image calibration. Besides, some sky background
models have been shown to have detrimental effect on LSB features. Among the sky
background models made in the HSC pipeline we used, we only considered the potential
effect background made out of the dithering of the images. We performed the calibration
with this background switched on and off. The analysis of the difference between images
and galaxies obtained with and without the background showed that the dithering-based
background model does not affect the LSB structures around the galaxies of our dataset. In
fact, the parameters we calculated for the low S/N pixel distribution changed only slightly.

Future work will address first the finalization of the HSC depth extension by calibrating
a larger set of images from the H20 survey in the r and g bands, and exploring others
bands. We expect to improve the identification due to the larger dataset, the inclusion
of more bands, and the optimization of the parameters used to define the low S/N pixel
distribution. Besides, further iterations will allow us to understand better the low S/N
histogram and define extra parameters that can be applied to it. The HSC extension will
allow applying all these discoveries to a new merger identification for the upcoming Large
Survey of Space and Time (LSST), which will be carried by the Vera Rubin Observatory. I
and my two supervisors are part of the LSST collaboration, and the success of the upcoming
results will lead to adapting the method in HSC to LSST.

Other future work will be to improve our understanding in the range of application of
the sky error methods. We found that it depends on the image depth of the sources, which
itself is subjected to the brightness, size, and distance of the sources. We also have found
that multiple types of merging sources have different imprints on the sky background.
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Thus, further work on narrowing down the properties of mergers that can be optimally
found will also be arranged in the future. The decision tree presented in the work and
other techniques for cleaning the catalogues will also be addressed. We will quantify how
the contamination effect depends on the magnitude of the contaminants, and will to add
a branch of the tree that finds the contamination by image artefacts, using the artefact
masking.

This thesis has shown how I have built methods for finding galaxy mergers that can
be faster and more accurate than previous methods. Faster, because the sky error diagram
is more efficient than visual inspection or NNs. A sky error parameter obtained directly
from the data reduction of the survey would reduce to a minimum the effort put by any
researcher with access to the image reduction outputs. It is also an accurate method because
we have taken into account possible contaminations and addressed ways to clean them.
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APPENDIX A

Reproducing the SDSS fibre magnitudes and errors

This appendix was also included as part of Suelves et al. (2023). In order to understand
what information the fibre magnitude errors enclose, we attempted to reproduce them
using the information in the SDSS DR6 documentation1. The documentation indicates that
it is calculated as the aperture photometry inside a circle of 3 arc-seconds in diameter, the
same angular size as the fibre, after the image is convolved with a 2 arc-second seeing to
resemble what the fibre actually sees2. Therefore, by retrieving the correct catalogues and
photometric parameters from the SDSS repository, one could reproduce the fibre errors
and examine the properties that make them so relevant for the NN. This appendix is
limited to showing how the uncalibrated fibre counts and count errors – found in the file
fpObjc – relate to the fibre magnitude and errors, together with all the required calibration
parameters.

Two main sets of information are required to reproduce the fibre magnitudes: first, the
equations that connect the observational measurements with the magnitudes, and second,
the files where these measurements are found. Table A.1 shows the files, and the equations
– as found in the documentation website – are the following:

Magnitude

m = − 2.5
ln(10)

[
sinh−1

(
f

f02b

)
+ ln(b)

]
, (A.1)

1http://classic.sdss.org/dr6/algorithms/fluxcal.html
2http://classic.sdss.org/dr6/algorithms/photometry.html#mag_fiber

Table A.1: Files employed to recreate the aperture photometry that leads to the fibre
magnitude data.

Name Type Contents
kfold_fibre Input for NN Fibre magnitudes and errors

fpObjc
Uncalibrated Catalogue,

i.e. before converting
counts to fluxes

Fibre raw counts and counts errors
plus sky background (sky) and error (skyErr),

interpolated to the source’s centre

drField Field calibration data Calibration Parameters (per band)
(e.g. gain, airmass, zeropoints)

http://classic.sdss.org/dr6/algorithms/fluxcal.html
http://classic.sdss.org/dr6/algorithms/photometry.html#mag_fiber
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Magnitude error

σm =
2.5

ln 10
σcounts

exposure time
1
f0

1√
4b2 +

(
f
f0

)2
, (A.2)

Counts error

σcounts =

[
counts+ (sky · Npixels)

gain
+ Npixels · (dark variance+ skyErr)

]1/2

. (A.3)

Here, f is the pixel units in counts divided by the exposure time; f0 is the zeropoint, that
is, the flux of an object with zero magnitude, given the atmospheric conditions and the
system’s instrumentation; b is the softening parameter that indicates the flux level at which
linear behaviour of m sets in; sky is the sky background estimation and skyErr its error,
both interpolated on the source centroid; gain is the telescope’s CCD’s gain; Npixels is
the size in pixels of the aperture used, and dark variance is the dark current’s variance
calibrated for the given frame. It should be noted here that sky · Npixels is the sky counts
summed over the same area as the object counts, as indicated in the documentation count
error3.

These initial equations did not succeed in reproducing the fibre errors, and some
modifications were found to be necessary. In order to justify the modification of these
relations, we compared the fibre magnitudes, magnitude errors, and count errors obtained
from the original and from our modified formulae. This study was made for ten arbitrary
galaxies of the dataset in each of the five pass bands.

A.1 Magnitude error formula

First, to confirm that the fibre counts (counts) provided the fibre magnitudes, we took the
fibre counts given in the fpObjc catalogue and applied Eq. A.1. Those fibre counts were
the SDSS’s counts extracted from the final seeing-convolved frame. Figure A.1 gives the
five-band panels, where the y-axis shows the fibre magnitude and the x-axis shows the
magnitude resulting from the fibre counts. The parameters f0 and b were extracted from
the field calibration dataset fpC. The straight black lines indicate the linear fits of the scatter
plots, with the fit parameters and their errors in the legend. This linear fit confirms that Eq.
A.1 does successfully relate counts and magnitudes.

Second, we applied Eq. A.2 to the fibre count errors in the fpObjc file. However, the fit
showed a slope corresponding to the exposure time of the frames, as shown in the slopes
of the five panels in Fig. A.2. Therefore, we modified the relation to Eq. A.4, and Fig. A.3
is the resulting fibre magnitude error, which lacks the exposure time slope and shows a
one-to-one relation that confirms the presence of either a typing error or an inconsistent
definition.

New magnitude error

σnew
m =

2.5
ln 10

σcounts
f0

1√
4b2 +

(
f
f0

)2
, (A.4)

in comparison with Eq. A.2, the magnitude error is not divided by the exposure time.

3http://classic.sdss.org/dr6/algorithms/fluxcal.html#counterr

http://classic.sdss.org/dr6/algorithms/fluxcal.html#counterr
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Figure A.1: Linear regression between the fibre magnitude extracted from the CasJobs
portal (y-axis) compared to the magnitude calculated using Eq. A.1 from the fibre counts
(counts) from the fpObjc catalogue (x-axis). The fit corresponds to ten galaxies pre-selected
from our training dataset, and is done for all five SDSS bands, u, g, r, i, and z, shown in the
five panels.
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Figure A.2: Linear regression, for the same galaxies and bands as in Fig. A.1, between the
fibre magnitude errors extracted from the CasJobs portal (y-axis) compared to the fibre
magnitude errors calculated using Eq. A.2 from the fibre count errors from the fpObjc
catalogue (x-axis).
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Figure A.3: Same as for Fig. A.2, but using the new equation for the magnitude errors (Eq.
A.4).
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Figure A.4: Linear regression between the fibre count errors (y-axis) compared to the fibre
count errors calculated using Eq. A.3 from the fibre counts (x-axis).

A.2 Count error formula

We have confirmed that the counts and count errors in fpObjc lead to the fibre magnitudes
and errors, respectively. We have also corrected the exposure time factor in Eq. A.2.
Nonetheless, when attempting to reproduce the fibre count errors using Eq. A.3, two
problems arise. The first one is the ambiguity in the dimensional analysis. On the one hand,
the units of skyErr are counts – in the fpObjc catalogue, although CasJobs contains them in
maggies – but dark variance is given in counts squared. The formula is wrongly adding
an error with a variance. On the other hand, the first and the second terms differ from each
other in the gain denominator. Its units are [gain] = photo-electrons/counts, implying the
first term is in counts2/photo-electrons and the second in counts2. This supported applying
the correction skyErr2 over dark variance1/2. The second problem is illustrated in Fig.
A.4. The linear fits between the original fibre count errors and those calculated using Eq.
A.3 are either quite deviated, as appears to be the case in bands u and z, or with a big
variance and apparently a non-linear shape, as in the g, r, and i bands.

We defined Eq. A.5 improving Eq. A.3:
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Figure A.5: Same as for Fig. A.4, but using the new equation for the count errors (Eq. A.5).
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New counts error

σnew
counts =

[
counts+ (sky · Apixels)

gain
+ Apixels · (dark variance+ skyErr2)

]1/2

. (A.5)

The improvement comes mainly from reducing the dimensional analysis ambiguity in
the second term. We also changed the name of Npixels to Apixels so that it illustrates better
that it is the area covered by the fibre aperture in pixel2 units.

Figure A.5 compares the count errors with the result of Eq. A.5 on the counts. In contrast
to Fig. A.4, a better linearity of the fit can be observed both visually and in the parameter’s
errors. The slope for all five bands is more uniform, and for the g, r, and i bands, a value of
1 for the slope is within the error bars, although it still deviates from the identity for u and
z. Nonetheless, the uniformity of the fits supports Eq. A.5.

To finalize, using the calculated count errors in the x-axis of Fig. A.5, we applied the
new magnitude error formula Eq. A.4 and compared the result with the fibre magnitude
errors in Fig. A.6. The linear fit supported quite strongly the equation. The intercept was
null for all bands and the slope differed from one only for the z band, showing a large
relative error only for u. Some outliers seemed to spoil the results – such as the top one in
the u-band panel, or the two separated ones in the top right area of the z-band panel. Figure
A.7 shows, in contrast to Fig. A.6, the magnitude errors when applying Eq. A.3. From
the slopes and the visual scatter of A.7, it is evident that the fibre errors were incorrectly
written in the SDSS documentation. We note that the intercepts were all almost zero due to
the nature of the asinh magnitude formula.

Our purpose in understanding the fibre errors was to identify its inputs to move
forwards in Sect. 4.1.4. We did not study it further since we considered that the results
confirmed that the counts, sky, skyErr, and dark variance were those inputs.
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Figure A.6: Linear regression between fibre magnitude errors (y-axis), compared to the
fibre magnitude errors calculated subsequently using Eqs. A.4 and A.5 on the fibre counts
(x-axis).
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Figure A.7: Same as for Fig. A.6, but using the old equation for the count errors (Eq. A.3).
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